188

A theorem on the normalcy -
of completely continuous operators.

By Tse-PEl CHIANG in Peking (China).

Let A be a completely continuous operator in a Hilbert space 9, and.
let the eigenvalues of the operator A and of the non-negative seifadjoint
operator A*A be denoted by «; and »; (i=1,2,...) respectively, which are
so arranged that

) o=z, nzaz.
Long ago I. ScHUR [1] proved the following inequalities

) : YRy R T AP B AP r»=1,2...),
where : ' .

3) o hi=|al' (i=1,2,...).

Recently H. WEYL [2] showed that the inequalities .

@ o) t+e@)+--to(h) = e(=)+ M)+ +o(x) (v=1,2,...)
hold for every function ¢(x) which is defined on [0, ) and increasing,
such that ¢(ef) is a convex function of & More recently G. PoLva [3] gave
an elementary proof of Weyl’s inequality. These facts led me to extend
a theorem of HARDY-LITTLEWOOD-POLYA [4] (see theorem 1). By means of this
extension it can be shown that if w(x) is any strictly increasing convex func-
tion defined on [0, ), then the condition .

@) lim (gwf)—g"lwa;)):o

implies the normalcy of the operator A (see theorem 2). Of course this class
of functions y/(x) is much narrower than the class of -functions ¢(x) figuring
in Weyl’s theorem. We remark that our theorem is not true for the class of
functions ¢(x%). A counter example will be,given at the end of this paper.
We start with the
Definition. A 'sequence of numbers «f, a;,... is said to be quasi-
majorised by a sequence of numbers «,, a,,..., if the following conditions
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are satisfied
@) « =0, a,z0 (i=1,2,..),
(i) Czaz..., emzaz..
(iii) atot...tasatat.. .+, (r=1,2,..),
(iv) lim [ a,,_za;] =0.

u—»eu =1 i=:1

Theorem I. Let {ai} .and {a;} be two sequences of- numbers, such
that e; =0, ;=0 (i=1,2,...) and ‘
 dzdz... o mza=... .
The sequence {a;} is.quasi-majorised by the-sequence {e:} if and only if there -
exist two sequences of positive integers ' :
mMEm=..., v,<un<... with L= (i=12..)
so_that for every positive integer k we can find v non-negative numbers
(5) : %,=0 w,v=12...,2)
such that '

1”: Vk

. Z:pg‘z’.zl([l=l,2,...,'vk), Zl‘pgfg,=1 =1,2,...,%)
and '
Vi
(6) au—ZpS:-z, @, (I=p=w, utn) @, =pa,

furthermore RS

(7) . hm [ ank1 ”1} q,;k] =0.

k>

Proof. That the condition is sufficient, is evident. To prove the neces—
sity we need the following lemmas.

Lemma l. Suppose a;—a; is the first negative difference among the
differences e;—el (i=1,2,...), and ex—a;. the last positive difference which
precedes «—ai, i. e. .
a=e (r=12...,k—1),

’ ) ’ o ’
o <Oy Qpp)l ==OQpily ..., By =01, >,

If we take

®) ' @ =0+7, a=0—F7,
and define o by -

© : - o==max (|ei—o|, |m el),

then 0<0<1<g, and the sequence of numbers {e;} is quasi-majorised by
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the sequence of numbers {e!} which is defined as

(T) _ ‘ l a;,=r2 o+ ° 1+a .,

o, =a, (v#k, 1’#1).

Moreover, for the sequence {ai} so defined, at least one of the equalities
« =a, o =ajis true. * '

This has been proved by HarDY, LITTLEWOOD and PoLva [3, p. 47—
48] when both sequences are supposed to be null after a finite number of
terms. However their proof remains valid for the present lemma almost word
for word.

Suppose o,—a;>0. Then, if we apply the transformation T (see above

lemma) to the sequence {«a;} successively, the first element ¢, must be affected
after a finite number-.of times. For, if not, we shall have

(10) Zan'—.y“r‘—aﬁ_al (n= 1,2,'. ),

=1

which contradicts to the hypothesis that lim (Za =D a})IO.

W w \i=l =1
Let m be the least number of times for the first element «, to be affected
in the successive application of the transformations 7. Then the sequence {a}}
arising from {e;} by the m-times successive application of the transforma-
tions 7, will enjoy the following properties:
1) {ei} is quasi-majorised by {e}.
2) There exist n* non-negative numbers -

p.‘”’zo - (A‘-l, ,’:1’21"'!,')

with
K‘?j.p’“":‘l («=1,2,1..,n), %p,,,_l (=1,2,...,n),
- so that ) - ‘
a,T-:,./iP.upa,, (w=1,2..,n), aqh=c, (v=n+1n+2..)
) j a—e (15.“’§n, w1, p==n),
3) l o =}, dpy=d,

where n, is an mteger 1<n‘I n. Moreover, at least one of the equalities ..
o=, a, =a,, is true.

L RE
. 4) Z a‘._z o« = ay— (I=7r<n).
) il =1 AN
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Thus we have proved the , . S

Lemma 2. Let the. sequence {e} be quasz-majorlsed by the sequence
{a;}). If oy—ea; >0 and if e\—ai is the first which is negative. among the
differences a;—ai(i=1,2,. . .), then there exist n*-(n = [) non-negative numbers
Pur=0 (u,v=1,2,...,n) with o

Spu=1 (u=1,2,...,1),\ Zp,.,—l (»=1;2,..5n),"
=1 - .

y:l

such 'that ‘ ' L
- _ lay—pray (u4=1 u+nn) : -

(11) o = Zp,,, D

o r_ . . s . . B

a:lu é 2, pﬂov @y,
. ) . ‘v_-:l \

where n,-is-a certain positive integer, 1< n‘.</‘1 and

r (12) , Da— Za Za—a, (1 <v<n)

=1 !

' Moreover, among the two inequalities in (11), at least one equality sign kolds.

We now proceed to the proof of the necessnty part of theorem 1.
By means of lemma 2, the sequence of transfgnn,atlon matrices

(13). T B, k=120 -
required in the theorem, is obtained subseqﬁently.' It remains to show

. Vi
(14) hm (pr') av—’ank)zo- .

k= \v=

To prove this, we supbose to the contrary that B : :

lim (prf),,a,, a,,‘) d>0,

py=1

k> .
1. €. - I
-~ Y " d .
pra,‘)y @, _auk = —2‘ (ké M)))
oe=l, N

- where N, is a certain fixed positive mteger. Then we shall have

Zta, Zaiz% a (n—v\")

=1 =1\

which is evndently contrary to the hypothesxs ThlS completes the proof of
the theorem

;
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-.Theorem 2. Let w(x) be a strictly increasing convex function defined
on [0,o0). Then the condition

™ im (S we— 3w —o

W =l

implies the normalcy of the operator A.
Proof. We have [2]

(15) PA)ZYER)E -, PEIZYE) = -,

PR+ )+ F WA= P) FP) () (==1,2,..0).
Let
(16) =y —yp(0), a=vpE)—p© (=1,2..).
Then the sequence of numbers {«} is quasi-majorised by the sequence of
numbers {¢;}, and by theorem I, there exist two sequences of positive inte-
gers .

MEn=-.., <. with ;=» (i=12..)

so that, for every positive integer &, we can find »; non-negative numbers
pﬁfz,zo (v, v=1,2,...,») with .

l’l 1‘
T,p?:z 1 (.u=1727'--;'vk)y ‘\dlp(l‘:')r 1 (V=1,2,...,‘V;..),
and '
= ZPW ®y (1 EHEV, U :}: nl.'),
(]7) i a::b = 2,[7#37 «y,
i e.
Y(ka) = Ypﬁfz ¥(x) (1=u=w, uz=n),
(18) y Y, )= 2 psl’;)r P(1,),
jim (3 ?—pft’vww #i)) =0,
or ) .
g Y(k) = Sflw(n,) (I=u=wn, w=tn),
(19)

( Wk, )+, = z P2, (),
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where 6, — pr;),,w(x,,)— (4,). Hence 6.=0, and lim 6, —0. Since the

k=zao
inverse function y~" of the function v is. concave and also strictly increasing,
we have :

Y (d) = Zpﬁflw—‘w(nw)' (Isu=n, wpm),

(20) -
Y ,)+ o) = ,,Z PR, tp(x,),
i. e. -
= 21752 %, (I1=p=w, pdmn)
@1) = , !

. v
T 0 = 2Pk,
where 6=y~ ((h, )+ 6:)—2,. Hence 6;=0 and limé;=0. It follows,

k- o

by summing up these v inequalities,

I Y B Vi
(22) DO D A= D %,
. . u=1 p=1
i. e.
Y Vi

@) CGE D — 2 :
On the other hand ' N
(24) D u— 2 4, =0. ' N

. ’ a=l1 .

Hence

That is to say

@ [ Ze-Fn)

u=1 u=l1

Thus the proof of the theorem 2 will be complete, if we are able to prove
that -the condition (N,) implies the normalcy of the operator A. For this, we
need several lemmas.

Lem ma 3. Let « be an eigenvalue of order v of the operator A, Then
there exists a set of v ‘orthonormal vectors ¢, ¢, ..., ¢,, so that

Ap.= Zau/% (w=12,...,7)

With O == Oy == ++» == Ay = Q.
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Lemma 4. Let §,5,...,8, be a set of m orthonormal vectors and

Ag;g=§ﬂm§f (k=12,...,m).

Suppose y is an eigenvalue of order-n of the operator A, and that the cha-
racteristic function of the matrix :

B \
Bn B

: ﬂml ﬂm 2. 'ﬂmm

and (x—y)" are relattvely prime. Then there exist n vectors m,, M, ..., T,
so that

D) EGE, L, Ty, IS a set of m+tn orthonormal vectors,

m+i
2) Ani—= Zwm i (=1,2,...,n) with
Vintl, mil = P2, mi2 = <+ = Vg, mpn =Y.

By lemmas 3, 4, there exists an orthonormal system of vectors w,, w,, ...,
such that the closed linear manifold 9 generated from these vectors is inva- ~
_riant under the transformation A, and

(25) Aw; = e, 4 e, . - aim; @ ='}, 2,..))
with ai; =«q; (l= 1, 2, .. ) But ’

Z(A'Aw;,m,»)g 2%; (n=1,2,.. .),
i=1 r=zl .

ﬁ(A"’f»A’"i) = _ij.- (n%l,z,...),
or = =
-2 lauf égu; (n=1,2,..),
o ii=L 2 n
(26) : 2 lap = im——il; (n=1,2,...).

"J
i, j=1, 2 Lam

From (26) and the condntlon (Ny) it results 1mmed|ately
Z lai;f =
Hence a;;=0 (i>/; i,j~——1,2,...) and _
: ' Aw; =@a;w; (i=12,..).
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Let R be the orthogonal complement of M. If w is any vector of unit norm

in R, then we have
o N4l

Z(A Aw;, m,)—}-(A‘Aw w)y=Dxn (n=1,2..),

i=1

i e
n+1 .
Z‘l+(AAw w)<Zu, (n=1,2,..),
or » ’
27 | A’Aw, w) = (Zz;—Zl;)—}-xﬂH (n=12,..).
: i=1 i=1 :
- Condition (N,) and (27) together with. that lim x, =0 imply

, (A"Aw, ) =0, (Aw, Aw)=0.
‘Hence Aw =0 for every w ¢ N. This proves the normalcy of the operator A.
. » .
We conclude this paper by giving an example to show that theorem 2
is no longer true, if the function (x) is supposed to be strictly increasing
on [0, o), so that y(e) is a convex function of & Let

(= O=x=1),
wn=&l%r
log2 +1 0 (I<x<oo)
Then '
& (—e<E=0),
w@=§ ; e
log2+1 (0=&<o0).

Evidently (x) is a strictly increasing function defined on [O o0), and (ef)
is a convex function of &. Suppose A is linear operator in the 2-dimensional

Euclidean space. Using matrix notation, we let

(")

e=(T) ()

The eigenvalues of A are e, — a,= /2 (hence ll_l,——Z) and the eigen-
values of A*A are x,==4, x,— 1. Now

. [ log2 1
ww+w@~awm~2ﬁ%2+ﬂ—a

Thus

1)+ o) = 9+ 0 ()= 1 g 1) 41 =4

Hence y(%)+ (L) = :p(r,)-{— 1/1(7) But A is not normal. This gives a counter
example.
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