

A theorem on the normalcy of completely continuous operators.

By TSE-PEI CHIANG in Peking (China).

Let A be a completely continuous operator in a Hilbert space \mathfrak{H} , and let the eigenvalues of the operator A and of the non-negative selfadjoint operator A^*A be denoted by α_i and x_i ($i = 1, 2, \dots$) respectively, which are so arranged that

$$(1) \quad |\alpha_1| \geq |\alpha_2| \geq \dots, \quad x_1 \geq x_2 \geq \dots$$

Long ago I. SCHUR [1] proved the following inequalities

$$(2) \quad \lambda_1 + \lambda_2 + \dots + \lambda_v \leq x_1 + x_2 + \dots + x_v \quad (v = 1, 2, \dots),$$

where

$$(3) \quad \lambda_i = |\alpha_i|^2 \quad (i = 1, 2, \dots).$$

Recently H. WEYL [2] showed that the inequalities

$$(4) \quad \varphi(\lambda_1) + \varphi(\lambda_2) + \dots + \varphi(\lambda_v) \leq \varphi(x_1) + \varphi(x_2) + \dots + \varphi(x_v) \quad (v = 1, 2, \dots)$$

hold for every function $\varphi(x)$ which is defined on $[0, \infty)$ and increasing, such that $\varphi(e^x)$ is a convex function of ξ . More recently G. PÓLYA [3] gave an elementary proof of Weyl's inequality. These facts led me to extend a theorem of HARDY-LITTLEWOOD-PÓLYA [4] (see theorem 1). By means of this extension it can be shown that if $\psi(x)$ is any strictly increasing convex function defined on $[0, \infty)$, then the condition

$$(N) \quad \lim_{n \rightarrow \infty} \left(\sum_{i=1}^n \psi(x_i) - \sum_{i=1}^n \psi(\lambda_i) \right) = 0$$

implies the normalcy of the operator A (see theorem 2). Of course this class of functions $\psi(x)$ is much narrower than the class of functions $\varphi(x)$ figuring in Weyl's theorem. We remark that our theorem is not true for the class of functions $\varphi(x)$. A counter example will be given at the end of this paper.

We start with the

Definition. A sequence of numbers $\alpha'_1, \alpha'_2, \dots$ is said to be quasi-majorised by a sequence of numbers $\alpha_1, \alpha_2, \dots$, if the following conditions

are satisfied

$$(i) \quad \alpha'_i \geq 0, \quad \alpha_i \geq 0 \quad (i = 1, 2, \dots),$$

$$(ii) \quad \alpha'_1 \geq \alpha'_2 \geq \dots, \quad \alpha_1 \geq \alpha_2 \geq \dots,$$

$$(iii) \quad \alpha'_1 + \alpha'_2 + \dots + \alpha'_r \leq \alpha_1 + \alpha_2 + \dots + \alpha_r \quad (r = 1, 2, \dots),$$

$$(iv) \quad \lim_{n \rightarrow \infty} \left[\sum_{i=1}^n \alpha_i - \sum_{i=1}^n \alpha'_i \right] = 0.$$

Theorem I. Let $\{\alpha'_i\}$ and $\{\alpha_i\}$ be two sequences of numbers, such that $\alpha'_i \geq 0$, $\alpha_i \geq 0$ ($i = 1, 2, \dots$) and

$$\alpha'_1 \geq \alpha'_2 \geq \dots, \quad \alpha_1 \geq \alpha_2 \geq \dots$$

The sequence $\{\alpha'_i\}$ is quasi-majorised by the sequence $\{\alpha_i\}$ if and only if there exist two sequences of positive integers

$$n_1 \leq n_2 \leq \dots, \quad n_1 < n_2 < \dots \quad \text{with} \quad n_i \leq \nu_i \quad (i = 1, 2, \dots),$$

so that for every positive integer k we can find ν_k^2 non-negative numbers

$$(5) \quad p_{\mu\nu}^{(k)} \geq 0 \quad (\mu, \nu = 1, 2, \dots, \nu_k)$$

such that

$$\sum_{\nu=1}^{\nu_k} p_{\mu\nu}^{(k)} = 1 \quad (\mu = 1, 2, \dots, \nu_k), \quad \sum_{\mu=1}^{\nu_k} p_{\mu\nu}^{(k)} = 1 \quad (\nu = 1, 2, \dots, \nu_k)$$

and

$$(6) \quad \alpha'_\mu = \sum_{\nu=1}^{\nu_k} p_{\mu\nu}^{(k)} \alpha_\nu \quad (1 \leq \mu \leq \nu_k, \mu \neq n_k) \quad \alpha'_{n_k} \leq \sum_{\nu=1}^{\nu_k} p_{n_k\nu}^{(k)} \alpha_\nu,$$

furthermore

$$(7) \quad \lim_{k \rightarrow \infty} \left[\sum_{\nu=1}^{\nu_k} p_{n_k\nu}^{(k)} \alpha_\nu - \alpha'_{n_k} \right] = 0.$$

Proof. That the condition is sufficient, is evident. To prove the necessity we need the following lemmas.

Lemma I. Suppose $\alpha_i - \alpha'_i$ is the first negative difference among the differences $\alpha_i - \alpha'_i$ ($i = 1, 2, \dots$), and $\alpha_k - \alpha'_k$ the last positive difference which precedes $\alpha_l - \alpha'_l$, i. e.

$$\alpha'_v \leq \alpha_v \quad (v = 1, 2, \dots, k-1),$$

$$\alpha'_k < \alpha_k, \quad \alpha'_{k+1} = \alpha_{k+1}, \dots, \quad \alpha'_{l-1} = \alpha_{l-1}, \quad \alpha'_l > \alpha_l.$$

If we take

$$(8) \quad \alpha_k = \varrho + \tau, \quad \alpha_l = \varrho - \tau,$$

and define σ by

$$(9) \quad \sigma = \max(|\alpha'_k - \varrho|, |\alpha'_l - \varrho|),$$

then $0 \leq \sigma < \tau \leq \varrho$, and the sequence of numbers $\{\alpha'_i\}$ is quasi-majorised by

the sequence of numbers $\{\alpha''_i\}$ which is defined as

$$(T) \quad \left\{ \begin{array}{l} \alpha''_k = \frac{\tau + \sigma}{2\tau} \alpha_k + \frac{\tau - \sigma}{2\tau} \alpha_l, \\ \alpha''_l = \frac{\tau - \sigma}{2\tau} \alpha_k + \frac{\tau + \sigma}{2\tau} \alpha_l, \\ \alpha''_v = \alpha_v \quad (v \neq k, v \neq l). \end{array} \right.$$

Moreover, for the sequence $\{\alpha''_i\}$ so defined, at least one of the equalities $\alpha''_k = \alpha'_k$, $\alpha''_l = \alpha'_l$ is true.

This has been proved by HARDY, LITTLEWOOD and PÓLYA [3, p. 47—48] when both sequences are supposed to be null after a finite number of terms. However their proof remains valid for the present lemma almost word for word.

Suppose $\alpha_1 - \alpha'_1 > 0$. Then, if we apply the transformation T (see above lemma) to the sequence $\{\alpha_i\}$ successively, the first element α_1 must be affected after a finite number of times. For, if not, we shall have

$$(10) \quad \sum_{i=1}^n \alpha_i - \sum_{i=1}^n \alpha'_i \geq \alpha_1 - \alpha'_1 \quad (n = 1, 2, \dots),$$

which contradicts to the hypothesis that $\lim_{n \rightarrow \infty} \left(\sum_{i=1}^n \alpha_i - \sum_{i=1}^n \alpha'_i \right) = 0$.

Let m be the least number of times for the first element α_1 to be affected in the successive application of the transformations T . Then the sequence $\{\alpha^*_i\}$ arising from $\{\alpha_i\}$ by the m -times successive application of the transformations T , will enjoy the following properties:

- 1) $\{\alpha'_i\}$ is quasi-majorised by $\{\alpha^*_i\}$.
- 2) There exist n^2 non-negative numbers

$$p_{\mu\nu} \geq 0 \quad (\mu, \nu = 1, 2, \dots, n)$$

with

$$\sum_{\nu=1}^n p_{\mu\nu} = 1 \quad (\mu = 1, 2, \dots, n), \quad \sum_{\mu=1}^n p_{\mu\nu} = 1 \quad (\nu = 1, 2, \dots, n),$$

so that

$$3) \quad \left\{ \begin{array}{l} \alpha^*_\mu = \alpha^*_\nu \quad (1 \leq \mu \leq n, \mu \neq 1, \mu \neq n), \\ \alpha'_1 \leq \alpha^*_1, \quad \alpha'_{n_0} \leq \alpha^*_{n_0}, \end{array} \right.$$

where n_0 is an integer, $1 < n_0 \leq n$. Moreover, at least one of the equalities $\alpha'_1 = \alpha^*_1$, $\alpha'_{n_0} = \alpha^*_{n_0}$ is true.

$$4) \quad \sum_{i=1}^r \alpha_i - \sum_{i=1}^r \alpha'_i \geq \alpha_1 - \alpha'_1 \quad (1 \leq r < n).$$

Thus we have proved the

Lemma 2. *Let the sequence $\{\alpha'_i\}$ be quasi-majorised by the sequence $\{\alpha_i\}$. If $\alpha_1 - \alpha'_1 > 0$ and if $\alpha_i - \alpha'_i$ is the first which is negative among the differences $\alpha_i - \alpha'_i$ ($i = 1, 2, \dots$), then there exist n^2 ($n \geq 1$) non-negative numbers $p_{\mu\nu} \geq 0$ ($\mu, \nu = 1, 2, \dots, n$) with*

$$\sum_{\nu=1}^n p_{\mu\nu} = 1 \quad (\mu = 1, 2, \dots, n), \quad \sum_{\mu=1}^n p_{\mu\nu} = 1 \quad (\nu = 1, 2, \dots, n),$$

such that

$$(11) \quad \begin{cases} \alpha'_\mu = \sum_{\nu=1}^n p_{\mu\nu} \alpha_\nu & (\mu \neq 1, \mu \neq n_0), \\ \alpha'_1 \leq \sum_{\nu=1}^n p_{1\nu} \alpha_\nu, \\ \alpha'_{n_0} \leq \sum_{\nu=1}^n p_{n_0\nu} \alpha_\nu, \end{cases}$$

where n_0 is a certain positive integer, $1 < n_0 \leq n$, and

$$(12) \quad \sum_{i=1}^n \alpha_i - \sum_{i=1}^n \alpha'_i \geq \alpha_1 - \alpha'_1 \quad (1 \leq \nu < n).$$

Moreover, among the two inequalities in (11), at least one equality sign holds.

We now proceed to the proof of the necessity part of theorem I.

By means of lemma 2, the sequence of transformation matrices

$$(13) \quad (p_{\mu\nu}^{(k)})_{\mu, \nu=1, 2, \dots, n_k} \quad (k=1, 2, \dots)$$

required in the theorem, is obtained subsequently. It remains to show

$$(14) \quad \lim_{k \rightarrow \infty} \left(\sum_{\nu=1}^{n_k} p_{n_k\nu}^{(k)} \alpha_\nu - \alpha'_{n_k} \right) = 0.$$

To prove this, we suppose to the contrary that

$$\lim_{k \rightarrow \infty} \left(\sum_{\nu=1}^{n_k} p_{n_k\nu}^{(k)} \alpha_\nu - \alpha'_{n_k} \right) = d > 0,$$

i. e.

$$\sum_{\nu=1}^{n_k} p_{n_k\nu}^{(k)} \alpha_\nu - \alpha'_{n_k} \geq \frac{d}{2} \quad (k \geq N_0),$$

where N_0 is a certain fixed positive integer. Then we shall have

$$\sum_{i=1}^n \alpha_i - \sum_{i=1}^n \alpha'_i \geq \frac{d}{2} \quad (n \geq n_{N_0}),$$

which is evidently contrary to the hypothesis. This completes the proof of the theorem.

Theorem 2. Let $\psi(x)$ be a strictly increasing convex function defined on $[0, \infty)$. Then the condition

$$(N) \quad \lim_{n \rightarrow \infty} \left(\sum_{i=1}^n \psi(x_i) - \sum_{i=1}^n \psi(\lambda_i) \right) = 0.$$

implies the normalcy of the operator A .

Proof. We have [2]

$$(15) \quad \begin{aligned} \psi(\lambda_1) &\geq \psi(\lambda_2) \geq \dots, & \psi(x_1) &\geq \psi(x_2) \geq \dots, \\ \psi(\lambda_1) + \psi(\lambda_2) + \dots + \psi(\lambda_r) &\leq \psi(x_1) + \psi(x_2) + \dots + \psi(x_r) \quad (r=1, 2, \dots). \end{aligned}$$

Let

$$(16) \quad \alpha'_i = \psi(\lambda_i) - \psi(0), \quad \alpha_i = \psi(x_i) - \psi(0) \quad (i=1, 2, \dots).$$

Then the sequence of numbers $\{\alpha'_i\}$ is quasi-majorised by the sequence of numbers $\{\alpha_i\}$, and by theorem 1, there exist two sequences of positive integers

$$n_1 \leq n_2 \leq \dots, \quad \nu_1 < \nu_2 < \dots \text{ with } n_i \leq \nu_i \quad (i=1, 2, \dots)$$

so that, for every positive integer k , we can find ν_k^2 non-negative numbers $p_{\mu, \nu}^{(k)} \geq 0$ ($\mu, \nu = 1, 2, \dots, \nu_k$) with

$$\sum_{\nu=1}^{\nu_k} p_{\mu, \nu}^{(k)} = 1 \quad (\mu = 1, 2, \dots, \nu_k), \quad \sum_{\mu=1}^{\nu_k} p_{\mu, \nu}^{(k)} = 1 \quad (\nu = 1, 2, \dots, \nu_k),$$

and

$$(17) \quad \begin{cases} \alpha'_\mu = \sum_{\nu=1}^{\nu_k} p_{\mu, \nu}^{(k)} \alpha_\nu, & (1 \leq \mu \leq \nu_k, \quad \mu \neq n_k), \\ \alpha'_{n_k} \leq \sum_{\nu=1}^{\nu_k} p_{n_k, \nu}^{(k)} \alpha_\nu, \\ \lim_{k \rightarrow \infty} \left(\sum_{\nu=1}^{\nu_k} p_{n_k, \nu}^{(k)} \alpha_\nu - \alpha'_{n_k} \right) = 0, \end{cases}$$

i. e.

$$(18) \quad \begin{cases} \psi(\lambda_\mu) = \sum_{\nu=1}^{\nu_k} p_{\mu, \nu}^{(k)} \psi(x_\nu) \quad (1 \leq \mu \leq \nu_k, \quad \mu \neq n_k), \\ \psi(\lambda_{n_k}) \leq \sum_{\nu=1}^{\nu_k} p_{n_k, \nu}^{(k)} \psi(x_\nu), \\ \lim_{k \rightarrow \infty} \left(\sum_{\nu=1}^{\nu_k} p_{n_k, \nu}^{(k)} \psi(x_\nu) - \psi(\lambda_{n_k}) \right) = 0, \end{cases}$$

or

$$(19) \quad \begin{cases} \psi(\lambda_\mu) = \sum_{\nu=1}^{\nu_k} p_{\mu, \nu}^{(k)} \psi(x_\nu) \quad (1 \leq \mu \leq \nu_k, \quad \mu \neq n_k), \\ \psi(\lambda_{n_k}) + \theta_k = \sum_{\nu=1}^{\nu_k} p_{n_k, \nu}^{(k)} \psi(x_\nu), \end{cases}$$

where $\theta_k = \sum_{\nu=1}^{r_k} p_{n_k \nu}^{(k)} \psi(x_\nu) - \psi(\lambda_{n_k})$. Hence $\theta_k \geq 0$, and $\lim_{k \rightarrow \infty} \theta_k = 0$. Since the inverse function ψ^{-1} of the function ψ is concave and also strictly increasing, we have

$$(20) \quad \begin{cases} \psi^{-1}\psi(\lambda_\mu) \geq \sum_{\nu=1}^{r_k} p_{\mu \nu}^{(k)} \psi^{-1}\psi(x_\nu) & (1 \leq \mu \leq r_k, \mu \neq n_k), \\ \psi^{-1}(\psi(\lambda_{n_k}) + \theta_k) \geq \sum_{\nu=1}^{r_k} p_{n_k \nu}^{(k)} \psi^{-1}\psi(x_\nu), \end{cases}$$

i. e.

$$(21) \quad \begin{cases} \lambda_\mu \geq \sum_{\nu=1}^{r_k} p_{\mu \nu}^{(k)} x_\nu & (1 \leq \mu \leq r_k, \mu \neq n_k), \\ \lambda_{n_k} + \theta_k \geq \sum_{\nu=1}^{r_k} p_{n_k \nu}^{(k)} x_\nu, \end{cases}$$

where $\theta'_k = \psi^{-1}(\psi(\lambda_{n_k}) + \theta_k) - \lambda_{n_k}$. Hence $\theta'_k \geq 0$ and $\lim_{k \rightarrow \infty} \theta'_k = 0$. It follows, by summing up these r_k inequalities,

$$(22) \quad \theta'_k + \sum_{\mu=1}^{r_k} \lambda_\mu \geq \sum_{\mu=1}^{r_k} x_\mu,$$

i. e.

$$(23) \quad \theta'_k \geq \sum_{\mu=1}^{r_k} x_\mu - \sum_{\mu=1}^{r_k} \lambda_\mu.$$

On the other hand

$$(24) \quad \sum_{\mu=1}^{r_k} x_\mu - \sum_{\mu=1}^{r_k} \lambda_\mu \geq 0.$$

Hence

$$\lim_{k \rightarrow \infty} \left(\sum_{\mu=1}^{r_k} x_\mu - \sum_{\mu=1}^{r_k} \lambda_\mu \right) = 0.$$

That is to say

$$(N_1) \quad \lim_{n \rightarrow \infty} \left(\sum_{\mu=1}^n x_\mu - \sum_{\mu=1}^n \lambda_\mu \right) = 0.$$

Thus the proof of the theorem 2 will be complete, if we are able to prove that the condition (N_1) implies the normalcy of the operator A . For this, we need several lemmas.

Lemma 3. *Let α be an eigenvalue of order ν of the operator A . Then there exists a set of ν orthonormal vectors $\varphi_1, \varphi_2, \dots, \varphi_\nu$, so that*

$$A \varphi_\mu = \sum_{j=1}^n a_{\mu j} \varphi_j \quad (\mu = 1, 2, \dots, \nu)$$

with $a_{11} = a_{22} = \dots = a_{\nu \nu} = \alpha$.

Lemma 4. Let $\xi_1, \xi_2, \dots, \xi_m$ be a set of m orthonormal vectors and

$$A \xi_\mu = \sum_{\nu=1}^m \beta_{\mu\nu} \xi_\nu \quad (\mu = 1, 2, \dots, m).$$

Suppose γ is an eigenvalue of order n of the operator A , and that the characteristic function of the matrix

$$\begin{pmatrix} \beta_{11} & & & \\ \beta_{21} & \beta_{22} & & \\ \cdots & \cdots & \ddots & \\ \beta_{m1} & \beta_{m2} & \cdots & \beta_{mm} \end{pmatrix}$$

and $(\kappa - \gamma)$ are relatively prime. Then there exist n vectors $\eta_1, \eta_2, \dots, \eta_n$, so that

1) $\xi_1, \xi_2, \dots, \xi_m, \eta_1, \eta_2, \dots, \eta_n$ is a set of $m+n$ orthonormal vectors,

2) $A \eta_i = \sum_{j=1}^{m+i} \nu_{m+i, j} \eta_j \quad (i = 1, 2, \dots, n) \quad \text{with}$

$$\nu_{m+1, m+1} = \nu_{m+2, m+2} = \cdots = \nu_{m+n, m+n} = \gamma.$$

By lemmas 3, 4, there exists an orthonormal system of vectors $\omega_1, \omega_2, \dots$, such that the closed linear manifold \mathfrak{M} generated from these vectors is invariant under the transformation A , and

$$(25) \quad A \omega_i = \alpha_{i1} \omega_1 + \alpha_{i2} \omega_2 + \cdots + \alpha_{in} \omega_n \quad (i = 1, 2, \dots)$$

with $\alpha_{ii} = \alpha_i \quad (i = 1, 2, \dots)$. But

$$\sum_{i=1}^n (A^* A \omega_i, \omega_i) \leq \sum_{i=1}^n \kappa_i \quad (n = 1, 2, \dots),$$

i. e.

$$\sum_{i=1}^n (A \omega_i, A \omega_i) \leq \sum_{i=1}^n \kappa_i \quad (n = 1, 2, \dots),$$

or

$$\sum_{\substack{i \geq j \\ i, j=1, 2, \dots, n}} |a_{ij}|^2 \leq \sum_{i=1}^n \kappa_i \quad (n = 1, 2, \dots),$$

or

$$(26) \quad \sum_{\substack{i > j \\ i, j=1, 2, \dots, n}} |a_{ij}|^2 \leq \sum_{i=1}^n \kappa_i - \sum_{i=1}^n \lambda_i \quad (n = 1, 2, \dots).$$

From (26) and the condition (N_1) it results immediately

$$\sum_{i > j} |a_{ij}|^2 = 0.$$

Hence $a_{ij} = 0 \quad (i > j; i, j = 1, 2, \dots)$ and

$$A \omega_i = \alpha_i \omega_i \quad (i = 1, 2, \dots).$$

Let \mathfrak{N} be the orthogonal complement of \mathfrak{M} . If ω is any vector of unit norm in \mathfrak{N} , then we have

$$\sum_{i=1}^n (A^* A \omega_i, \omega_i) + (A^* A \omega, \omega) \leq \sum_{i=1}^{n+1} x_i \quad (n = 1, 2, \dots),$$

i. e.

$$\sum_{i=1}^n \lambda_i + (A^* A \omega, \omega) \leq \sum_{i=1}^{n+1} x_i \quad (n = 1, 2, \dots),$$

or

$$(27) \quad (A^* A \omega, \omega) \leq \left(\sum_{i=1}^n x_i - \sum_{i=1}^n \lambda_i \right) + x_{n+1} \quad (n = 1, 2, \dots).$$

Condition (N_1) and (27) together with that $\lim_{n \rightarrow \infty} x_n = 0$ imply

$$(A^* A \omega, \omega) = 0, \quad (A \omega, A \omega) = 0.$$

Hence $A \omega = 0$ for every $\omega \in \mathfrak{N}$. This proves the normalcy of the operator A .

*

We conclude this paper by giving an example to show that theorem 2 is no longer true, if the function $\psi(x)$ is supposed to be strictly increasing on $[0, \infty)$, so that $\psi(e^\xi)$ is a convex function of ξ . Let

$$\psi(x) = \begin{cases} x & (0 \leq x \leq 1), \\ \frac{\log x}{\log 2} + 1 & (1 < x < \infty). \end{cases}$$

Then

$$\psi(e^\xi) = \begin{cases} e^\xi & (-\infty < \xi \leq 0), \\ \frac{\xi}{\log 2} + 1 & (0 \leq \xi < \infty). \end{cases}$$

Evidently $\psi(x)$ is a strictly increasing function defined on $[0, \infty)$, and $\psi(e^\xi)$ is a convex function of ξ . Suppose A is linear operator in the 2-dimensional Euclidean space. Using matrix notation, we let

$$A = \begin{pmatrix} \sqrt{2} & 1 \\ 1 & \sqrt{2} \end{pmatrix}.$$

Thus

$$A^* = \begin{pmatrix} \sqrt{2} & 1 \\ 1 & \sqrt{2} \end{pmatrix} \quad A^* A = \begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 3 \end{pmatrix}.$$

The eigenvalues of A are $\alpha_1 = \alpha_2 = \sqrt{2}$ (hence $\lambda_1 = \lambda_2 = 2$) and the eigenvalues of $A^* A$ are $x_1 = 4, x_2 = 1$. Now

$$\psi(\lambda_1) + \psi(\lambda_2) = 2\psi(2) = 2\left(\frac{\log 2}{\log 2} + 1\right) = 4,$$

$$\psi(x_1) + \psi(x_2) = \psi(4) + \psi(1) = \left(\frac{\log 4}{\log 2} + 1\right) + 1 = 4.$$

Hence $\psi(\lambda_1) + \psi(\lambda_2) = \psi(x_1) + \psi(x_2)$. But A is not normal. This gives a counter example.

Bibliography.

- [1] SCHUR, I., Über die charakteristischen Wurzeln einer linearen Substitution, mit einer Anwendung auf die Theorie der Integralgleichungen, *Math. Annalen*, **66** (1909), pp. 488—510.
- [2] WEYL, H., Inequalities Between the Two Kinds of Eigenvalues of a Linear Transformation, *Proceedings National Academy of Sciences U. S. A.*, **35** (1949), pp. 408—411.
- [3] PÓLYA, G., Remark on Weyl's Note: Inequalities Between the Two Kinds of Eigenvalues of a Linear Transformation, *ibid.*, **36** (1950), pp. 49—51.
- [4] HARDY G. H., LITTLEWOOD, J. E., and PÓLYA, G., *Inequalities* (Cambridge, 1934).

DEPARTMENT OF MATHEMATICS,
PEKING UNIVERSITY,
PEKING, CHINA.

(Received August 10, 1951.)