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On a property of lacunary power-series, 
By P A U L T Ú R Á N in B u d a p e s t . 

1. Let us consider the power-series 

(1.1) . f ( z ) = Z avzl" (1.1) 

whose positive integer exponents A„ satisfy the condition 

This condition can be written also in the form 

The significance of this condition was first discovered by FABRY by his 
famous gap-theorem. The effect of this condition on integral functions was 
systematically studied first in the frame of more general questions by P Ó L Y A 1 ) 

in a fundamental memoir; his most interesting2) theorems refer to the case 
(1.2). So his Theorem VI asserts, vaguely expressed, that an integral func-
tion of the form (1.1) satisfying the Fabry-condition (1. 2) has in all angles 
with vertex at Z = 0 an "equal growth". P Ó L Y A originally measured the 
growth by the order and type with respect to an angle and to the whole 
plane. In the important papers of S . M A N D E L B R O J T and L . S C H W A R T Z the 
theorem appeared in the form 

if « > 0 , O s <* < ß s§ 271, r > r0(/, st ß—a), and it was also extended to 
D I R I C H L E T ' S series. PÖLYA'S Theorem V I I I replaces in his theorem V I the 
angle by a more general domain which may be called an angle with a 
curve extending to as bisector. The inequality (1.3) was sharpened 

0 G. PÖLYA, Lücken und Singularitäten von Potenzreihen, Math. Zeitschrift, 29 
(1929), pp. 549-640. 

s ) See in particular p. 556 in '). 

(1.3) max \f(z)\ ^ max | /(*) |1 + î 

z|=r '•(l-OSMS'-d+f) 
ó s arc ig j ) 

A 14 
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by F. SUNYER i BALAGUER3). He showed, for all integral functions f ( z ) 
1 

satisfying (1.2), the existence of an j?(r) tending to 0 with — such that to 

any prescribed continuous &(r) and all sufficiently large r there is a z,. in 
the domain 

O - 4 ) 1 +
r

r / ( r ) l arcz l . - 0 (r ) l<7 i ( r ) 

with 

(1.5) log l f ( z r ) I > ( 1 - y ( r ) ) log M ( r , f ) , 

where, as usual, 

(1 .6) M ( r , f ) = max If(z)I . 

The essential content of .the theorem may be expressed in the simplest case 
&(r) = const, by saying that an integral function with Fabry-condition 
exhibits an "equal" growth in all "not too tight funnels" around an arbitrary 
ray issuing from the origin as on the whole plane. 

2. In these years I have developed an analytical method which 1 used 
for various purposes. In my lecture about this method4) at the Meeting- of 
the Czechoslovakian and Polish Mathematical Societies in Prague, Sept. 
1 9 4 9 , I have risked the assertion, that some of the results of POLYA and 
various refinements are within reach of my method. In what follows I shall 
show I was right. Using the abbreviation 

n n max. | / ( * ) H A f ( r , « , / ? , / ) 
{¿. 1) M=>-

ft ̂  arc s ^ f t 
I shall prove the. 

T h e o r e m 1. Given with and an 

arbitrary integral function f ( z ) satisfying the Fabry-condition (1.2), we have 
for all a > r, = r, ( / , s , /5—a) the inequality . 

(2 .2) M ^ r . n ^ ^ ^ - M ^ r J ) M(r,a)ti,f). 

If f ( z ) increases very quickly, the inequality (2. 2) can become a tri-
viality. One will see from the subsequent proofs how they have to be modi-
fied in order to reach greater generality. Anyway, in the most interesting 

3) F. SUNYER i BALAGUER, Propriedades de las funciones énteras representadas por 
series de Taylor lagunares (orden finito), Semin. Math, de Barcelona, 2 (1949), fase, 1 
p. 1—48. He found similar results also in the case of positive maximal density. 

4) See P. TURÁN,-On a new method in the analysis with applications, Casopis pro 
pe$t. mat. a fys., 74 (1949), pp. 125—131. A detailed exposition of this method with nume-
rous new applications will be given in a forthcoming book. 1 
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case when / (z ) is of finite order and of normal type, the inequality (2.2) is 
not at all trivial. 

How is theorem 1 connected with P 6 L Y A ' S results? We impose upon 
/ ( z ) first the restriction 

(2 .3) j y & f L m 
Af>(r,f) 

with suitable numerical ct and c.2 for all sufficiently large r. Then (2.2)^ 
assumes for r>rx(f,e,{!—a).the form 

(2. 4) . M1 - ( 2 c ' J l ) £ ( r , f ) a, P,f), 

or putting 2c,—1 = c 3 for all r > Q0(f, /S—a, e) 

( 1 5 ) ia^r^^'^ = = 
Next we suppose only the existence of a sequence 

(2.6) a < r„ <...-* + ® 

and the existence of constants ck and cr> independent of v such that 

(2.7)' 
M\rv,f) 

As we shall show in 8 this condition is fulfilled for all integral functions 
of finite order, and if / (z ) is of order k then moreover the limitation 

(2.8) 2r„ si r„+i < ; 2 r / + 2 

can be given. The above reasoning gives in the case (2. 7) the inequality 

9 ) = tt' M = M<-r»n-

Hence we obtain the 

Corollary. If an integral function of finite order satisfies the Fabry-
condition (1. 2) then there is a sequence of concentric circles \z\ = r„ with the 
restriction (2.8) on which the inequality (2. 9) holds. 

This is one way of refining POLYA'S theorem and both, this and 
theorem I, are obviously not contained in MANDELBROJT'S and L . SCHWARTZ'S 

theorems. Another way of refinement is to replace the angle by a narrower 
domain as in SUNYER i BALAGUER'S theorem. Some results in this direction 
will be given in 9. By suitable changes in the. proof of theorem I, M(2r,f) 
could have been replaced by A i ( ( l + t f ) r , / ) , but we shall not treat it as well 
as its extensions to Dirichlet's series. 

3. The systematic study of integral functions with gaps started with 
POLYA'S paper. In an interesting way no attention was given sofar to the 
corresponding harmonic expansions which usually followed the function-
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theoretical developments. In what follows we shall show that an analogous 
theorem holds also for harmonic expansions. Let 

(3.1) h (r, (p) = Z r*»(a„ cos Ky + b* sin K<p) 
V— 1 

be a harmonic function converging on the whole plane with positive integer 
increasing exponents l„ satisfying the Fabry condition (1.2) and 

max | ^ (r, (¡p) | = / / ( r , h), 
(f 

( 3 " 2 ) max \h(r,cp)\ = H(r,a,[},h). 

Then we have the 

T h e o r e m II. For the above defined h(r, (p) and for any prescribed 

a,ii,e with 0 ^ a < ^ 2n, 0 < e g we have, for all r > r.,(h, ¡3—n, e), 

the inequality 

(3. 3) H(r, h)l+t ^ 32 ( ^ )4 H-\2r,h) H(r, a, A h). 

Applying theorem II to the real and imaginary parts of the function-
f ( z ) of theorem I we could deduce immediately (2.2) from (3.3), apart from the 
factor independent of / . Owing to this fact and since the independent proof of 
theorem I runs on the same line as that of theorem II we shall give a de-
tailed proof only for theorem II. 

4. The method in question consists in a systematic use of two inequa-
lities. What we here actually need, is a consequence of the first of them and 
asserts that if the mjs are integers, then for arbitrary complex coefficients d„ 

(4. 1) ' max 

For a proof of this inequality see my previous paper5). The basis for ana-
logous investigations for Dirichlet's series might be the more general inequality®) 

max 

where ,»i <n2< ••• < /«;. are real and a, < ¿>, < c, < dx. Choosing in (4 .1) 

k=2n + \, a = — b,.: 
—mi=m.2li+i—k„, —m2=mi,i = kn-\, ..., — m,,=mll+2=ki, mn+i=kn =0, 

< 
56TT -r max 

0 a Ja^x^b 
£ dve>""v* 

»=i V 
2e dx~a: I max 

Ci—bi 

'») P . TURAN , On a theorem of Littlewood, Journal London Math. Soc., 2 1 ( 1 9 4 5 ) , 

pp. 268—275. . . - . - . . 
6) This could be easily inferred from -the. paper 5). 
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d i = a „ ^ l + i b „ + ^ J f p r d H + i = ao> 

dj=.oj--i-'bj-«-i f ( ) r n + 2 ^ j ^ 2 n + \, 

we obtain from (4. 1) 

max {ûj cos kjX + bj sin k,x) 

28n f1+1 

—r— max 
b J 

£ fa cos kjX+to sin kjx) 

By an obvious change of notation this gives 

(4.2) 
max 

I I S J < 2 . T 
j y (aj cos kjx+bj sin kjx) 

( 56 77 " 
| - r max Z (ûj cos k,x -f bj sin k,x) 
V o a J i—(I 

if 0 2n; this will be our starting point. 

5. Now we turn to the proof of theorem II. Owing to the gap-condition 
(1.2) we can give an m(k) tending monotonically to - foo such that 

(5.1) 

Let 

. (5- 2) 

k > «>(k). 

sk(r, (p) = £r**(av cos X„<p + bv sin Xvip). 

Fixing r a n d k we may apply the estimation (4.2) to sk(r, <p). Then we obtain 

(5. 3) max |s/ ;(r ,9>)|s 
56TT ^ 

, max | sk (r, <p) |. 
I. P — « J oSfSP 

The maximum on the left resp. on the right should be attained at <p = <piy 

resp.- <p = <p±. We have obviously 

W> 9>2)| S\h(r, 9>2)| + \s*(r, 9>2)—h(r, ^ 
SiH(r, a, p,h)+\sk(r, (pi)—h(r, <p.2)\. 

Since we have for all real values q> 

and 
Hr>-9>)—Sk(r> f ) — 2 ^"(Ov cos K<f + bv sin K'p) 

in 

av(2rY" = j h(2r, ») cos 
o 

b„(2ry» = - 1 J h(2r, ») sin LSdï, 
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we obtain easily 
•2.1 

\h(r,<p)—sk(r, <p)\=\±^h(2r, '>)( -¿r c o s ^ - ^ 

thus 

(5.4) 

s 2 W ( 2 r . v ^ J W ^ L 

max \sl:(r, c p ) A /?) + AH<£'h) 

oSySJ) Z » 

For our fixed r, h(r,(p) should attain its maximum at q> = <p3. Then ana-
logously as before 

\sk(r, 9>,)| ^ |s*(r, <p3)| is |h(r, <p?)\—\h(r, <p3)-sk(r, 93)| g H(r, h)— AH%,h) • 

Putting this and (5.4) into (5. 3) we obtain 

( 5 . 5 ) 
448 7r 

H(2r,h) i -1 Í 56 71 
2 V/y—« 

1 6. As said, let 0 < e ^ — and let r be so large that 

(6.1) H(r,h)> 4 
and with the above defined o> 

e\og Y.TTjrji) y. 
(6. 2) , 5 6 ? T 

> 8 log 56 71 
/?—a ' 

Both requirements are evidently fulfilled for r > /?—«,«)• For such values 
r let7). 

, 896. H(2r, h) + ^ ^ ( 6 . 3 ) * = 1 + 

fi-a 

We have first to estimate from above. Owing to the monotony of o>(x) 
Al-

and (6.2) we have 
k 1 1 i - < : 1 _ _ < 

A,, — (»(k) ~~ i f v
 ' rt\ I 

log 5 6 IT 

H—a 

log YW, 
A I 5 6 ÍR 

7) The square-bracket denotes here and only here in this paper the greatest integer. 
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i. e. 
1 f 5 6 « f ^ 1 -J- 3 
2 l i P i - r ^ ^ T -

Hence the last member on the right of (5 .5) is less than 

4 4 8 « . J 3 ^ " 
(6-4) - j ^ H ( 2 r , h ) { 4 

Since from the definition of k, using the monotony of <»(x), 

log I/?—« H(r,h) ) 
° p — a 

896« H(2r, h) ] ( e log ]/ H(r, h) ] 
log J*'— U - « H(r,h) }"' I j ° d—a 6 3 — a 

> . l 0 S 

and, using again (6. 2), 

; , > 8 i o g | 8 9 6 *
 H<2r> A> ft—« H(r, h) 

we obtain from (6.4) for the member in question the upper bound 
44871 r\ j 0 , 4 , (896« H(2r,h) H(2r, h) exp J 8 log y log 

1487i „ . _ . . j ' f 896« H(2r, h) i 1 ,. 
^ H ( 2 r , h ) exp j - i ^ T H(r, h) ) i = T " { r > h)-

Hence from (5. 5) we obtained 

448? < 

5 6 « 
(6. 5) H(r,h)< H(r- a> A 

7. To complete the proof of theorem II we write (6. 5) in the form 

112« ( 5 6 « 
(7.1.) H(r,a,ft,h) 

and replace k by its value from (6.3). Using the fact that for a ^2,6^2 
we have log (a + b) S log a + log b, from (7.1) and (6. 1) we obtain 

2e I , I 8907* r,h) \ 1 „, „ 1 
• j . r*, i t - ^ T H(r,„) ) + T log g ( r ' ? , ) ' 

j 5 6 « \2k ^ ( 5 6 « Y'[ 56 71 N °g 

{ ft—a J - { ft—a j [ ft.—a 

( 5 6 « j2/ 8 9 6 « M ( 2 r , h ) f . 
= H(r, h) J H ( r ' A> 

i. e., from (7.1) and from e = 

//+£ (r, h) ^ 32 l - ^ - T H\2r, h) H(r,«, A A). 
ft—« 

Thus theorem II is proved. 
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8. To prove that (2. 7) is fulfilled for all integral functions of finite 
order we suppose this order should be k. Then for r > Q«(f) we have 

(8-1) | / ( * ) | S 2 | X | * + T
f M(r,f)^2. 

Choosing 
(8 .2) • r, = max (5, &( / ) ) , 

(8.3) c4 = 25M, c;, — m a x i l , M f j " f ) ] , . 
1 M (rj, f y 

(2.7) is fulfilled for v = l . Suppose ru ..., rv already satisfy (2.8) so that 
(2.7) is true with the choice (8.3). Since £ r, s 5, the annulus 

(8.4) 2 t v \z\ 2 r ? 2 

exists. If our assertion were untrue then we would have 

Af(2~r„) > M~ 'l*\2rv) 

M(2Arr) > > Mz'ilk*'(2rv), 

, , „ o-tf-IXi + l) , O-(i-l)U-H) , „r,(/-)U + l) 
M(2 rv) > M • (2/v) a M (r„) s 2T 

Now we determine the integer / so that 

(8.5) 2'-1 ^ < 2' 
l. e. 

Then we have 

i. e. 

2'r„ 2rl+2. 

/ > 2 and / - - 1 > y . 

Thus 

M(2'rv) > 2r,'('+1) 

or from (8.5) owing to the monotony of M(x) 

I ./(i+l) 
M(2l+T^) > 2" . 

From (8. i ) we should have 

< 2 
i. e. a fortiori 

5 ' < 2 ' + l i T < 2 2 ' = 4 1 
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which is a contradiction. It is likely that the inequality 

m r ) 
MH(r) ~ " 

holds, with sufficiently large, from r independent c4 and c5, for a much larger 
set of r-values if / is of finite order. 

9. In theorems I and II the angle ft—« was fi\ed however .arbitrary 

small. One expects that this angle can tend to 0 not too quickly with - p 

Indeed in the proof of theorem II we bad the only restriction (6.2) in this 
direction. (6. 2) can also be written in the form 

8 . 56« _ i (8 . 56ti ) „ . . 

if "<-'(«) denotes the inverse function of <<>(u). Then um~l(u) is an increasing 
function of u; let u = £2(y) be the solution of 

ltui'l(ll) = y. 

Thus from (9. 1) we have putting ft—a = d(r) 

y l o g - ^ y - < log H(r, h)) 
i. e. 

(9.2) <5 (r) > 567r exp j — y £2(4 log H(r, h)) 

which must be true for all r > p3(/, e); in this case the inequality (3. 3) holds 
of course for all r > g3(f, e). To avoid the possibility that the right side of 
(9.2) is too small we require also 

6 ( f ) == H'e(2r, h) 
i. e. we choose 

(9.3) <*„(/•) = max He(2r, h); 5 6 e x p j - -g- £2(4 log H(r, h)) j 

1 
Then theorem II will assert that for r > g3(f,«), 0 < « ¿ y , we will have with 

ft—a = d0(r) the inequality 

(9.4) Hl*(r, h) 32(56 n)4 Hae(2r, h) H(r,«, ft, h). 

Similarly we will have for \z\ g (>«(/, e), Q < ? with the above <50(r) the 

inequality 

(9. 5) MUt(r,f) ^ 48« M3c(2r,f) M(r, a, ft,/). 

The interest of this remark lies obviously in the fact that <5„(r) depends only 
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upon min and not upon the finer distribution of the exponents. Let e. g. 
kSj- K . 

«>(*) = x. Then 

and the reasoning of 2 gives the 

C o r o l l a r y II. If the exponents of the integral function 

f{z) = ±avz^ 
V = 1 

of finite order satisfy the inequality 
h ^ r . (v = 1,2, . . . ) 

and i f , with fixed 0 < e s and 0 ^ y ^ 2-n, U denotes the domain 

(9.6) |z | = r, |arc z—y\ rS 56n exp J - ~ f l o g M{rJ) j , 

e<(f,t) s \z\ ^ 
then there is a sequence rr tending to infinity such that the inequality 

c,Ml ^(r„f)^M(rv,U,f) . ( » = 1 , 2 , . . . ) 
holds with c,„ c7 depending only upon f ; i. e. f(x) increases in U as fast as 
over the whole plane. • 

If f{z) is of finite positive order k then for all sufficiently large values 
of r we have 

\og M(r,f) ^ t*+i (d arbitrary, > 0) 
i .e. the arc of the circle \z\ — r assumes the form 

f e ) | a r c z — y | ^ 5 6 7 i e x p l — 4 ~ r ' 2 )• 

The length of the arc is then less than, or equal to, 

( k-6, 

~ T r ' 2 ) 

which tends to zero rapidly with Hence the domain (9. 6) is like a rather 

tight funnel which Has e. g. a finite area. This shows anyway that replacing', 
the angles by the domain U means in general very considerable reduction of . 
the domain. . • 

-

(Received April 15, 1952.) 


