Proof of a conjecture of P. Erdős.

By G. Fodor in Szeged.

Let E be a given non countable set of power m and suppose that there exists a relation ${ }^{1}$) R between the elements of E such that, for any $x \in E$, the power of the set $H(x)$ of the elements $y \in E(y \neq x)$ for which $x R y$ holds, is smaller than a given cardinal number \mathfrak{n} which is smaller than \mathfrak{m}. Two distinct elements (or "points") x and y of E are called independent if neither $x R y$ nor $y R x$. We say that a subset of E is a free set if any two points of this subset are independent.

If we replace the condition $\mathfrak{n}<\mathfrak{m}$ by $n \leqq m$ then it can occur that we do not have any independent points at all. Indeed, let φ be the initial number of power m and E the set of ordinal numbers less than φ. We define the relation R so that $x R y$ holds if and only if $y<x$. Then clearly $H(x)<\mathfrak{m}$ for any $x \in E$; however, no two elements are independent.

The following proposition has been conjectured by S. Ruziewicz ${ }^{2}$):
If $\mathfrak{n}<\mathrm{n}$, then E has a free subset E^{*} of the same power \mathfrak{m}.
This theorem has been proved first if $\mathfrak{n}=\mathcal{N}_{0}$ and \mathfrak{m} is either of the form $2^{\mathcal{D}}$ or of the form $\mathfrak{N}_{a+1}{ }^{8}$), then if \mathfrak{m} is a regular cardinal number or if \mathfrak{m} is the countable sum of cardinals smaller than m^{4}), finally, in the general case, assuming the generalized continuum hypothesis ${ }^{5}$).

[^0]The proof given by Sierpiński ${ }^{8}$) yields also the fact that, if $n=\boldsymbol{\kappa}_{n}$ and $\mathrm{m}=2^{\mathrm{p}}$, then E is the union of \mathfrak{p} free subsets. The proof of LAZÁR ${ }^{2}$) yields the same fact in the case $n=K_{0}, m=2^{\mathfrak{N}}$.

De Bruijn and Erdoss ${ }^{6}$) proved for a set E of arbitrary power the following statements: If for every $x \in E$, the set $H(x)$ has at most k elements, k being a given positive integer, then E may be decomposed in $2 k+1$ or fewer free sets; if for every $x \in E$ the set $H(x)$ is finite, then E is the union of a countable number of free sets.

We shall now prove the following theorem which was conjectured by ErDós ${ }^{5}$):

Theorem 1. If E is a non countable set of power m and if R is a relation between the elements of E such that for any $x \in E$ the power of the set $H(x)$ of the elements $y \in E(y \neq x)$ for which $x R y$ holds is smaller than a given cardinal number n , where $\mathfrak{\aleph n}_{0} \leqq \mathrm{n}<\mathrm{m}$, then E may be decomposed into the sum of 11 or fewer free subsets.

As a consequence of this theorem, we see at once that the conjecture of Ruziewicz holds if m cannot be decomposed into a sum of n or fewer cardinal numbers, each of which is smaller than m.

§ 1.

First we prove the following theorem.
Theorem 2. Let n be a regular transfinite cardinal number, ψ the initial number of the cardinal number \mathfrak{n} and E an arbitrary set. Suppose that a relation R is defined between the elements of E such that the set $H(x)$ of the elements $y \in E \quad(y \neq x)$ for which $x R y$ holds, has a cardinal number smaller than 11 . Then E can be well-ordered into a transfinite sequence

$$
\begin{equation*}
p_{0}, p_{1}, p_{2}, \ldots, p_{\omega}, p_{v+1}, \ldots, p_{\xi}, \ldots \quad(\xi<\alpha) \tag{1}
\end{equation*}
$$

in such a way that we have

$$
\begin{equation*}
\sum_{\xi<\psi \mu} H\left(p_{\xi}\right) \subseteq\left\{p_{\xi}\right\}_{\xi<\psi \mu} \tag{2}
\end{equation*}
$$

for every $\mu, 1 \leqq \mu<\gamma$, where γ is defined by the equality $a=\psi \gamma+\delta(\delta<\psi)$.
Proof. Let φ be the initial number of the cardinal number $\bar{E}=\mathbf{m}$ and let

$$
\begin{equation*}
x_{1}, x_{1}, x_{2}, \ldots, x_{\omega}, x_{\omega+1}, \ldots, x_{i}, \ldots \quad(\xi<\varphi) \tag{3}
\end{equation*}
$$

be any well-ordering of E of the type φ. We define the sequence (1) by transfinite induction in the following way: Put $p_{0}=x_{0}$. Let now β be an ordinal number, $\beta>0$, and suppose that all elements p_{5}, where $0 \leqq \zeta<\beta$,

[^1]have been already defined and let $P_{i z}$ denote the set of the elements p_{s} with $\zeta<\beta$. Consider the set
$$
V_{\beta}=\sum_{\zeta<\beta} H\left(p_{\xi}\right) .
$$

If $V_{\beta} \neq 0$, we define a new well-ordering of V_{s} as follows. Let q and r be any two distinct elements of V_{β}. Let $\%$ and λ be the least ordinals for which $q \in H\left(p_{x}\right)$ and $r \in H\left(p_{\lambda}\right)$, respectively. Write $q<r$ if either $x<\lambda$ or if $x=\lambda$ but q precedes r in $H\left(p_{x}\right)$ in the original well-ordering (3) (as a subset of E which is well-ordered according to (3)). In the sequel we suppose always that V_{B} is well-ordered in this way. Let

$$
W_{\beta}=V_{\beta}-P_{\beta} .
$$

(i) If $W_{\beta} \neq 0$, let p_{β} be the first element of W_{3} (as a subset of V_{β}).
(ii) If $W_{\beta}=0$ and $P_{\beta} \neq E$, let p_{β} the first element of $E-P_{\beta}$ (in the well-ordering (3)).
(iii) If $W_{\beta}=0$ and $P_{\beta}=E$, then we do not define p_{β}.

Clearly, case (iii) occurs for one and only one value α of β; for $\beta<\alpha$, p_{β}, V_{β} and W_{β} are defined. For $\nu<\pi<\alpha$, the set V_{ν} is obviously a section of V_{π}.

Next we prove the following
Lemma. Suppose $\beta<\alpha$ and $W_{\beta} \neq 0$. Let

$$
w_{0}, w_{1}, w_{i}, \ldots, w_{\omega}, w_{\omega+1}, \ldots, w_{i}, \ldots \quad\left(\xi<\bar{W}_{\beta}\right)
$$

be the well-ordering of the set W_{β} (as a subset of V_{β}). Then we have $p_{\beta+\frac{\xi}{ミ}} \xlongequal{=} w_{\Xi}$ for $\underline{\xi}<\overline{W_{\beta}}$.

Indeed, this holds by definition for $\xi=0$. Suppose, our statement holds for any ordinal number which is smaller than $\xi\left(<\bar{W}_{\beta}\right)$; then it holds for ξ too. Indeed, $p_{\beta+\xi}$ is, by definition, the first element of $W_{\beta+\xi}$. Now we have $w_{\xi} \in W_{\beta} \subseteq V_{\xi} \subset V_{\beta+\xi}$, hence $w_{\xi} \in V_{\beta+\xi}$. On the other hand, $w_{\xi} \notin P_{\beta}$ and, by hypothesis, $P_{\beta+\xi}=P_{\beta}+\left\{w_{\eta}\right\}_{\eta<\xi}$; hence $w_{\xi} \notin P_{\beta+\xi}$. Therefore $w_{\xi} \in W_{\beta+\xi}$. Further, any element of $W_{\beta+\xi}$ preceding w_{ξ} is an element of $V_{\beta+\xi}$ preceding w_{ξ}, hence an element of V_{β} preceding w_{5} for V_{β} is a section of $V_{\beta+\xi}$ and $w_{5} \in V_{\beta}$: Now, any element of V_{β} preceding w_{ξ} is either an element of P_{β} or an element of W_{β} preceding w_{ξ}; hence in any case an element of $P_{\beta+\xi}$. Therefore, such an element cannot belong to $W_{\beta+\xi}=V_{\beta+\xi}-P_{\beta+\xi}$. Hence, w_{ξ} is the first element of $W_{\beta+\frac{\xi}{\xi}}$, thus $p_{\beta+\frac{\xi}{\xi}}=w_{\xi}$ as stated.

Now we prove by transfinite induction that (2) holds for every $\mu, 1 \leqq \mu<\gamma$. This is obvious for $\mu=0$. Suppose (2), i. e. $V_{\psi, \mu} \subseteq P_{\psi, \mu}$ holds for some μ; then we prove the same for $\mu+1$ instead of μ, i. e.

$$
V_{\phi(\mu+1)} \doteq \sum_{\forall<(\mu+1)} H\left(p_{\xi}\right) \subset P_{\psi(\alpha+1)} .
$$

As we have, by hypothesis,

$$
\dot{V}_{\psi_{\mu}}=\sum_{\zeta<\psi_{\mu}} H\left(p_{\xi}\right) \subseteq P_{\psi^{\prime}, \mu} \subseteq P_{\psi,(\mu+1)},
$$

we have to prove that

$$
\begin{equation*}
\sum_{\psi \mu \leqq 5<\psi(\mu+1)} H\left(p_{t}\right) \subseteq P_{\psi(\mu+1)} . \tag{4}
\end{equation*}
$$

For this purpose, let ζ be an ordinal number such that $\zeta \equiv \dot{\psi} \mu$ with $o<\dot{\psi}$, and denote by h any element of $H\left(p_{\xi}\right)$. By the definition of V_{β}, we have $h \in V_{\zeta+1}$. If $h \in P_{\xi+1}$, then we have $h \in P_{\psi(\mu+1)}$, for, $\psi(\mu+1)$ being an ordinal number of the second kind, $\zeta+1<\psi(\mu+1)$. If $h \notin P_{\zeta+1}$ then we have, by the definition of $W_{\beta}, h \in W_{\underline{\xi+1}}$. Applying the lemma with $\beta=\zeta+1$, we see that $h=p_{5+1+\xi}$ for some $\xi<\bar{W}_{i+1}$. Now we have
for, by the induction hypothesis, any element of

$$
\sum_{n<\psi, \mu} H\left(p_{\eta}\right)=V_{\psi, u}
$$

belongs to $P_{\psi, \mu}$ and thus to P_{s+1}. Therefore we have
because $\bar{H}\left(p_{\eta}\right)<n$ for any η and $\overline{\rho+1}=\bar{\varphi}<\bar{\psi}=n$, and n is regular. Hence we have $\xi<\bar{W}_{\xi+1}<\psi$ and consequently $\zeta+1+\xi=\psi \mu+\rho+1+\xi<\psi \mu+\psi=$ $=\psi(\mu+1)$, i. e. $h=p_{\xi+1+\xi} \in P_{\psi(\mu+1)}$ in this case too, which proves (4).

Let now « be an ordinal number of the second kind, $\mu<\gamma$. Suppose that

$$
V_{\psi \nu} \subseteq P_{\psi \nu}
$$

for every ordinal number $\nu<\mu$. We have to prove that $V_{\psi, \mu}=\sum_{\zeta<\psi \mu} H\left(p_{\xi}\right) \subset P_{\psi, \mu}$. For this purpose let ζ be any ordinal number satisfying $\zeta<\psi \mu$. This inequality implies $\zeta<\psi \nu$ for some $\nu<\mu$, for μ is an ordinal number of the second kind. Hence, any element of $H\left(p_{\xi}\right)$ belongs to $\sum_{\eta<\psi \nu} H\left(p_{\eta}\right)=V_{\psi r}$, thus, by the induction hypothesis, also to $P_{y, p}$, hence to $P_{\psi i t}$ too, which proves our statement. Hence, theorem 2 is proved.

§ 2.

By means of Theorem 2 we prove the following theorem:
Theorem 3. Let n be a regular transfinite cardinal number and E an arbitrary set; further let R be a relation defined between the elements of E such that the set $H(x)$ of the elements $y \in E(y \neq x)$ for which $x R y$ holds has a power smaller then in. Thèn there exists: a system $X=\left\{F_{n}\right\}$ of
mutually disjoint free subsets F_{η} of E such that $X \leqq n$ and that for any element y of $E-F_{r_{\eta} \in X} \sum_{\eta_{i}}$ there is an element $x \in \sum_{r_{\eta} \in E_{i}} F_{\eta}$ for which $y R x$ holds.

Proof. Denote again by ψ the initial number of the cardinal number n. Applying theorem 2, we obtain a transfinite sequence (1) for which (2) holds (for every $\mu, 1 \leqq \mu<\gamma, \gamma$ being defined as above). Let Q_{i} denote the set of the elements p_{ξ} with $\psi \mu \leqq \zeta<\psi(\mu+1)$ for $0 \leqq \mu<\gamma$ and, for $\mu=\gamma$, the set of the elements p_{\S} with $\psi \gamma \leqq \zeta<\alpha$. Obviously, the sets $Q_{i,}$ are mutually disjoint and we have $\sum_{\mu \equiv \gamma} Q_{\mu}=E$.

Let $Z(x)$ denote, for every $x \in E$, the set of $y \in E(y \neq x)$ for which $y R x$ holds; further, let $Z[F]$ denote, for every $F \subseteq E$ the set $\sum_{p \in F^{F}} Z(x)$.

First we define the set F_{0}. Let $f_{100}=p_{0}$. Let λ be a given ordinal number, $\lambda \geqq 1$, and suppose that $f_{0 x}(\in E)$ is defined for every $x<\lambda$. The condition $f_{10 x} \in Q_{\mu_{0 x}}$ defines uniquely an ordinal number $\mu_{0 x}$. If there is an ordinal number μ which is greater then every $\mu_{0 x}(x<\lambda)$ for which $Q_{i,}$ is not a subset of $\sum_{x<2} Z\left(f_{0 x}\right)$ then let μ be the smallest such ordinal number and define f_{02} as the first element of $Q_{4 i}-\sum_{x<2} Z\left(f_{0 x}\right)$ in the well-ordering (1). Clearly, we have $\mu_{0 \lambda}^{\prime}=\mu^{\prime}$. In the opposite case, i. e. if $Q_{u} \subseteq \sum_{x<\lambda} Z\left(f_{0 x}\right)$ for any $\mu>\mu_{0 \mu}(\varkappa<\lambda)$, then we do not define $f_{0} \dot{\lambda}$. We define F_{0} as the set of all those f_{02} which have been defined.

Let η be a given ordinal number, $\eta \geqq 1$, and suppose that the subset F § of E is defined for every $\zeta<\eta$. Supposing that the set

$$
A_{\eta}=\sum_{\zeta<n}\left(F_{\xi}+\dot{+}\left[F_{\xi}\right]\right)
$$

is a proper subset of E, we define the subset F_{η} of E as follows. Let $\mu_{i ;}$, be the smallest ordinal number μ for which Q_{μ} is not a subset of A_{η}. (There exists such an ordinal number Q_{u}, for $A_{\eta} \neq E$.) Define $f_{\eta 0}$ as the first element of $Q_{u_{\eta}}-A_{i}$ in the well-ordering (1). Let λ be an arbitrary ordinal number, $\lambda \geqq 1$, and suppose the element $f_{\eta x}$ of $E-A_{\eta}$ is defined for every $x<\lambda$. Define $\mu_{\eta x}$ for $x<\lambda$ by the condition $f_{\eta_{x}} \in Q_{n_{k}}$. (For $x=0$, this agrees with the above definition of $\mu_{\dot{j} 0}$.) If there is an ordinal number μ which is greater than every $i_{\eta x}(x<\lambda)$ for which Q_{k} is not a subset of $A_{\eta}+\sum_{\pi<\lambda} Z\left(f_{\eta x}\right)$; then let μ^{\prime} be the smallest such ordinal number and define $f_{\eta z}$ as the first element of $Q_{\mu^{\prime}}-\left(A_{\eta}+\sum_{x<\lambda} Z\left(f_{\eta x}\right)\right)$. in the well-ordering (1). Clearly, we have $\mu_{\eta_{\lambda} \lambda}=\mu^{\prime}$. In the opposite case, i. e. if $Q_{n \prime} \subset A_{\eta}+\sum_{x<i \lambda} Z\left(f_{r_{i}, x}\right)$ for any $\mu>\mu_{r_{i}, \mu}(\%<2)$, then we do not define $f_{i ; 2}$. We define $F_{i j}$ as the set of all those $f_{i ; 2}$ which have been
defined. If, however, we have $A_{\eta}=E$, then we do not define the set F_{i}. Finally, we define X as the set of all those F_{η} which have been defined.

As an immediate consequence of this definition, we see that the elements F_{η} of X are mutually disjoint subsets of E. We prove first that they are free sets. Indeed, any two distinct elements of F_{η} are of the form $f_{\eta x}$ and $f_{i ; 2}(x \neq i)$. Let $x<\lambda$, say. Then, by the definition, we have $f_{\eta \lambda} \in Q_{\mu_{\eta 2}}-\left(A_{\eta}+\sum_{x<2} Z\left(f_{\eta \bar{x}}\right)\right)$ (also in case $\eta=0$, for then we have $f_{\eta \lambda}=f_{0 \lambda} \in Q_{\mu_{0 \lambda}}-\sum_{x=\lambda} Z\left(f_{1 u_{x}}\right)=$ $=Q_{\mu_{i j}}-\left(A_{\eta}+\sum_{x<\lambda} Z\left(f_{\eta x}\right)\right)$ on account of $\left.A_{0}=0\right)$. Hence $f_{\eta i} \notin Z\left(f_{\eta x}\right)$, i. e. $f_{\eta \lambda} R f_{\eta x}$ does not hold. On the other hand, we have $f_{r_{i}} \in Q_{\mu_{\eta \lambda}}$ and $f_{\eta_{i} x} \in Q_{\mu_{r_{\eta},}}$ and here $\mu_{\eta \lambda}>\mu_{\eta x}$. Hence, by the definition of the sets Q_{11}, we have $f_{\eta z}=p_{\equiv}$ and $f_{\eta \lambda}=p_{;}$for some ζ and ξ,

$$
\psi \mu_{\eta x} \leqq \zeta<\psi\left(\mu_{\eta x}+1\right) \leqq \psi \mu_{\eta \lambda} \leqq \xi<\psi\left(\mu_{\eta \lambda}+1\right)
$$

Hence, by (2) we have $H\left(f_{\eta \chi}\right)=H\left(p_{s}\right) \subseteq P_{\psi\left(\mu_{\eta \chi}+1\right)}$ whereas we have $f_{\eta_{i} \lambda}=$ $=p_{i} \notin P_{\psi\left(\mu_{\eta x}+1\right)}$ for $\xi \geqq \psi\left(\mu_{\eta x}+1\right)$. Hence $f_{\eta \lambda} \notin H\left(f_{\eta x}\right)$, i. e. $f_{\eta x} R f_{\eta \lambda}$ does not hold either. Thus, any two elements $f_{i \pi}$ and $f_{i, 2}$ of $F_{i i}$ are independent, i. e. F_{η} is indeed a free set.,

Next we prove $\bar{X} \leqq n$. For this purpose, it is sufficient to show that, for any $F_{r_{i}} \in X$, we have $\eta<\psi$. This is obvious for $\eta=0$. Suppose $F_{r_{i}} \in X$, i. e. that F_{η} has been defined and $\eta \neq 0$. Then $Q_{\mu_{\eta 0}}$ is not a subset of $A_{\eta}=\sum_{\xi<\eta}\left(F_{\zeta}+Z\left[F_{\xi}\right]\right)$. Every set $A_{\xi}=\sum_{\xi<5}\left(F_{\xi}+Z\left[F_{\xi}\right]\right)(\zeta<\eta)$ and, moreover, every set $A_{\xi}+\sum_{x<\lambda} Z\left(f_{5 x}\right)=\sum_{\xi \leqslant \zeta}\left(F_{\xi}+Z\left[F_{\xi}\right]\right)+\sum_{x<\lambda} Z\left(f_{5 x}\right)$ (where $\zeta<\eta$ and $f_{5 x} \in F_{5}$ for any $x<\lambda$) being obviously a subset of $A_{\eta}, Q_{\mu_{\eta 0}}$ is not a subset of any such set A_{ξ} or $A_{5}+\sum_{x<\lambda} Z\left(f_{\xi x}\right)$. Hence, for a suitable $\lambda\left(f_{5 i} \in F_{\xi}\right)$ we have $\mu_{\eta 0}=\mu_{52}$. Indeed, in the opposite case we would have $\mu_{5 \lambda}<\mu_{\eta 0}$. for every $\lambda, f_{5 \lambda} \in F_{5}$. This is obvious for $\lambda=0$, because μ_{50} is, by definition, the smallest ordinal number μ for which Q_{i} is not a subset of A_{5}, and $\mu_{\eta_{i}}$ is such an ordinal number. Suppose, we have $\mu_{5 x}<\mu_{\eta 0}$ for every $x<\lambda$. Then we have also $\mu_{5 \lambda}<\mu_{\eta^{2} 0}$, for $\mu_{5} \lambda$ is by definition the smallest ordinal number μ for which $\mu>\mu_{5, x}(x<\lambda)$ and for which Q_{μ} is not a subset of $A_{5}+\sum_{\alpha, \lambda} Z\left(f_{5 x}\right)$,, and this holds for the ordinal number $\mu=\mu_{\eta 0}$ too. Now, let λ be the smallest ordinal number for which $f_{5 \lambda}$ has not been defined. Then we have $Q_{\mu} \subseteq A_{5}+\sum_{x<\lambda} Z\left(f_{5 x}\right)$ for any μ which is greater then any $\mu_{5 x}(x<\lambda)$; but this impossible since it does not hold for $\mu=\mu_{70}$.

Thus we have $f_{5 \lambda} \in Q_{\mu_{\zeta} \lambda}=Q_{\mu_{\eta 0}}$ for any $\zeta<\eta$ and for a suitable $\lambda=\lambda(\zeta)=\lambda(\zeta, \eta)$. This holds also for $\zeta=\eta$ with $\lambda=\lambda(\eta)=0$. Now we prove that for $\xi<\zeta \leqq \eta$ we have $f_{\xi \lambda(\xi)}<f_{5 \lambda(5)}$ in the well-ordering (1). Indeed, $f_{\xi \lambda \lambda(\xi)}$
is by definition the first element of

$$
Q_{\mu_{\xi} \lambda(\xi)}-\left(A_{\xi}+\sum_{x \leq \lambda(\xi)} Z\left(f_{5 x}\right)\right)=Q_{\mu_{\eta}}-\left(A_{\xi}+\sum_{x<\lambda(\xi)} Z\left(f_{\xi x}\right)\right) .
$$

On the other hand, we have $f_{5 \lambda(\xi)} \in Q_{\mu_{5} \lambda(\xi)}-\left(A_{\xi}+\sum_{x<\lambda(5)} Z\left(f_{\zeta x}\right)\right)$. Hence we

$$
A_{\xi}++_{x} \sum_{\lambda(\xi)} Z\left(f_{\xi x}\right)=\sum_{0 \leqslant \xi}\left(F_{Q}+Z\left[F_{e}\right]\right)+\sum_{x<\lambda(\xi)} Z\left(f_{\xi x}\right) \subseteq A_{\xi}
$$

hence $f_{: \lambda(\xi)} \notin A_{\xi}+\sum_{x} Z\left(f_{\xi x}\right)$. Consequently, we have

$$
f_{\xi \lambda(\xi)} \in Q_{\mu_{n 0}}-\left(A_{\xi}+\sum_{x<i(\xi)} Z\left(f_{\xi^{x} x}\right)\right) ;
$$

hence, $f_{\xi \lambda(\xi)}$ being the first element of this set, we have $f_{\xi \lambda(\xi)}<f_{\xi \lambda(\xi)}$. By the disjointness of the sets $: F_{\xi}$ and F_{ξ}, this implies $f_{\xi \lambda(\xi)}<f_{\xi \lambda(\xi)}$ as stated.

Hence the elements $f_{5 \lambda(\xi)}(\zeta<\eta)$ form a subset of $Q_{\mu_{\eta 0}}$ which is similar to the set of the ordinal numbers $\zeta(\zeta<\eta)$. On the other hand, on account of $f_{5 \lambda(\xi)}<f_{\eta \lambda(\eta)}=f_{1,0}$ this subset is a subset of the section of $Q_{\mu_{\eta 0}}$ formed by the element $f_{7 \prime} 0$. Thus the ordinal number of this subset is smaller then the ordinal number of $Q_{\mu_{\eta 0}}$, hence smaller than ψ. The set of the ordinal numbers $\zeta(\zeta<\boldsymbol{\eta})$ having the ordinal number η, we see that $\eta<\psi$, and hence $X \leqq n$ indeed.

We have yet to prove that for any element y of $E-\sum_{F_{\eta} \in X} F_{\eta}$ there is an element x of $\sum_{F_{\eta} \in X} F_{\eta}$ for which $y R x$ holds. Indeed, let τ denote the smallest ordinal number for which F_{τ} has not been defined. Then we have

$$
E=A_{\eta}=\sum_{\eta<i}\left(F_{r_{i}}+Z\left[F_{\eta}\right]\right)
$$

Hence

$$
E-\sum_{F_{\eta} \in X} F_{\eta}=E-\sum_{\eta<\tau} F_{i} \subset \sum_{i<i} Z\left[F_{\eta}\right]=Z\left[\sum_{\eta<\tau} F_{n}\right]
$$

which shows, that for any $y \in E-\sum_{F_{7} \in X} F_{\eta}$ we have $y \in Z\left[\sum_{n<\tau} F_{\eta}\right]$, i. e. $y \in Z(x)$, that is, $y R x$ for a suitable $x \in \sum_{\eta=r} F_{i,}=\sum_{F_{i,} \in X} F_{\eta}$, as stated. Thus Theorem 3 has been proved.

§ 3.

Now we can prove Theorem 1 for any regular transfinite cardinal number \mathfrak{n}. Indeed, suppose the set. E and the relation R satisfy the conditions of Theorem 1. Define the sets E_{a}^{*} and X_{c} by transfinite induction as follows. Let $E_{0}=E$ be and X_{0} the system X belonging to the set E_{0}, satisfying the statement of Theorem 3. Suppose, a is an ordinal number such that for any
ordinal number $\beta<\alpha$, the subset E_{β} of E and the system X_{β} of some subsets of E_{3} have been defined. If $\sum_{\beta<\alpha} \sum_{F \in X_{\beta}} F$ is a proper subset of E, then we put

$$
E_{a}=E-\sum_{\beta \leq \alpha} \sum_{F \in X_{\beta}} F
$$

and we define X_{α} as the system X corresponding in the sense of Theorem 3 to the set E_{a} (instead of E). (Obviously, any subset E_{α} of E satisfies the conditions of Theorem 3.) If, however, $\sum_{\beta<a} \sum_{F \in X_{\beta}} F=E$ then we do not define E and X_{u}.

Now we prove that if E_{\ll} is defined (and therefore, by the definition, non empty), then for any $y \in E_{K}$ and $\beta<\alpha$, there exists an element $x=x(\beta) \in \underset{r \in x_{\beta}}{ } F$ such that we have $y R x$. This holds (vacuously) for $a=0$. Suppose $\alpha \geqq 1$ and that the sfatement holds for any $\beta<\alpha$; than we prove the same for α. Indeed, let $\beta<\mu$. Suppose first that there is an ordinal number γ for which $\beta<\gamma<\alpha$. Then we have obviously $E_{\alpha} \subseteq E_{\gamma}$ hence $y \in E_{\alpha}$ implies $y \in E_{\gamma}$ and thus, by hypothesis, the existence of an $x \in \sum_{R \in X_{p}} F$ for which $y R x$, as stated. If, on the contrary, no such ordinal number γ exists, then we have $\alpha=\beta+1$, thus

$$
E_{\alpha}=E-\sum_{\{<\beta+1} \sum_{F \in X_{B}} F=E-\sum_{B<\beta} \sum_{F \in X_{Y}} F-\sum_{N \in X_{\beta}} F=E_{\beta}-\sum_{F \in x_{\beta}} F .
$$

Now, by Theorem 3, for any $y \in E_{\beta}-\sum_{F \in x_{\beta}} F=E_{\alpha}$ there is an $x \in \sum_{F \in x_{\beta}} F$ for which we have $y R x$, so that our statement holds in this case too.

Now, the sets $\sum_{v \in \mathbb{Y}_{a}} F$ are mutually disjoint. Indeed, if $\beta<\alpha$, then X_{α} is, by definition, a system of subsets of E_{a}, thus $\sum_{F \in X_{a}} F$ is a subset of $E_{\alpha}=E-\sum_{\beta<a} \sum_{r \in X_{\beta}} F$, hence has no element in common with $\sum_{r \in X_{\beta}} F$. Therefore, if E_{a}. is defined and thus not empty, and if y is an arbitrary element of E_{α}, then the set of the above elements $x(\beta)(\beta<\alpha)$ has the cardinal number $\bar{\alpha}$. On the other hand, we have $y R x(\beta)$ i. e. $x(\beta) \in H(y)$ for any $\beta<\alpha$. This implies $\bar{a} \leqq \overline{H(y)}<n$.

Hence, there exists a least ordinal number a with $\bar{\varkappa} \leqq n$ for which E_{α} is not defined, therefore

$$
\begin{equation*}
E=\sum_{\beta<\alpha} \sum_{r \in x_{\beta}} F \tag{4}
\end{equation*}
$$

By Theorem 3 we have $X_{i} \leqq \Perp$ for any $\beta<\alpha$, thus (4) furnishes a decomposition of E into a sum of at most $n \cdot n=n$ free subsets, which proves theorem 1 in the case that 11 is a regular cardinal number.

§ 4.

We assume now that n is a singular cardinal number. Let r denote the smallest cardinal number such that \mathfrak{n} is the sum of r cardinal numbers each of which is less than n. Since n is singular, we have $r<n$. Let μ denote the initial number of \mathfrak{r}. There exist regular cardinal numbers $n_{1}, n_{2}, \ldots, n_{k}, \ldots$ ($x<\mu$) such that $n_{a}>n_{a}$ for $\beta>\boldsymbol{c}$ and

$$
\mathrm{n}=\mathfrak{n}_{1}+n_{2}+\cdots+n_{x}+\cdots
$$

Let E_{x} be the set of elements x of E for which the cardinal number of the elements $y \in E$, for which $x R y$, is $<n_{z}$. Put

$$
F_{x}=E_{x}-\sum_{v<x} E_{v} .
$$

Clearly

$$
E=\sum_{x} F_{x} .
$$

As the theorem holds when n is regular we obtain that F_{x} may be decomposed into the sum of n_{x} of fewer free subsets. As $\bar{x}<n$ and $\left\{F_{x}\right\} \leqq n$, for each x it follows that E may be split off into the sum of \mathfrak{n} or fewer free subsets. Thus Theorem 1 is proved in the general case too.

The author wishes to express his thanks to Professors L. Kalmár and B. Sz.-NAGY for their aid and advice in the preparation of this paper.

[^0]: 1) "Relation" means throughout this paper a binary relation.
 2) S. Ruziewicz, Une généralisation d'un théorème de M. Sierpiński, Publications Math. de l'Université de Belgrade, 5 (1936), pp. 23-27.
 ${ }^{3}$) W. Sierpiński, Sur un probième de la théorie des relations, Fundamenta Math.; 28 (1937), pp. 71-74. - D. Lazar, On a problem in the theory of aggregates, Compositio Math., 3 (1936), 304.

 - 4) Sophie Piccard, Sur un problème de M. Ruziewicz de la théorie des relations, Fundamenta Math., 29 (1937), pp. 5-9; Solution du problème de M. Ruziewicz de la théorie des relations pour les nombres cardinaux $\mathfrak{m}<\$ \Omega$, Comptes Rendus Varsovie, 30 (1937), pp. 12-18.
 ${ }^{5}$) P. Erdös, Some remarks on set theory, Proceedings American Math. Soc., 1 (1950), pp. 133-137.

[^1]: ${ }^{6}$) N. G. de Bruijn and P. Erdoos, A colour problem for infinite graphs and a problem in the theory of relations, Proceedings Amsterdam, 54 (1951), pp. 371-372.

