Proof of a conjecture of P. Erdős.

By G. FODOR in Szeged.

Let E be a given non countable set of power m and suppose that there exists a relation ¹) R between the elements of E such that, for any $x \in E$, the power of the set H(x) of the elements $y \in E$ $(y \neq x)$ for which xRy holds, is smaller than a given cardinal number n which is smaller than m. Two distinct elements (or "points") x and y of E are called independent if neither xRy nor yRx. We say that a subset of E is a *free set* if any two points of this subset are independent.

If we replace the condition n < m by $n \le m$ then it can occur that we do not have any independent points at all. Indeed, let φ be the initial number of power m and E the set of ordinal numbers less than φ . We define the relation R so that xRy holds if and only if y < x. Then clearly $\overline{H(x)} < m$ for any $x \in E$; however, no two elements are independent.

The following proposition has been conjectured by S. RUZIEWICZ²):

If n < m, then E has a free subset E^* of the same power m.

This theorem has been proved first if $n = \aleph_0$ and m is either of the form 2^{ν} or of the form $\aleph_{\alpha+1}^{a}$), then if m is a regular cardinal number or if m is the countable sum of cardinals smaller than m^4), finally, in the general case, assuming the generalized continuum hypothesis⁵).

1) "Relation" means throughout this paper a binary relation.

²) S. RUZIEWICZ, Une généralisation d'un théorème de M. Sierpiński, *Publications Math. de l'Université de Belgrade*, **5** (1936), pp. 23–27.

³) W. SIERPIŃSKI, Sur un problème de la théorie des relations, *Fundamenta Math.*, 28 (1937), pp. 71-74. — D. LÁZÁR, On a problem in the theory of aggregates, *Compositio Math.*, 3 (1936), 304.

4) SOPHIE PICCARD, Sur un problème de M. Ruziewicz de la théorie des relations, *Fundamenta Math.*, **29** (1937), pp. 5–9; Solution du problème de M. Ruziewicz de la théorie des relations pour les nombres cardinaux $\mathfrak{m} < \aleph_{\Omega}$, *Comptes Rendus Varsovie*, **30** (1937), pp. 12–18.

⁵) P. ERDôs, Some remarks on set theory, *Proceedings American Math. Soc.*, 1 (1950), pp. 133-137.

The proof given by SIERPIŃSKI⁸) yields also the fact that, if $n = \aleph_0$ and $m = 2^p$, then E is the union of p free subsets. The proof of LAZAR²) yields the same fact in the case $n = \aleph_0$, $m = 2^{\aleph_0}$.

DE BRUIJN and ERDOS⁶) proved for a set E of arbitrary power the following statements: If for every $x \in E$, the set H(x) has at most k elements, k being a given positive integer, then E may be decomposed in 2k+1 or fewer free sets; if for every $x \in E$ the set H(x) is finite, then E is the union of a countable number of free sets.

We shall now prove the following theorem which was conjectured by ErDŐS⁵):

Theorem 1. If E is a non countable set of power \mathfrak{m} and if R is a relation between the elements of E such that for any $x \in E$ the power of the set H(x) of the elements $y \in E$ $(y \neq x)$ for which xRy holds is smaller than a given cardinal number \mathfrak{n} , where $\aleph_0 \leq \mathfrak{n} < \mathfrak{m}$, then E may be decomposed into the sum of \mathfrak{n} or fewer free subsets.

As a consequence of this theorem, we see at once that the conjecture of RUZIEWICZ holds if m cannot be decomposed into a sum of n or fewer cardinal numbers, each of which is smaller than m.

§ 1.

First we prove the following theorem.

Theorem 2. Let n be a regular transfinite cardinal number, ψ the initial number of the cardinal number n and E an arbitrary set. Suppose that a relation R is defined between the elements of E such that the set H(x) of the elements $y \in E$ ($y \neq x$) for which xRy holds, has a cardinal number smaller than n. Then E can be well-ordered into a transfinite sequence

(1) $p_0, p_1, p_2, \ldots, p_{\omega}, p_{\omega+1}, \ldots, p_{\xi}, \ldots$ ($\xi < \alpha$)

in such a way that we have

(2)
$$\sum_{\zeta < \psi \mu} H(p_{\zeta}) \subseteq \{p_{\zeta}\}_{\zeta < \psi \mu}$$

for every μ , $1 \leq \mu < \gamma$, where γ is defined by the equality $\alpha = \psi \gamma + \delta$ ($\delta < \psi$).

Proof. Let φ be the initial number of the cardinal number $\overline{E} = \mathfrak{m}$ and let

(3)
$$x_0, x_1, x_2, \ldots, x_{\omega}, x_{\omega+1}, \ldots, x_{\xi}, \ldots$$
 $(\xi < \varphi)$

be any well-ordering of *E* of the type φ . We define the sequence (1) by transfinite induction in the following way: Put $p_0 = x_0$. Let now β be an ordinal number, $\beta > 0$, and suppose that all elements p_{ζ} , where $0 \le \zeta < \beta$,

⁶) N. G. DE BRUIN and P. ERDÖS, A colour problem for infinite graphs and a problem in the theory of relations, *Proceedings Amsterdam*, 54 (1951), pp. 371-372.

have been already defined and let P_{β} denote the set of the elements p_{z} with $\zeta < \beta$. Consider the set

$$V_{\beta} = \sum_{\zeta < \beta} H(p_{\zeta}).$$

If $V_{\beta} \neq 0$, we define a new well-ordering of V_{β} as follows. Let q and r be any two distinct elements of V_{β} . Let x and λ be the least ordinals for which $q \in H(p_x)$ and $r \in H(p_\lambda)$, respectively. Write $q \prec r$ if either $x < \lambda$ or if $x = \lambda$ but q precedes r in $H(p_x)$ in the original well-ordering (3) (as a subset of E which is well-ordered according to (3)). In the sequel we suppose always that V_{β} is well-ordered in this way. Let

$$W_{\beta} = V_{\beta} - P_{\beta}.$$

(i) If $W_{\beta} = 0$, let p_{β} be the first element of W_{β} (as a subset of V_{β}).

(ii) If $W_{\beta} = 0$ and $P_{\beta} \pm E$, let p_{β} the first element of $E - P_{\beta}$ (in the well-ordering (3)).

(iii) If $W_{\beta} = 0$ and $P_{\beta} = E$, then we do not define p_{β} .

Clearly, case (iii) occurs for one and only one value α of β ; for $_i\beta < \alpha$, p_β , V_β and W_β are defined. For $\nu < \pi < \alpha$, the set V_ν is obviously a section of V_π .

Next we prove the following

Lemma. Suppose $\beta < \alpha$ and $W_{\beta} \neq 0$. Let

 $w_0, w_1, w_2, \ldots, w_{\omega}, w_{\omega+1}, \ldots, w_{\xi}, \ldots \qquad (\xi < \overline{W}_{\beta})$

be the well-ordering of the set W_{β} (as a subset of V_{β}). Then we have $p_{\beta+\xi} = w_{\xi}$ for $\xi < \overline{W}_{\beta}$.

Indeed, this holds by definition for $\xi = 0$. Suppose, our statement holds for any ordinal number which is smaller than ξ ($\langle \overline{W}_{\beta} \rangle$; then it holds for ξ too. Indeed, $p_{\beta+\xi}$ is, by definition, the first element of $W_{\beta+\xi}$. Now we have $w_{\xi} \in W_{\beta} \subseteq V_{\beta} \subset V_{\beta+\xi}$, hence $w_{\xi} \in V_{\beta+\xi}$. On the other hand, $w_{\xi} \notin P_{\beta}$ and, by hypothesis, $P_{\beta+\xi} = P_{\beta} + \{w_{\eta}\}_{\eta < \xi}$; hence $w_{\xi} \notin P_{\beta+\xi}$. Therefore $w_{\xi} \in W_{\beta+\xi}$. Further, any element of $W_{\beta+\xi}$ preceding w_{ξ} is an element of $V_{\beta+\xi}$ preceding w_{ξ} , hence an element of V_{β} preceding w_{ξ} for V_{β} is a section of $V_{\beta+\xi}$ and $w_{\xi} \in V_{\beta}$. Now, any element of V_{β} preceding w_{ξ} is either an element of P_{β} or an element of W_{β} preceding w_{ξ} ; hence in any case an element of $P_{\beta+\xi}$. Therefore, such an element cannot belong to $W_{\beta+\xi} = V_{\beta+\xi} - P_{\beta+\xi}$. Hence, w_{ξ} is the first element of $W_{\beta+\xi}$, thus $p_{\beta+\xi} = w_{\xi}$ as stated.

Now we prove by transfinite induction that (2) holds for every μ , $1 \leq \mu < \gamma$. This is obvious for $\mu = 0$. Suppose (2), i. e. $V_{\psi\mu} \subseteq P_{\psi\mu}$ holds for some μ ; then we prove the same for $\mu + 1$ instead of μ , i. e.

$$V_{\psi(u+1)} = \sum_{\zeta < \psi(u+1)} H(p_{\zeta}) \subseteq P_{\psi(u+1)}.$$

As we have, by hypothesis,

$$V_{\psi\mu} = \sum_{\zeta < \psi\mu} H(p_{\zeta}) \subseteq P_{\psi\mu} \subseteq P_{\psi(u+1)},$$

we have to prove that

(4) $\sum_{\psi \mu \leq \zeta < \psi(\mu+1)} H(p_{\zeta}) \subseteq P_{\psi(\mu+1)}.$

For this purpose, let ζ be an ordinal number such that $\zeta = \psi \mu + \varrho$ with $\varrho < \psi$, and denote by *h* any element of $H(p_{\zeta})$. By the definition of V_{β} , we have $h \in V_{\zeta+1}$. If $h \in P_{\zeta+1}$, then we have $h \in P_{\psi(u+1)}$, for, $\psi(\mu+1)$ being an ordinal number of the second kind, $\zeta + 1 < \psi(u+1)$. If $h \notin P_{\zeta+1}$ then we have, by the definition of W_{β} , $h \in W_{\zeta+1}$. Applying the lemma with $\beta = \zeta + 1$, we see that $h = p_{\zeta+1+\xi}$ for some $\xi < W_{\zeta+1}$. Now we have

$$W_{\zeta+1} = V_{\zeta+1} - P_{\zeta+1} = \sum_{\eta < \zeta+1} H(p_\eta) - P_{\zeta+1} \subseteq \sum_{\psi \neq \eta < \zeta+1} H(p_\eta)$$

for, by the induction hypothesis, any element of

$$\sum_{\gamma < \psi \mu} H(p_{\gamma}) = V_{\psi \mu}$$

belongs to $P_{\psi_{ij}}$ and thus to P_{t+1} . Therefore we have

$$\overline{W_{\xi+1}} \leq \sum_{\psi \mu \leq \eta < \xi+1} \overline{H(p_{\eta})} \leq \sum_{\psi \mu \leq \eta < \xi+1} \overline{H(p_{\eta})} = \sum_{\mathfrak{r} < \varrho+1} \overline{H(p_{\psi \mu+\mathfrak{r}})} < \mathfrak{n},$$

because $\overline{H(p_{\eta})} < n$ for any η and $\overline{\varrho+1} = \overline{\varrho} < \overline{\psi} = n$, and n is regular. Hence we have $\xi < \overline{W}_{\xi+1} < \psi$ and consequently $\zeta + 1 + \xi = \psi \mu + \varrho + 1 + \xi < \psi \mu + \psi = \psi(\mu + 1)$, i. e. $h = p_{\xi+1+\xi} \in P_{\psi(\mu+1)}$ in this case too, which proves (4).

Let now μ be an ordinal number of the second kind, $\mu < \gamma$. Suppose that

 $V_{\psi v} \subseteq P_{\psi v}$

for every ordinal number $\nu < \mu$. We have to prove that $V_{\psi\mu} = \sum_{\zeta < \psi\mu} H(p_{\zeta}) \subseteq P_{\psi\mu}$. For this purpose let ζ be any ordinal number satisfying $\zeta < \psi\mu$. This inequality implies $\zeta < \psi\nu$ for some $\nu < \mu$, for μ is an ordinal number of the second kind. Hence, any element of $H(p_{\zeta})$ belongs to $\sum_{\eta < \psi\nu} H(p_{\eta}) = V_{\psi\nu}$, thus, by the induction hypothesis, also to $P_{\psi\nu}$, hence to $P_{\psi\mu}$ too, which proves our statement. Hence, theorem 2 is proved.

§ 2.

By means of Theorem 2 we prove the following theorem :

Theorem 3. Let n be a regular transfinite cardinal number and E an arbitrary set; further let R be a relation defined between the elements of E such that the set H(x) of the elements $y \in E$ $(y \neq x)$ for which xRy holds has a power smaller then n. Then there exists a system $X = \{F_n\}$ of

222

mutually disjoint free subsets F_{η} of E such that $X \leq \mathfrak{n}$ and that for any element y of $E - \sum_{F_{\eta} \in X} F_{\eta}$ there is an element $x \in \sum_{F_{\eta} \in X} F_{\eta}$ for which yRx holds.

Proof. Denote again by ψ the initial number of the cardinal number n. Applying theorem 2, we obtain a transfinite sequence (1) for which (2) holds (for every μ , $1 \leq \mu < \gamma$, γ being defined as above). Let Q_{μ} denote the set of the elements p_{ζ} with $\psi \mu \leq \zeta < \psi(\mu+1)$ for $0 \leq \mu < \gamma$ and, for $\mu = \gamma$, the set of the elements p_{ζ} with $\psi \gamma \leq \zeta < \alpha$. Obviously, the sets Q_{μ} are mutually disjoint and we have $\sum_{n \leq \mu} Q_{\mu} = E$.

Let Z(x) denote, for every $x \in E$, the set of $y \in E$ $(y \neq x)$ for which yRx holds; further, let Z[F] denote, for every $F \subseteq E$ the set $\sum_{x \in E} Z(x)$.

First we define the set F_0 . Let $f_{00} = p_0$. Let λ be a given ordinal number, $\lambda \ge 1$, and suppose that f_{0x} ($\in E$) is defined for every $x < \lambda$. The condition $f_{0x} \in Q_{\mu_{0x}}$ defines uniquely an ordinal number μ_{0x} . If there is an ordinal number μ which is greater then every μ_{0x} ($x < \lambda$) for which Q_{μ} is not a subset of $\sum_{x < \lambda} Z(f_{0x})$ then let μ' be the smallest such ordinal number and define $f_{0\lambda}$ as the first element of $Q_{\mu'} - \sum_{x < \lambda} Z(f_{0x})$ in the well-ordering (1). Clearly, we have $\mu_{0\lambda} = \mu'$. In the opposite case, i. e. if $Q_{\mu} \subseteq \sum_{x < \lambda} Z(f_{0x})$ for any $\mu > \mu_{0x}$ ($x < \lambda$), then we do not define $f_{0\lambda}$. We define F_0 as the set of all those $f_{0\lambda}$ which have been defined.

Let η be a given ordinal number, $\eta \ge 1$, and suppose that the subset F_{z} of E is defined for every $\zeta < \eta$. Supposing that the set

$$A_{\eta} = \sum_{\xi < \eta} (F_{\xi} + Z[F_{\xi}])$$

is a proper subset of E, we define the subset F_{η} of E as follows. Let $\mu_{\eta^{(1)}}$ be the smallest ordinal number μ for which Q_{μ} is not a subset of A_{η} . (There exists such an ordinal number Q_{μ} , for $A_{\eta} \neq E$.) Define $f_{\eta^{(0)}}$ as the first element of $Q_{\mu\eta^{(0)}} - A_{\eta}$ in the well-ordering (1). Let λ be an arbitrary ordinal number, $\lambda \geq 1$, and suppose the element $f_{\eta^{(x)}}$ of $E - A_{\eta}$ is defined for every $x < \lambda$. Define $\mu_{\eta^{(x)}}$ for $x < \lambda$ by the condition $f_{\eta^{(x)}} \in Q_{r_k}$. (For x = 0, this agrees with the above definition of $\mu_{\eta^{(0)}}$.) If there is an ordinal number μ which is greater than every $\mu_{\eta^{(x)}}$ ($x < \lambda$) for which Q_{μ} is not a subset of $A_{\eta} + \sum_{x < \lambda} Z(f_{\eta^{(x)}})$, then let μ' be the smallest such ordinal number and define $f_{\eta\lambda}$ as the first element of $Q_{\mu'} - (A_{\eta} + \sum_{x < \lambda} Z(f_{\eta x}))$ in the well-ordering (1). Clearly, we have $\mu_{\eta\lambda} = \mu'$. In the opposite case, i. e. if $Q_{\mu} \subset A_{\eta} + \sum_{x < \lambda} Z(f_{\eta^{(x)}})$ for any $\mu > \mu_{\eta^{(x)}}$ ($x < \lambda$), then we do not define $f_{\eta\lambda}$. We define F_{η} as the set of all those $f_{\eta\lambda}$ which have been defined. If, however, we have $A_{\eta} = E$, then we do not define the set F_{η} . Finally, we define X as the set of all those F_{η} which have been defined.

As an immediate consequence of this definition, we see that the elements F_{η} of X are mutually disjoint subsets of E. We prove first that they are free sets. Indeed, any two distinct elements of F_{η} are of the form $f_{\eta x}$ and $f_{\eta x}$ $(x \neq \lambda)$. Let $x < \lambda$, say. Then, by the definition, we have $f_{\eta \lambda} \in Q_{\mu_{\eta \lambda}} - (A_{\eta} + \sum_{x < \lambda} Z(f_{\eta x}))$ (also in case $\eta = 0$, for then we have $f_{\eta \lambda} = f_{0\lambda} \in Q_{\mu_{0\lambda}} - \sum_{x < \lambda} Z(f_{\eta x})$) = $= Q_{\mu_{\eta\lambda}} - (A_{\eta} + \sum_{x < \lambda} Z(f_{\eta x}))$ on account of $A_0 = 0$). Hence $f_{\eta \lambda} \notin Z(f_{\eta x})$, i. e. $f_{\eta \lambda} R f_{\eta x}$ does not hold. On the other hand, we have $f_{\eta \lambda} \in Q_{\mu_{\eta\lambda}}$ and $f_{\eta x} \in Q_{\mu_{\eta\lambda}}$, and here $\mu_{\eta\lambda} > \mu_{\eta x}$. Hence, by the definition of the sets Q_{μ} , we have $f_{\eta x} = p_{z}$ and $f_{\eta x} = p_{z}$ and ξ ,

$$\psi \mu_{\eta z} \leq \zeta < \psi(\mu_{\eta z}+1) \leq \psi \mu_{\eta z} \leq \xi < \psi(\mu_{\eta z}+1).$$

Hence, by (2) we have $H(f_{\eta z}) = H(p_z) \subseteq P_{\psi(u_{\eta z}+1)}$ whereas we have $f_{\eta z} = p_{\xi} \notin P_{\psi(u_{\eta z}+1)}$ for $\xi \geq \psi(u_{\eta z}+1)$. Hence $f_{\eta z} \notin H(f_{\eta z})$, i. e. $f_{\eta z} Rf_{\eta z}$ does not hold either. Thus, any two elements $f_{\eta z}$ and $f_{\eta z}$ of F_{η} are independent, i. e. F_{η} is indeed a free set.

Next we prove $\overline{X} \leq n$. For this purpose, it is sufficient to show that, for any $F_{\eta} \in X$, we have $\eta < \psi$. This is obvious for $\eta = 0$. Suppose $F_{\eta} \in X$, i. e. that F_{η} has been defined and $\eta \neq 0$. Then $Q_{\mu_{\eta}0}$ is not a subset of $A_{\eta} = \sum_{\zeta < \eta} (F_{\zeta} + Z[F_{\zeta}])$. Every set $A_{\zeta} = \sum_{\xi < \zeta} (F_{\xi} + Z[F_{\xi}])$ ($\zeta < \eta$) and, moreover, every set $A_{\xi} + \sum_{x < \lambda} Z(f_{\xi x}) = \sum_{\xi < \xi} (F_{\xi} + Z[F_{\xi}]) + \sum_{x < \lambda} Z(f_{\xi x})$ (where $\zeta < \eta$ and $f_{\zeta x} \in F_{\zeta}$ for any $x < \lambda$) being obviously a subset of A_{η} , $Q_{\mu_{\eta}0}$ is not a subset of any such set A_{ξ} or $A_{\xi} + \sum_{x \in \lambda} Z(f_{\xi x})$. Hence, for a suitable λ $(f_{\xi \lambda} \in F_{\xi})$ we have $\mu_{\eta 0} = \mu_{\zeta \lambda}$. Indeed, in the opposite case we would have $\mu_{\zeta \lambda} < \mu_{\eta 0}$ for every λ , $f_{\xi\lambda} \in F_{\xi}$. This is obvious for $\lambda = 0$, because $\mu_{\xi0}$ is, by definition, the smallest ordinal number μ for which Q_{μ} is not a subset of A_{ζ} , and $\mu_{\mu0}$ is such an ordinal number. Suppose, we have $\mu_{\xi x} < \mu_{n0}$ for every $x < \lambda$. Then we have also $\mu_{\zeta\lambda} < \mu_{\eta,0}$, for $\mu_{\zeta\lambda}$ is by definition the smallest ordinal number μ for which $\mu > \mu_{\xi z}$ ($x < \lambda$) and for which Q_{μ} is not a subset of $A_{\xi} + \sum Z(f_{\xi z})$, and this holds for the ordinal number $\mu = \mu_{\eta 0}$ too. Now, let λ be the smallest ordinal number for which $f_{\zeta \lambda}$ has not been defined. Then we have $Q_{\mu} \subseteq A_{\zeta} + \sum_{x < \lambda} Z(f_{\zeta x})$ for any μ which is greater then any $\mu_{\zeta x}$ (x < λ); but this impossible since it does not hold for $\mu = \mu_{n0}$.

Thus we have $f_{\xi\lambda} \in Q_{\mu_{\xi\lambda}} = Q_{\mu_{\eta0}}$ for any $\zeta < \eta$ and for a suitable $\lambda = \lambda(\zeta) = \lambda(\zeta, \eta)$. This holds also for $\zeta = \eta$ with $\lambda = \lambda(\eta) = 0$. Now we prove that for $\xi < \zeta \leq \eta$ we have $f_{\xi\lambda(\xi)} < f_{\xi\lambda(\zeta)}$ in the well-ordering (1). Indeed, $f_{\xi\lambda(\xi)}$

is by definition the first element of

$$Q_{\mu_{\xi\lambda}(\xi)}-(A_{\xi}+\sum_{\varkappa<\lambda(\xi)}Z(f_{\xi\varkappa}))=Q_{\mu_{\eta}0}-(A_{\xi}+\sum_{\varkappa<\lambda(\xi)}Z(f_{\xi\varkappa})).$$

On the other hand, we have $f_{\xi\lambda(\xi)} \in Q_{\mu_{\xi\lambda(\xi)}} - (A_{\xi} + \sum_{x < \lambda(\xi)} Z(f_{\xi x}))$. Hence we have $f_{\xi\lambda(\xi)} \in Q_{\mu_{\xi\lambda(\xi)}} = Q_{r_i0}$ and $f_{\xi\lambda(\xi)} \notin A_{\xi} = \sum_{\varrho < \xi} (F_{\varrho} + Z[F_{\varrho}])$. Now obviously $A_{\xi} + \sum_{x < \lambda(\xi)} Z(f_{\xi x}) = \sum_{\varrho < \xi} (F_{\varrho} + Z[F_{\varrho}]) + \sum_{x < \lambda(\xi)} Z(f_{\xi x}) \subseteq A_{\xi};$ hence $f_{\xi\lambda(\xi)} \notin A_{\xi} + \sum_{x < \lambda(\xi)} Z(f_{\xi x})$. Consequently, we have

$$f_{\xi\lambda(\xi)} \in Q_{u_{\eta}0} - (A_{\xi} + \sum_{\varkappa < \lambda(\xi)} Z(f_{\xi\varkappa}));$$

hence, $f_{\xi\lambda(\xi)}$ being the first element of this set, we have $f_{\xi\lambda(\xi)} \leq f_{\xi\lambda(\zeta)}$. By the disjointness of the sets F_{ξ} and F_{ξ} , this implies $f_{\xi\lambda(\xi)} < f_{\xi\lambda(\zeta)}$ as stated.

Hence the elements $f_{\zeta\lambda(\zeta)}$ ($\zeta < \eta$) form a subset of $Q_{\mu_{\eta}0}$ which is similar to the set of the ordinal numbers ζ ($\zeta < \eta$). On the other hand, on account of $f_{\zeta\lambda(\zeta)} \prec f_{\eta\lambda(\eta)} = f_{\eta0}$ this subset is a subset of the section of $Q_{\mu_{\eta0}}$ formed by the element $f_{\eta0}$. Thus the ordinal number of this subset is smaller then the ordinal number of $Q_{\mu_{\eta0}}$, hence smaller than ψ . The set of the ordinal numbers $\zeta(\zeta < \eta)$ having the ordinal number η , we see that $\eta < \psi$, and hence $X \leq n$ indeed.

We have yet to prove that for any element y of $E - \sum_{F_{\eta} \in X} F_{\eta}$ there is an element x of $\sum_{F_{\eta} \in X} F_{\eta}$ for which yRx holds. Indeed, let τ denote the smallest ordinal number for which F_{τ} has not been defined. Then we have

$$E = A_{\eta} = \sum_{\eta < \tau} (F_{\eta} + Z[F_{\eta}]).$$

Hence

$$E - \sum_{F_{\eta} \in X} F_{\eta} = E - \sum_{\eta < \tau} F_{\eta} \subseteq \sum_{\eta < \tau} Z[F_{\eta}] = Z[\sum_{\eta < \tau} F_{\eta}]$$

which shows, that for any $y \in E - \sum_{F_{ij} \in X} F_{ij}$ we have $y \in Z[\sum_{\eta < \tau} F_{ij}]$, i. e. $y \in Z(x)$, that is, yRx for a suitable $x \in \sum_{\eta < \tau} F_{ij} = \sum_{F_{ij} \in X} F_{ij}$, as stated. Thus Theorem 3 has been proved.

§ 3.

Now we can prove Theorem 1 for any regular transfinite cardinal number n. Indeed, suppose the set E and the relation R satisfy the conditions of Theorem 1. Define the sets E_{α} and X_{α} by transfinite induction as follows. Let $E_0 = E$ be and X_0 the system X belonging to the set E_0 , satisfying the statement of Theorem 3. Suppose, α is an ordinal number such that for any

A 15

ordinal number $\beta < \alpha$, the subset E_{β} of E and the system X_{β} of some subsets of E_{β} have been defined. If $\sum_{\beta < \alpha} \sum_{F \in X_{\beta}} F$ is a proper subset of E, then we put

$$E_{\alpha} = E - \sum_{\beta < \alpha} \sum_{F \in X_{\beta}} F$$
.

and we define X_{α} as the system X corresponding in the sense of Theorem 3 to the set E_{α} (instead of E). (Obviously, any subset E_{α} of E satisfies the conditions of Theorem 3.) If, however, $\sum_{\beta < \alpha} \sum_{F \in X_{\beta}} F = E$ then we do not define E and X_{α} .

Now we prove that if E_{α} is defined (and therefore, by the definition, non empty), then for any $y \in E_{\alpha}$ and $\beta < \alpha$, there exists an element $x = x(\beta) \in \sum_{F \in X_{\beta}} F$ such that we have yRx. This holds (vacuously) for $\alpha = 0$. Suppose $\alpha \ge 1$ and that the statement holds for any $\beta < \alpha$; than we prove the same for α . Indeed, let $\beta < \alpha$. Suppose first that there is an ordinal number γ for which $\beta < \gamma < \alpha$. Then we have obviously $E_{\alpha} \subseteq E_{\gamma}$ hence $y \in E_{\alpha}$ implies $y \in E_{\gamma}$ and thus, by hypothesis, the existence of an $x \in \sum_{F \in X_{\beta}} F$ for which yRx, as stated. If, on the contrary, no such ordinal number γ exists, then we have $\alpha = \beta + 1$, thus

$$E_{\alpha} = E - \sum_{\zeta < \beta+1} \sum_{F \in X_{\zeta}} F = E - \sum_{\zeta < \beta} \sum_{F \in X_{\zeta}} F - \sum_{F \in X_{\beta}} F = E_{\beta} - \sum_{F \in X_{\beta}} F.$$

Now, by Theorem 3, for any $y \in E_{\beta} - \sum_{F \in X_{\beta}} F = E_{\alpha}$ there is an $x \in \sum_{F \in X_{\beta}} F$ for which we have yRx, so that our statement holds in this case too.

Now, the sets $\sum_{F \in X_{\alpha}} F$ are mutually disjoint. Indeed, if $\beta < \alpha$, then X_{α} is, by definition, a system of subsets of E_{α} , thus $\sum_{F \in X_{\alpha}} F$ is a subset of $E_{\alpha} = E - \sum_{\beta < \alpha} \sum_{F \in X_{\beta}} F$, hence has no element in common with $\sum_{F \in X_{\beta}} F$. Therefore, if E_{α} is defined and thus not empty, and if y is an arbitrary element of E_{α} , then the set of the above elements $x(\beta)$ ($\beta < \alpha$) has the cardinal number $\overline{\alpha}$. On the other hand, we have $yRx(\beta)$ i. e. $x(\beta) \in H(y)$ for any $\beta < \alpha$. This implies $\overline{\alpha} \le \overline{H(y)} < n$.

Hence, there exists a least ordinal number α with $\overline{\alpha} \leq n$ for which E_{α} is not defined, therefore

(4)
$$E = \sum_{\beta < \alpha} \sum_{F \in X_{\beta}} F.$$

By Theorem 3 we have $X_{\beta} \leq n$ for any $\beta < \alpha$, thus (4) furnishes a decomposition of *E* into a sum of at most $n \cdot n = n$ free subsets, which proves theorem 1 in the case that n is a regular cardinal number.

We assume now that n is a singular cardinal number. Let r denote the smallest cardinal number such that n is the sum of r cardinal numbers each of which is less than n. Since n is singular, we have r < n. Let μ denote the initial number of r. There exist regular cardinal numbers $n_1, n_2, \ldots, n_x, \ldots$ $(x < \mu)$ such that $n_2 > n_\alpha$ for $\beta > \alpha$ and

$$\mathbf{n} = \mathbf{n}_1 + \mathbf{n}_2 + \dots + \mathbf{n}_{\mathbf{x}} + \dots$$

Let E_x be the set of elements x of E for which the cardinal number of the elements $y \in E$, for which xRy, is $< n_x$. Put

$$F_{\mathbf{x}} = E_{\mathbf{x}} - \sum_{\mathbf{v} < \mathbf{x}} E_{\mathbf{v}}.$$

Clearly

$$E = \sum_{x} F_{x}.$$

As the theorem holds when n is regular we obtain that F_{x} may be decomposed into the sum of n_{x} of fewer free subsets. As $\bar{x} < n$ and $\{\overline{F_{x}}\} \leq n$, for each x it follows that E may be split off into the sum of n or fewer free subsets. Thus Theorem 1 is proved in the general case too,

The author wishes to express his thanks to Professors L. KALMAR and B. Sz.-NAGY for their aid and advice in the preparation of this paper.

(Received June 1, 1952.)