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Proof of a conjecture of P. Erdés.

By G. FODOR in Szeged.

Let E be a given non countable sef of power m and suppose that there
exists a relation') R between_ the elements of E such that, for any x¢ E, the
power of the set H(x) of the elements y¢ E (y==x) for which xRy holds,
is smaller than a given cardinal number ‘n which is smaller than m. Two
distinct elements (or “points”) x and y of E are called independent if neither
xRy nor yRx. We say that a subset of E is a free set if any ‘two points of
this subset are independent. ,

If we replace the condition n<m by n=m then lt can occur that we
do not have any independent points atall. Indeed, let ¢ be. the initial- number
of power m and E the set of ordinal numbers less than ¢. We define the
relation R so that xRy holds if and only if y < x. Then clearly H(“) < m for
any x € E; however, no two elements are independent.

The followmg proposition has been conjectured by S. RuziEwicz 2)

If n<m, ‘then E has a free subset E* of the same power m.

This theorem has been proved first if n=2N, and m is either of the
form 2° or of the form Na4:1%), then if m is a regular cardinal number or- if
.m is the countable sum of cardinals smaller than m*), finally, in the general
case, assuming the generalized continuum hypothesis °).

1) «Relation” means throuighout this paper a binary relation.

. 2) S. Ruziewicz, Une généralisation d’un théoréme de M. Sierpinski, Publications Math.
de I'Université de Belgrade, 5 (1936), pp. 23—217.

3) W. Sierpitsk, Sur un probiéme de la théorie des relations, Fundamenta Math.; 28
(1937), pp. 711—-74. — D. LAzAR, On a problem m the theory of aggregates Composmo
Math.; 3 (1936), 304
.. 4) Sopmie Piccarn, Sur- un ‘probléme de M. Ruziewicz de la théorie des relations,
Fundamenta Math., 29 (1937), pp. 5—9; Solution du probléme de M. Ruziewicz de la théorie
des relations pour les nombres cardinaux m < R.z, Comptes Rendus Varsovie, 30 (1937),
pp. 12—18.

%) P. Erpds, Some remarks on set theory, Proceedtngs American Math. Soc., 1 (1950)

pp. 133—137. ’ .
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The proof given by SierPINSKI?®) yields also the fact that, if n= N, and
m=2", then E is the union of p free subsets. The proof of LAzAR?) yields
the same fact in the case n=N,, m=2%

DE Bruijn and ERDOs®) proved for a set E of arbitrary power the
following statements: If for every x € E, the set H(x) has at most k elements,
k being a given positive integer, then E may be decomposed in 2k+41 or
fewer free sets; if for every x € E the set H(x) is finite, then E is the union
of a countable number of free sets.

We shall now prove the following theorem which was conjectured by
ERDOS %) :

Theorem 1. If E is a non countable set of power m and if R
is a relation between the elements of E such that for any x€ E the
power of the set H(x) of the elements y ¢ E (y==x) for which xRy holds is
smaller than a given cardinal number wn, where Wo=n <m, then E may be
decomposed into the sum of n or fewer free subsets.

As a consequence of this theorem, we see at once that the conjecture
of Ruziewicz holds if m cannot be decomposed into a sum of n or fewer
cardinal numbers, each of which is smaller than m.

_ §1.
First we prove the following theorem.

Theorem 2. Let n be a regular transfinite cardinal number,  the’
initial number of the cardinal number w and E an arbitrary set. Suppose that
a relation R is defined between the elements of E such that the set H(x) of
the elements y€ E (y==x) for which xRy holds, has a.cardinal number
smaller than n. Then-E can be well-ordered into a transfinite sequence

(l) Pos P, P2y-vs Pos Potty ooy Piye v s (_E< a)
in such a way that we have ' '
@) | = HP)E {Pe)s<on

for every u, 1=pu <y, where v is defined by the equality a_.¢7+6 (< y)
Proof. Let ¢ be the initial number of the cardinal number E—m

and let L

) : X0y X1y X2, v oy Xaoy Xepily o v oy Xgyovs E<og)

be any well-ordering of E of the type ¢. We define the sequence (1) by

transfinite induction in the following way: Put p,==Xx,.. Let now £ be an
ordinal number, #>0, and suppose that all elements pp;, where 0=(< 8,

%) N. G. e Bruyn and P. Eroés, A colour problem for infinite graphs and a problerﬁ
in the theory of relations, Proceedings Amsterdam, 54 (1951), pp. 371—372.
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have been already defined and let P; denote the set of the elements p: with
s < p. Consider the set
= > H(py).
i<t

If V3==0, we define .a new well-ordering of V; as follows. Let ¢ and
r be any two distinct elements of V. Let » and 4 be the least ordinals for
which g € H(p.) and r € H(pa), respectively. Write g <r if either x <2 or if
x==14 but ¢ precedes r in H(p.) in the original well-ordering (3) (as a subset
of E which is well-ordered accordmg to- (3)) In the sequel we suppose always
that V; is well-ordered in this way. Let

ng = Vg—P.,;.
(i) If W,==0, let p; be the first element of W; (as a subset of Vj).
(i) If W3=0 and P;==E, let p; the first element of E—P; (in the
well-ordering (3)).
(iii) If W3;=0 and P;=E, then we do not define p;.
~ Clearly, case (iii) occurs for one and only one value e of @; for3< e,
DPs, Vs and Wy are defined. For v<m < a, the set V, is- obviously a section

of V..
Next we prove the following

Lemma. Suppo_sé B<a and Wg==0. Let
Wo, Wi, Way .oy Wo, Worly - ooy Wiye oo E< Wg)

be the well-ordermg of the set Wg (as a subset of Vg). Then we have p3+ s = Ws
Cfor E< Wﬂ .

Indeed, this holds by definition. for E=0. Suppose, our statement holds
for any ordinal number which is smaller than & (< Wp); then it holds for &
too. Indeed, psi¢ is, by definition, the first element of Wpe. Now we have
ws € Wa& Vo< Viue, hence we€Vp:. On the other hand, w:¢ P; and, by
hypothesis, Pgys=Pz+ lw,7},,,\5, hence w; § Pg,:. Therefore w; € Wy.;. Futther,
any element of W, preceding w; is an element of Ve.e preceding w;, hence
an element of V; preceding w; for Vj is a section of Vg and w; € V. Now,
any element of V; preceding w; is either an element of P or an element of
W, preceding w;; hence in any case an element of Pg.;. Therefore, such an
element cannot belong to Wpy = Vi i— Ppie. Hence, w; is the first element
© of Wiz, thus pge=w; as stated. :

Now we prove by transfinite induction that (2) holds for every g, 1 = < y.
This is obvious for u—O Suppose (2), i.e. ViuC P.,,u holds for some 3
then we prove the’ same for ;¢+1 mstead of u, i.e.

: V~/’(u+l)— Z H (PZ)CP Plwtl)-

< l'r(u-{-l)

oy
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As we have, by hypothesrs
Z H(ps)cps"“— e (u+l),

S<ou
we have to prove that
) 2 H(p) S Py
pust @ (ut)

For this purpose, let { be an ordinal number. such that & =ywu+o with
o <, and denote by 4 any element of H(pg). By the definition of V;, we
have h€ Vi, If 'h€ Py, then we have s € Py, for, w(u-+1) being an
ordinal number of the second kind, £ 4-1 < w(u+1). If 2§ P then we have,
by the definition of Wg, 1 € We.. Applying the lemma with =+ 1, we see
that h= pp.1.¢ for some £< Wz Now we have

Woa = Ven—Paa= 2 H(p)— P S 2 H(py)

3y =<l g +1 Pu=n- L+l
for, by the mductnon hypothesis, any element of
> H(pry=Vyps
H \qpy

-belongs to Py, and thus to P, Therefore we have

Wen = Z ) H(Pﬂ) = Z H Pn)— 2: H(Pwm) <n
pu=gq-ItH . Ye=g<
because 7—/(77;,) <n for any # and o+1—0< w=n,and n is regular. Hence
we have §< Wy < and consequently {+ 1 +E=yu+to+ 14 E<yputp=
=(u+1), i.e. h=pruss € Py in this case too, which proves (4).
Let now ¢ be an ordinal number of the second kind, u < y. Suppose that
V C: Pq)u

for every ordinal number v < . We have to prove that Vy,,— 2, H(p:) S Py
tlvn
For this  purpose let £ be any ordinal number satisfying £ < w,uy This mequahty

implies { <y for some v <y, for w is an- ordinal number of the second
kind. Hence, any element of H(p;) belongs to Z 'H(p,,): Vg, thus, by

the m&uctlon hypothesis, also to P,,, hence to P,,,,. too, which proves our
‘statement Hence, theorem 2 is proved :

: §2
By means of Theorem 2 we prove. the followmg theorem

Theo rem 3. Lef n be a regular transfmrte cardznal number and E
-an arbttrary set; further let R be a relation deftned between the elements of E
such that the set H(x) of the elements yEE (y==x) for which xRy holds
Ahas a power smaller then . Thén there exists’ a system X=={ F,} of
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mutually disjoint free subsets-Fy, of E such that X =n and that for any element
yof E—ZF there is an element X € ZF for which yRx holds..

FpeX Fpe
Proof. Denote again by 4 the initial number of the cardinal number
n. Applying theorem 2, we obtain a transfinite ‘sequence (1) for which (2)
holds (for every w, 1=p <y, 7 being defined as above). Let Q, denote the
~set of the élements p; with yu=C<y(u+1) for 0=u<y and, for u=y,
- the set of the elements p: with vy =< a. Obviously, the sets Q. are' mutually
disjoint and we have 2 Q.—E. '

W=y

Let Z(x) denote, for every x ¢ E; the set of y€ E (y#x) for Wthh
Rx holds ; further, let Z [F] denote, for every FGE the set D' Z(x).

xeF
_.. -First_ we define the set Fy. Let-fio=po.-Let 2 be a given ordinal
number, 2= 1,. and suppose that fo. (€ E) is defined for every z < 2. The
. coridition fox €.Q,,, defines uniquely an ordinal number wg,. If there is.an
ordinal ‘number ¢ which is greater then every wo. (x<4) for which Q, is
“'not a subset of Z;Z(fox) thén let s be the smallest such ordinal number

and-define f,, as the first element of Q.— > Z(fo.) in the well-ordering (1).
o #=lA

Clearly, we have . yo;:y’. In the opposite case, i.e. if Q.S > Z(f.) for
' : : 24

oany u > uo, (2 < A), ﬂ_]en we do not define f,;. We define Fo as the set of all
those foz which have been defined. _
Let #°be a given ordinal number, 7= 1, and suppose that the subset F: of
E is defined for every [ < . Supposing that the set
A= 2 (FA 21D

is -a proper subset of E, we define the subset F, of E as follows. Let . be

* the smallest ordinal number w for which Q, is not a subset of A,. (There
exists 'suéh an’ ordinal number Q,, for A, == E.) Define f,o as the first element
of Qu1 o—Aj; in the well-ordering (1). Let 2 be an arbitrary ordinal number,
=1, and suppose the element f,, of E—A, is defined for every x < 4. Define

: ‘u,], for ®< A-by the condition Six € Q. (For =0, this agrees with the above
definition of w,o.) If there is an ordinal.number g which is greater than every

‘u,7 (x<2) for which Q, is not a subset of A,,—}-Z Z(f,+), then let ¢ be

the  smallest such’ ordinal number and define Joa as the first element of
Qu ——(A,;-{-ZZ(f,,‘)) in the well-ordering (1). Clearly, we have w;2=¢'. In

'The opposnte case, 1 e if Q, CA,,—{—ZZ(f, .) for any >« (x<2), then we

«do not define- f,.,. " We defme F, as the set of all those fi:2 which have been
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defined. If, however, we have A,=—E, then we do not define the set F,.
Finally, we define X as the set of all those F, which have been defined.
As an immediate consequence of this definition, we see that the elements
F, of X are mutually disjoint subsets of E. We prove first that they are free
sets. Indeed, any two distinct elements of F;; are of the form f;, and f,,;, (x==4).

Let x <4, say. Then, by the definition, we have f;1 € Q,,, — A+ =, Z(fq2)
(also in case 7n=0, for then we have fi=fos€ Q,.M—A, Z(fox) =

= Qu2— (A,,-}-ZZ(f,,,,)) on account of A,=0). Hence f;:¢ Z(f,.), i.e.

foa RSy does not hold On the other hand, we have f;1 € Qu,, and f,x € Q,
and here g,z > u1y.. Hence, by the definition of the sets Q,., we have f,7, = p- and
foa==p; for some { and &,

Yiyx = t< ",l’(!lfp‘l‘ 1) EYua=¢ E< w(!‘nl‘{' 1)

Hence, by (2) we have H(fy.)=H(p))& Py, ,+1 whereas we have f,;=
=P: & Py, +» for E=fi(uy,+1). Hence fq;QH(f,],) i. e. fyxRf;2 does
not hold either. Thus, any two elements fs= and f,; of F,, are independent,
i.e. F, is indeed a free set., .

Next we prove X=nu. For this purpose, it is sufficient to show that,
for any F, € X, we have n <. This is obvious for #—0. Suppose F,€ X,
i. e. that F,, has been defined and 77:1:0 Then Qu,, is not a. subset of

A, ~§'Z (F+ ZIF)). Z (Feet Z[F:]) (€< n) and, moreover,

every set At+2,Z(f5‘)_Z(F —]—Z[F])—{—ZZ(f;z) (where { <% and

fex € F; for any x< 2) bemg obvxously a subset of Ay, Qu,, is not a subset
of any such set A: or A; + TZ(f“) Hence, for a suntable 2 (fa€ Fy) we

have u,;0= pzs. Indeed, in the opposite case we would have u:;< u,o for
every 4, f:2€ F;. This is obvious for 2=0, because g;, is, by definition, the
smallest ordinal number u for which Q. is not a subset of Ay, and p,, is
siich an ordinal number. Suppose, we have u;. < u,o for every x <. Then
we have also pzi < g0, for pza is by definition the smallest ordinal number

w for which # > gz, (x <2) and for which Q, is not a subset of A;+ > Z(f:.),
. %4

and this holds for the ordinal number u==p,o too. Now, let 2 be the

smallest ordinal number for which f;. has not been defined. Then we have

Q,,C_:At—{-ZZ(f;,) for any w which is greater then any u, (x < 4); but this.

1mpossnble smce it does not hold for u=u,,.

Thus we have fr2€Qu,= Q,.,,O for any <7 and for a sultable
A = A(5) =A(L, n). This holds also for { = 5 with A =A4(7) =0. Now we prove
that for £ <L=7 we have fia¢ <frag in the well-ordering (1). Indeed, f:a¢

’
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is by definition the first element of
Qug (s, 2 Z(e)) = Quyo—(As 1, Z Z(fe2))-
On the other hand, we have frap € Qy“(;)—(A;—i—x;m)Z(f;z)). Hence we
have fd()e Q,,Lm - Q.0 and fw:)egA::?’(F + Z[F,]). Now obviously
A4 X Z(h) =, ?(FQ+ZIF01)+ S 27 S A |
hence f: & Az r_;E)Z(fgz). Coneequently, we have
| Foaer € Quyo— (et 3 Z(h)3

, hence fia) bemg the first_element of this; set; we-have fi; <f:ag. By the
disjointness of the sets .F; and F:, this implies fiae < fram as.stated.

Hence the elements f:;¢) (€ < #) form a subset of Q, _,-which is similar
to the set of the ordinal numbers £ (£ < ). On the other hand, on account
of fray < foaep="/rro this subset is a subset of the section of Q,,, formed
by the element f,o. Thus the ordinal number of this subset is smaller then
the ordinal number of _Q,,_no, hence smaller than . The. set of the ordinal
numbers £(C < %) having the ordinal number 7, we see that » <y, and hence
X =n indeed.

We have yet to prove that for any element y of E— > 4, Fy there is an

17

element x of > F, for which ny holds.. Indeed, let = denote the smallest -
Fpex .

ordinal -_number for which F. has not been defined. Then we have
E=A, =§ (F,+Z[F,)).
Hence 3
E— Y F,—E—>F,C vZ[F,,]—Z[> F,]

l-,iex Nt <l

which~ shows, that for any yEE-——sz,7 we haye yEZ[A,F,Z]
F.eX |

s T
7 7

' yGZ(x) that is, yRx fora sultable xe > F ZF,,, as stated. Thus Theorem

/

3 has been proved

8§83
Now we can prove Theorem 1 for any regular transfinite cardinal number
n. Indeed suppose the set E and the relation R satisfy the. condmons of
Theorem 1. Define the sets E, and X, by transfinite mduchon as follows
Let E,—E be and X, the system X belonging to the set E,, ‘satisfying the
statement of Theorem 3. Suppose, « is an ordinal number such that for any
* A l5
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ordinal number 3 < a, the subset Eg of E and the system X, of some subsets
of E; have been defined. If D' DFis a proper subset of E, then we put

f-Za FeXp
Ea—E—2 X F -
e FENg

and we define X, as the system X corresponding in the sense of Theorem 3
to the set E, (instead of E). (Obviously, any subset E. of E satisfies the

conditions of Theorem 3.) If, however, >, > F—E then we do not define

g-la Fexg

" E and X..
Now we prove that if E. is defined (and therefore by the definition, non

empty), then for any y € E. and @< e, there exists an element x === x(8)e N F

Fe
such that we have yRx. This holds (vacuously) for e =0. Suppose e« =1 aild
that the statement holds for any #< a; than we prove the same for «. lndeed,
let B < «. Suppose first that there is .an ordinal number y for which g<y <a.
Then we have obviously E.ES E, hence y¢€E, implies y € E;, and thus, by

hypothesis, the existence of an x¢ > F for which yRx,as stated. If, on the

FeX
contrary, no such ordinal number y exists, then we have a=pg--1, thus
' E«~E—Z D F=E— 23 NF-YF=E— X F

Lt FeNy f<BFeNy FeXg ) FeXg
Now, by Theorem 3, for any y € Eg— > F=E, there is an x ¢ Z F for
}ve‘\ I-etf
- which we have ny, so ‘that our statement holds in this case too.

Now, the sets ZF are mutually disjoint. Indeed, if 8< e, then Xo
FEX,

is, by definition, a system of subsets of E., thus 2; F is a subset of
"FeXgy
E.—E— > > F, hence has no element in comrhon with > F. Therefore,
@< ai-e\B }gxﬁ

if E..is defined and thus not empty, and if y is an arbitrary element of Eq,
then the set of the above elements x(8) (8< «) has the cardinal number a.
On ‘the other hand, we have yRx(8) i.e. x(8)€H(y) for any g<a. This
implies @ = H(y) < n. ‘

Hence, there exists a least ordinal number « with @=u for which E,. is
not defined, therefore
@ E=2 >'F.

ﬁ\'a}'e.\'ﬂ

By Theorem 3 we have X;=n for any # < a, thus (4) furnishes a decomposition
of E into a sum of at most n.n=n free subsets, which proves theorem 1 in
the case that n is a regular cardinal number.
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§4.

We assume now that n is a singular cardinal number. Let r denote the
smallest cardinal number such that n is the sum of r cardinal numbers each
of which is less than n. Since n is singular, we have r < n. Let u denote the .
initial number of r. There exist regular cardinal numbers n,, ny,...,n.,...
{x < w) such that n; >n, for #>« and

n=n+mt.--Fn4-...

Let E, be the set of elements x of E for which the cardinal number of
the elements y € E, for which xRy, is <n,. Put

Fi=E,— 2 E..

Clearly
E=DF..

As the theorem holds when n is regular we obtain that F. may be decomposed
into the sum of n. of fewer free subsets. As x <n and {F,}=n, for each x it
follows that £ may be split off into the sum of n or fewer free subsets. Thus
Theorem 1 is proved in the general case too, '
*
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