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On a property of the projector matrices 
and its application to the canonical representation 

of matrix functions. 
By E. EGERVARY in Budapest. 

Notations. 

a,b,c,... scalars 

a, b, c , . . . column vectors 

a*, b*, c* , . . . row vectors 

A, B, C, . . . matrices < a,, a , , . . . , a,i >— diagonal matrix 

A* = transposed of A 

| A | = determinant of A 

E = [<!;,] = unit matrix 

1. Let A be a non singular square matrix of order n, and suppose that 

the adjoint of I E — A is divisible by the discriminant of |AE—A| = D(A) — 

It is known that.in this case there is a system v1,v2,...,v„ of linearly 

independent right eigenvectors satisfying Av/, = hvk, and a system w1; w2)..., w„ 

of linearly independent left eigenvectors satisfying w*A = lkv?l, such that the 

systems \k,wk are reciprocal, i. e. they satisfy wlvi = dkl. Furthermore it is 

known that the transformation of the matrix A to the basis vi,. . . ,v„ or to 

the basis w,,...;w„ reduces, it to the diagonal form 

In view of the importance of these theorems in the applications (trans-

formation of a quadric to its principal axes, introduction of normal coordi-

nates in a dynamical system, matrix solution of a system of linear differential 

equations etc.) it seems to be desirable to have a concise method for the 

computation of the reciprocal systems of eigenvectors. 

If the eigenvalues kk are all distinct, then the solutions of the equations 

Av = lk v resp. w*A = .4w* are, apart from a scalar factor, uniquely deter-

') If A* = A i. e. if , A is hermitian then the eigenvalues i , , /?2,..., are all real 

and the divisibility of adj (E<i—A) by (D(<i), D'(A)) is an immediate consequence of the 

identity £ ^ Dpq ( i ) Dp,i W = D (/1)2—D (X) D" (A). 

— ( s ^ n , 2 a k = n ) , i. e. that the roots l u l 2 , . . . ,À s of the minimum-

• s 
equation ¿/(¿) = / / ( A — 4 ) = 0 of A are all distinct1). 
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mined, hence in this case the computation of the eigenvectors by the solution 

of the corresponding system of linear equations is comparatively simple. 

In case of multiple eigenvalues the usual way of computation of the 

eigenvectors is an awkward and lengthy business2). First of all one has to 

find the rank of /.j.E — A and a complete system of solutions of (¿ tE —A)v=--0 

as well as of w* ( 4E—A) = 0, and afterwards these two systems must be 

biorthogonalised and normalised. 

2. In the present paper I wish to indicate a concise, straightforward 

method for the computation of the reciprocal systems of eigenvectors, based 

on a remarkable property of the projector matrices which, as far as I am aware, 

does not seem to have been noticed hitherto. 

A square matrix P is a projector if it satisfies the equation P- = P. If 

P is a non singular projector then we have obviously P = E. Therefore we 

confine ourselves to the consideration of a singular projector whose rank o(P) 

satisfies l S f l ( P ) g n — 1 . 

Any matrix A with n rows and m columns having the rank r can be 

represented in a form making its rank intuitive:): 

¿>n . . . bi, 

(1) A = В С 
b-n ...bi,. 

¿„I ...b„. 

• с и, 

C, i ... c, „ 
[b,. . .b,] 

Cl 

CR 

in which B is a matrix with r linearly distinct column vectors and C is a 

matrix with r linearly distinct row vectors. The simplest way of this factori-

sation of a given matrix, which necessitates only the computation of second 

order determinants, is the following one. If p ( A ) § l , then there is at least 

one non vanishing element Then the difference 
y 

aßy 

a„ .. .au, 

a„i.. .a,, 

aiy 

[a¡t i а к . . . a?t] = 

aíi. . .0.. .ai, 

6 . . .0 . . .Ó 

a,',i ...O...a,'„„_ 

= A' 

is a matrix with one 0-column and one 0-row, while its further elements 

a\j are second order determinants of A. Applying now the same process to 

A' we arrive to a matrix with two 0-columns and two 0-rows whose further 

s) Compare f.i. the examples given in W. E. JUNO, Matrizen und Determinanten (Leipzig, 

1951), pp. 97—99. 
3) In case of square matrices this theorem is stated without proof in R . A . FRAZER, 

W . J . DUNCAN, A. R . COLLAR, Elementary matrices (Cambridge, 1938) , p. 20 . See also А . И . 

Мальцев , Основы линейной алгебры (Москва, 1948), р. 117. Another method for the 

factorization of non-singular matrices is given in R . ZURMOHL, Zur numerischen Auflösung 

linearer Gleichungssysteme nach dem Matrizenverfahren von Banachiewicz, Zeitschrift f . 
angew. Math. u. Mech., 29 (19+9), pp. 7 6 — 8 4 . 
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elements are second order determinants of A', hence proportional to the 

third-order determinants of A4)- After r steps we arrive to a matrix A(,) whose 

elements are proportional to the r+1-th. order determinants of A which 

vanish by assumption and the factorisation is finished. 

In case of a hermitian projector we have P = P - = PP*, therefore P is 

positive semidefinite and one can select a sequence of principal minors 

Oil, i>, OjJ, ft. 

a J, S„ a.i, h 
which are positive. Choosing these as 

starting elements in the former process of reduction the two factor matrices 

will be hermitically conjugated. 

3. If the matrix A is a projector then the former representation can be 

characterised in a more precise way: 

T h e o r e m . If a projector matrix P of order n and rank r is repre-
sented in the form 

(2) lv, V, . . . V,, 

W I 
* 

Wi 

•w: 

= 2 VA-WA-, 

then the two systems of vectors v , , ^ , . . . , v, and w,, Wj„ . w , occurring in (2) 

are automatically biorthogonalised and normalised i. e. they satisfy the relations 

[w* v(] = E or w*v, == <•)',,. 

Proo f . The projector P satisfies the equation P-—P = 0; using the 

representation (2) this can be written as follows: 

[v,v,...v,] 

Wi * 
W j 

[v^j . . . v,] — E 

Wi 

W2 

Wr 

= 0 . 

But the first and the last factors on the left side of this matrix equation have 

the maximal rank r, hence the middle-factor in the bracket must vanishs), i. e. 

Wl 

w* 

w : 

[v,v2...yr] = E. 

Q. e. d. 

4) This is an immediate consequence of the well-known identity AikAji — AnAji.- = 
= A.Aij. 

kl 
5) This follows immediately by considering the minor matrix of the product, whose 

jight and left factors are not singular r-th order square matrices. 
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C o r o l l a r y . A liennitian projector matrix P of order n and rank r 

can be represented in the form 

P-[v ,v a . . .v , ] 

vT 

vi 

V? 

where the vectors vivj...v,. form a unitary set, i. e, they satisfy the relations 

4<. Suppose now that the matrix A satisfies the assumptions made in 

1 and consider the matrix /(A) where f(l) is an arbitrary scalar polynomial") 

of fa Denoting by Li,(/1) the Lagrangian interpolation polynomials defined by 

the conditions 

degree of Lk{i.) gis—1 

Lk (fa,) <= <%, i, (k, h = 1 , 2 , . . . , s) 

m = 27(4)L„(X) (mod J(l)), 

/ ( A ) = > 7 ( ^ ) ^ ( A ) 0 -
A™1 

we have 

consequently 

From 

(l—U)Lk(il)=0 (mod. J(A)) 

we deduce immediately 

(4) (A,E-A)LA.(A) = 0, L,(A)(A,.E-A) = 0. 

Hence the column vectors of Lk(A) are right eigenvectors, the row vectors of 

Lk(A) are left eigenvectors belonging to fa. The number of the linearly 

distinct right and left eigenvectors (the dimension of the right and left 

eigenmanifolds) belonging to fa is evidently equal to the nullity n—Q(U(A)) 

of ¿/.(A). 

The polynomials L,:(l) satisfy the identity 

hence 

2 " M A ) = E , 

6) In order to avoid limit-processes we confine ourselves here to the consideration 

of polynomials. 
7) The Lagrangian interpolation formula has been used first in matrix-theory by 

J. J. SYLVESTER, Philosophical Magazine, 1 6 ( 1 8 8 3 ) , 2 6 7 — 2 6 9 . 
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consequently 

I 1 1 ' I 

On the other side, for the eigenvalue h, of multiplicity «/, we have 

(5.2) ?(/ , ,E—A) s n—(Cj, 

and in consequence of (4) 

(5. 3) p (A ,E-A) + q(U(A)) ^ n " ) . 

From (5. 2) and (5. 3) we deduce 

(5.4) g(U (A)) g «,,, 2 ('(¿a (A)) Z , «/• • 
i i 

Comparison of (5. 1) and (5.4) shows immediately that 

(5.5) q(U(A )) = «,., 

i. e. the number of the linearly distinct right and left eigenvectors belonging 

to /.,, is equal to the multiplicity 

5. The construction of the reciprocal systems of right and left eigen-

vectors will be now based upon the following properties of the Lagrangian 

matrix polynomials Lh{A): 

(I) U( l )U(X) - 0 (mod J(;>) (A=M). 

hence 

(6) U (A) Li, (A) --= 0 (k^-h)] 

(II) = 0 (mod /(/), 

hence 

<7) L,(\y = Lk(A). 

The interpretation of the property (1) in the geometry of vector space 

is obvious by the decomposition (1) of L\,(A) and L,,(A): 

¿/,(A) Lh(A) [v,,i... vi,„ ] 

W/!I 

[ V M . . V , „ J 

W N 

J 

* 
W HAN 

0. 

The first and last factors have maximal ranks «/, resp. «;,, hence the middle-

factor in the bracket must vanish, consequently 

(8.1) v,:,w,„=-Q (Ar=M). 

Thus, we have arrived by this method to the well-known fact that any 

right eigenvector and any left eigenvector, which belong to different eigen-

values, are orthogonal. 

8) Here we use the following elementary theorems, The rank of a sum cannot exceed 

the sum of the ranks of the terms and if the product of two square matrices is null the 

sum of their ranks cannot exceed their order. See f. i. FRAZIL, DUNCAN and COLLAH, 1. c., p. 23. 
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The property (II) shows that each Lagrangian matrix polynomial is a 

projector. But the real counterpiece to the former interpretation of (I) is 

furnished by the application of the theorem proved in § 3. 

// a Lagrangian matrix polynomial of rank <ek is decomposed into two 
factors 

( 1 . 1 ) Lk (A) = [v/.-, . . . vi-„J 

W*i 
• 'X.""' * 

= ¿Vkx Wh, 

then the vectors vk i , . . v k r , k and ,,..., wA„.. constitute a system of uk linearly 
distinct right resp. left eigenvectors such that the two systems are automati-
cally biorthogonalised and normalised'. 
( 8 . 2 ) \liWkj- (hi-

The equations (8. 1) and (8. 2) can be united into the single system of 

equations 

' k,h = 1.2,... ,s 
(8) v*, yf,,j dk„ d n /--=1,2,..., ak 

V /=1.2 
Hence 

V = [vn . . . vi„, . . . v,i . . . v,„K] 

W = [w„ . . . W|„, . . . W,1 . . . W„„J 

are reciprocal matrices of order n. 
Replacing now in (3) the Lagrangian matrix polynomials by their expres-

sions (1. 1) we arrive at the following representation of /(A): 

/ ( A ) = ¿ f ( i k + v , „ t w? ) = v < m . . . m • • • m . . . > v - • 
k= 1 

In the special case f(H) = X we get from here the diagonal representation 

of the matrix A itself. 

(Received March 15, 1953.) 


