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On relatively regular operators. 
. By F. V. ATKINSON in lbadan (Nigeria). 

1. In this paper I study various classes of bounded linear operators 

which map a complex Banach space into the whole or part of itself. 

The development of this theory has tended to parallel, subject to a 

retardation of several decades, the development of integral equation theory. 

Thus the original discoveries of FREDHOLM were extended to abstract spaces 

by F. RIESZ and many later writers (see [1] for some references), except as 

regards the theory of the resolvent; extensions of the latter theory have come 

a good deal later (see for example RUSTON [2]). 

In 1921 a new element was introduced into integral equation theory by 

F. NOETHER [3], who showed that for integral equations of the second kind 

with kernels of the principal-value type the homogeneous and the transposed 

homogeneous equations need not necessarily have the same number of line-

arly independent eigen-functions; the numbers in question were however still 

both finite, and "furthermore the Fredholm solubility conditions remained in 

force. While the theory of such integral equations was much developed in 

the following years, the corresponding abstract theory has been discussed 

only recently. Z. I. HALILOV [4] has given a fairly direct extension of the 

Noether theory to normed rings. Extensions of the Noether theory along the 

lines of the theory of linear operators have been given independently by 

myself [5] and by GOHBERG [6]. 

As a further example of this parallel development I may cite MIHLIN'S 

criterion (see for example [7]) for the applicability of the Noether theory to a 

singular integral equation with a parameter, and its interpretation in terms 

of the normed ring theory of GELFAND (see [5], J8J). 

This paper is devoted to the further extension in which of the homo-

geneous and transposed homogeneous equations only one need necessarily 

have a finite number of linearly independent solutions. Here it would seem 

that the abstract theory parts company with integral equation theory, since I 

do not know of any organised theory of integral equations with such a pro-

perty. However it is a simple matter to construct examples of linear operators 

which behave in this way. 
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2. Let :)i denote a complex Banach space, not necessarily separable or 

reflexive'), and let :)f denote the adjoint space of bounded linear functionals, 

it, the ring of bounded linear operators whose domain is the whole of ?Jt 

and whose range is the whole or part of 9t. As in my previous papers [1], 

[5], for any % I define two functions a(T), fi(T), the first being the number 

of linearly independent solutions of T f = 0, /€ 9i, the second being the cor-

responding number for the adjoint equation / 7 = 0 , I(.31*. 

In studying the properties with which I am here concerned, two types 

of restriction are commonly imposed on operators T £ , firstly those relating 

to <c(T), P(T), and secondly a supplementary restriction on the mapping 

given by T, which may take various forms, and without which the condition 

of the first type does not seem to lead to much in the way of results. 

As to conditions of the first type, we may list the following three, in 

order of increasing generality: 

First, that found in the work of FREDHOLM, RIESZ, SCHAUDER, HILDE-

BRANDT and NIKOL'SKIJ, namely 

(A,) <l(T) < oo, P(T)<*o, a(T) = &(T). 

Next the condition which is investigated in papers by NOETHER, HALI-

LOV, myself and GOHBERG, namely 

(A,) <i(T) < <x>, ft(T)< oo, a(T) and &(T) not necessarily equal. 

Finally the situation with which I am mainly concerned in this paper, namely 

that 

(A J of the inequalities a(T) < <*>, P(T) < oo, at least one should hold. 

As to the supplementaiy condition I note first two alternative forms of 

the condition encountered in the theory of FREDHOLM, RIESZ, SCHAUDER, 

HILDEBRANDT and NIKOL'SKIJ, namely 

(B ,) the inhomogeneous equation Tf=g (f,g£ iW) is soluble for / 

provided that lg = 0 for all UT such that IT=0, 
(Bi) the range of T is closed. 

Of these, (B , ) may be regarded as the abstract formulation of FREDHOLM'S 

solubility conditions. Concerning the equivalence of (B , ) and (B2) see HAUS-

DORFF [11]. . 

A slightly different condition which I find it convenient to use here is 

(B,) there exists an such that TXT=T. 
Under the latter condition T may be said to be "relatively regular". The 

') 1 observe here that HAMBUROER [9], in his researches on quasi-nilpotent operators 

on Hilbert spaces, remarks in a footnote on the possibility of the extension of his results 

to reflexive Banach spaces. Points of contact of this paper with that of HAMBUROER will be 

noted later. 
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concept of relative regularity is well known in ring theory and has been 

investigated by 1. KAPLANSKY [10]. 

3 . While, as stated, (£ , ) and (B2) are equivalent, the relationship of 

(Ba) to these two is not entirely clear. 

It is readily seen that the case (/?,,) is included in (Bi) or (B9)2). Let 

us assume (#8) and deduce for example (B2). Let gn ( / » = 1 , . . . ) be a con-

vergent sequence of elements of T% with limit g0, say. It has then to be 

shown that g^Tili. In fact, since g„ 6 T% we have TXg„=gn, so that 

¿'o^'iiiiS'« — lin TXg„ = TXWmg,^ TXg,), which proves the result. It is 

also a simple matter to deduce (5,) from (fi3). 

The converse, that (B \ ) or (B.,) implies (Ba), is at any rate true in cer-

tain cases. One such case is that in which (/12) holds; another is that in 

which i)t is a Hilbert space, not necessarily separable8). 

4 . 1 give here certain remarks on relatively regular operators, and list 

some particular cases. 

I observe first that the „relative inverse" X may be chosen so that 

TXT=T, XTX = X, so that X also is relatively regular. In fact, if T is 

relatively regular and X has been found so that T X T = T , then writing 

X'= XTX, we have identically TX'T=T, X' TX' = X'. 
1 next observe that the class of relatively regular operators includes all 

operators which are "regular", i .e. which have inverses in SR,. More gene-

rally, this class includes operators with right or left inverses in sJi,. 

Less trivially, all finite-dimensional operators are relatively regular. If 

is finite-dimensional, let (pr ( r = l , . . . , n ) be a basis of T% with 

<pr=Tfr (r = 1 , . . . , n ) . Let there be constructed n linear functionals 1,01* 
(r = 1 , . . . , n), such that lr(<p,) = \{r = s), = 0 ( r =)=«)• We then define U 

ii 
for all / £ 9t by U f = ] j j l r ( f ) f , : The operator thus defined belongs to 9i,, 

i 

and it is easily verified that TUT= T, which proves the result. 

Less trivially still, if T has the form 5 + V, where i)^ has an inverse 

in 3ti (in particular if S = I, the identity operator) and is completely 

continuous (in particular if V is finite-dimensional), then T is relatively regu-

lar. This is in substance a result of the RIESZ theory. By this theoiy, T 
satisfies the conditions (/!,) and (5,), (B2), which then imply (B3). 

Another example of a relatively regular operator is a projection operator, 

in particular the zero operator. 

2) For such a result in Hilbert space see HAMBURGER [9], p. 499. 
s) Details of the construction are given im my paper [5], or again in [1]; the notation 

there had T0, U0 in place of T, X. See also HAMBURGER [9], p. 498. 
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1 conclude this section with two examples of operators which are not 

relatively regular. In the first place, a completely continuous operator is not 

relatively regular unless it is finite-dimensional. For let be both comple-

tely continuous and relatively regular, with X O J ^ as a relative inverse. Let 

T f n (« = 1 , 2 , . . . ) be any bounded infinite sequence of elements of» 7»{. 

This sequence is the same as the sequence T X T f n (« = 1 , 2 , . . . ) , and this 

séquence must contain a convergent subsequence, since T is completely con-

tinuous and the sequence X T f „ ( « = 1 , 2 , . . . ) is bounded,. Thus the linear 

manifold TM has the property that any bounded sequence of its elements 

contains a convergent subsequence, and by F. RIESZ' converse of the Bolzano— 

Weierstrass limitpoint theorem, this implies that Tdi is finite-dimensional, as 

was to be proved. 

As a second example, let T belong to an ideal of generalised nilpotent 

operators; such an ideal is necessarily two-sided. An example of such an 

operator is given by the integral operator occurring in VOLTERRA'S integral 

equation. Then T cannot be relatively regular. For if X is a relative inverse 

of T we have, for any positive integral «, ( T X ) " T = T , showing that 

\\(TX)"\\iu'^: 1, so that TX cannot be generalised nilpotent. 

5 . In setting up classifications of operators according to these ideas 1 

denote by (S(m, «, Br) the set of all such that cc(T) = m, /?(T) = /z, 

and such that T satisfies the supplementary condition (B , ) , where r stands 

for 1, 2 or 3. The cases m= <*>, « < <*> and in < « = <*>, are not exclu-

ded. 1 shall be concerned mainly with the restriction ; as has been 

explained, if m and « are both finite, or again if 91 is a Hilbert space, the 

choice of (Bi)> o r (B?) is a matter of indifference. 

It will further be convenient to denote by 2>(/n, «, B,) the set of all 

7 0K i such that a ( T ) ^ m , P(T)^n, and which satisfy (B,). 
Problems which then arise for discussion may be classified as 

(i) algebraical problems, such as the nature of products of operators of these 

classes, or the nature of their factors, 

(ii) topological problems, such as the result of applying various perturbations 

to operators of these classes, and whether these classes are open or closed 

in 9ti, 

(iii) spectral problems, primarily the study of the regions of the complex 

¿-plane for which T—11 belongs to one or other of these classes. More 

generally, we may replace T—11 by an integral function of I with values 

in or introduce two complex parameters, and so on. 

The answers to such questions are largely known in the cases in whict| 

both a(T) and p(T) are finite; my main purpose here is therefore to carry 

out certain extensions to all those cases in which at least one of these nuin-, 

bers is finite. 
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6 . In this and the next section I no'e two simple algebraical properties. 

The second of these will be needed in What follows, while the first has 

some bearing on later results and perhaps some intrinsic interest. 

Theorem 1. If U,V$ % and l~ UV $ <£(/«, n, B,), then I— VU{ 
<&(m,n,Br), where / • = 1 , 2 , or 3. 

I first prove the statement as it affects the properties (B,.). (Bx) and (fi2) 

being equivalent, we consider first (B2), and have to prove that if I~UV 
has a closed range, then so has I--VU. Let (I—VU)fn be a convergent 

sequence of elements of (I—VU)% with limit g, say. We have then 

£/(/— VU)fn~+ Ug, or (I—UV)Uf№ — Ug, and if (t—U 105» is closed we 

may therefore write Ug = {I—UV)h. Hence we derive g = (I—VU)(g + Vh), 
so that g€(I~VU)% as was to be proved. 

As regards (Ba), we have to prove that if I—UV is relatively regular, 

then so is I — V U . Assuming then that there exists an .AT £5»! such that 

(I—UV)X(I—UV) = I~UV, the desired result follows from the identity 

(/— VU) (VXU 4-1) (I— VU) = /— VU 
Finally we have to prove the results 

«(/— UV) = «(/— VU), /?(/- UV) = / ? ( / - vuy, 
the cases in which one or both of these numbers is infinite are not excluded. 

It will be sufficient to prove the first of these results, that of the other being 

similar. 

Let then ©,, ©2 denote respectively the sets of elements <p, <p'£ 31 such 

that (I-UV)cp = 0, (I— VU)cp' = 0. We have then ©x = UVSU S 2 = VUZ-,, 
and hence, considering the dimension-numbers, possibly infinite, of these 

manifolds," dim ( l / S j ^ d i m (©j), dim (t/©2)== dim (S2). On the other hand, 

(I—UV)cP = 0 implies (/— VU) V<p = 0, so that V ^ c z © , , and similarly 

t/©2c=©i; hence we deduce dim (V©i) g dim (©a), dim (t/©2) ^ dim (SO-

From these two pairs of results we have dim (©j) g dim (©2), dim (©2) g dim (3,), 

showing that dim (©!) = dim (©2), or in other words a ( I— UV) = a ( I— VU), 

the resulf stated. 

7. The second result of this kind is 

T h e o r e m 2. If T,X£%, and TXT— T £ @(m, n, Br), then 
T£S>(m, n, Br), where r = 1,2 or 3. 

Since 7 > = 0, 9>€9l implies (TXT—T)cp = 0, it is trivial that 

a(T)^a(TXT— T), and similarly that (¡(7) g (¡(TXT—T), so that all that 

has to be proved is that if TXT— T satisfies one of the properties (B^), (52) 

or (B3), then so does T. 
As regards (£,) or (B2), it will be sufficient to prove that if TXT—T 

has a closed range, then so has T. Let then T f n be a convergent sequence, 
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with limit g, say. Then ( T X T - T ) f l l - > ( T X — / ) g , and if TXT—T has a 

closed range we may therefore write (TX—I)g = (TXT—T)h, so that 

g= TXg—(TXT—T)h, showing that Tdi, as required. 

Finally 1 prove that if TXT— T is relatively regular, then so is T. Let 

there exist a Y such that (TXT—T)Y{TXT—T)=TXT—T-, it then 

follows that T{X—(XT—I)Y(TX—I)}T=T, which establishes the result 

and completes the proof of the theorem. 

The particular case of this result which will be used is that if TXT—T 
is finite-dimensional, then T is relatively regular. This follows from Theorem 

2 since, as proved in § 4, finite-dimensional operators are relatively regular. 

8 . Continuing the subject of algebraic properties of relatively regular 

operators, 1 consider in this section conditions under which factors of such 

operators have the same property, extending some previous results on this 

subject. 

In the result to be proved, and in most subsequent theorems, there is 

a dual or adjoint form of the result which will at most be enunciated, the 

proof introducing no new feature. 

T h e o r e m 3. Let S, T0U be such that 5 7 £ G(m, n, Bd), where m < 
Then 7£S(m, °°,B3). 

It is trivial that « ( 7 ) g « ( 5 7 ) = m, and thus all that has to be proved 

is that T is relatively regular. 

By hypothesis there exists an X£ % such that STXST—ST=0, i. e. 

such that ST(XST— /) = 0. Since by hypothesis « ( 5 7 ) < it follows that 

XST—I is finite-dimensional, and hence also TXST—T. As pointed out in 

§ 4, such an operator is relatively regular, and by Theorem 2 it follows that 

T itself is relatively regular, as was to be proved. This proves the theorem. 

1 may mention that it would also follow that T was relatively regular 

if instead of « ( 5 7 ) < <*> we assume « ( 5 ) < °<>. 

The dual result is 

T h e o r e m 3'. let S,T£% be such that 5 7 £ <5.(m, n, Bs), where 
n < oo. Then 5 £ 3)(oo, n, Ba). 

The proof is omitted, being similar to that of Theorem 3. 

In particular, if 5 7 is a "generalised Fredholm operator", i. e. satisfies 

(A*) and any of the (then equivalent) (B,.), then both 5 and 7 are relatively 

regular. The special case that if both 5 7 and 7 5 are generalised Fredholm 

operators, then so are 5 and 7 was shown by me in a previous paper [5]. 

9 . 1 now deduce a result on the products of such operators. 

T h e o r e m 4. Let S n, B3), T ( S ( m ' , n', B3), where rn<°°, 
m'<°Then ST££)(m + m',n + n', BP). 



44 F. V. Atkinson 

By hypothesis there exist U, such that SUS—5 = 0, TVT— 7 = 0 

Then 5 ( £ / S — / ) = 0, 7(1/7— 7 ) = 0, and since a(S) < <*>, a(T)< oo, w e 

have that US—I, VT—I are finite-dimensional. 

Writing now 

VUST=- I+(VT—I) + V{US—l)T, 
it appears that VUST can be put in the form / {-/<", where I< is finite-

dimensional. This, as mentioned in § 4, is an operator of Fredholm—-Riesz 

type, so that we have VUST £ @ (m",in",Ba) for some in" < °o. It now 

follows by Theorem 3 that ST is relatively regular. 

It remains to prove that « ( 5 7 ) £ a(S) + a(T), fi(ST) g fi(S) + fi(T); 
it will be sufficient to give the proof of the first of these. In fact if 

STcp — 0, f/>Oi, we must have T(p — ip (say), where Sip = 0. The result 

now follows from the fact that of these last two equations, the set of solutions 

of the first is of dimensionality a(T) if the equation is soluble at all, while 

the set of solutions of the second is of dimensionality a(S). This completes 

the proof of Theorem 4. 

The dual result is 

T h e o r e m 4'. LetSZ. S ( m , n, B:i), 7 £ S (tri, n', Ba), where n < oo,n' < oo. 

Then ST£ 2)(m + m',n + n ,BS). 

10 . The above result suggest the following problems: 

(i) whether the product of two relatively regular operators is itself 

relatively regular, 

(ii) whether the left or right divisors of relatively regular operators are 

themselves relatively regular. 

These results were proved above subject to one-sided restrictions on the 

•dimensionality of the null-manifolds associated with these operators. 

Milder conjectures would be that (B,) or (S2) could replace (BH) in 

Theorems 3 and 4. In essence these theorems would then run as follows 

(if true): 

(iii) if 5 7 has a closed range and a ( 5 7 ) < oo, then 7 has a closed 

range, 

(iv) if 5 and 7 have closed ranges, and « ( 5 ) < o o , a(T)<oo, then 

5 7 has a closed range. 

11 . In an earlier paper [5] I showed that the index y(T), defined by 

y(T) = a(T)—7), has under certain conditions the logarithmic property 

/ ( 5 7 ) = y(S) + y(T). My aim in this section is to extend this property to 

pses in which the index is, in one or both cases, infinite. 

I take first the case in which of / (5) , y(T) one is finite, fhe other being 

•equal to (—«>). We have 
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Theorem 5. Let (£(m, n, B3), T (: °o, B3), where m, n, m' < <». 
The logarithmic law for the index then holds in the sense that ST€ 
6 ( m " , <x>, B3), TSt <£(m"', where m",m'" ^m + m'. 

The only parts of this theorem which are not included in Theorem 4 

are the statements that / f (ST)=°° , /?(7\S) = °o. The latter statement follows 

from the trivial result that ¡i(T) g fi(TS), so that we have only to establish 

the former. 

Now let /r € 9l*(r = 1 , 2 , ) be an infinite sequence of functionals, any 

finite set of which are linearly independent, such that lrT = 0. We wish to 

form a linear combination of the lr(r— 1,. . . , m+ 1), say 

TO+'l 

r= 1 

the ccr being complex scalars, which admits the representation I* = k^S 
(A:, £ 9i*). The latter equation is soluble for k, provided that /,' <p = 0 for all 

such that'Sgp = 0; this is the dual of the normal solubility condition 

(Ba) for S, and is a consequence of (fi3) for 5. Let then tpr € (r = 1 , . . . , m) 

be a basis of the set of such <p. The condition for solubility may then be 

written 
m+1 

2 (trlrifs) = 0 (s = 1,. . . , m).° 
r=1 

This, being a set of m homogeneous equations in the m+ 1 unknowns «,., 

must have a non-trivial solution. Thus A:, can be found, and is not the zero 

functional. In a similar way we can derive a second functional k2 from the 

lr(r = m + 2,.. .,2m + 2), and so on indefinitely. Moreover, any finite set of 

the kr will be linearly independent, since this is so for the /,-. Since all the 

kr are such that krST=0, it follows that P(ST) = °°, as asserted. 

The dual result is 

Theorem 5'. Let. S£&(m,n,B3) and let 7 i 6 ( » , n ' B 3 ) , where 
m, n, n' < oo. Then ST$6 (oo, n", B3), TS£ 6 (oo, n'"t B3), where n", n'" ^ n + n'. 

This is of course the case in which /(S) is finite and y(T) equals + oo. 

The cases in which y(S) and y(T) are both equal to + oo or to—<*> 

are trivial. The results are 

Theorem 6. Let S € 6 (m, oo, B3), G (m't oo, B3), where m,m' < oo. 

Then ST£& (m", oo, fi„), where m" g m + m'. 
Theorem 6'. Let ,n,B3), T£& (°o,n',B3), where n,ri < oo. 

Then ST € 6 (oo, n". B3), where n" g n + n'. 
For Theorem 6, for instance, statement that ¡S(ST)= oo follows from 

the elementary result /?(ST) s/S(S), and similarly for Theorem 6'. 

Finally, as a xonsequence, we have a result on the case in which y(S) 
and y(T) are infinite with opposite signs. 



46 F. V. Atkinson 

Theorem 7. Let ST£Q (m, n, BJ, where m, n < The logarithmic 
law then holds in the sense that if /(<S)i= °°, then y(T) =— oc, am! 
conversely. 

Assume say that 7 ( S ) = + ° ° , say 6 (°o, n , fi,,), where n ' < »c . 

Since « (7) ^ a(ST) < y(T) can be either finite or equal to —oo; ¡t 

cannot equal + <». We have therefore only to reject the possibility of y(T) 
being finite, or in fact the possibility of /S(7) being finite. Suppose then if 

possible that 7€G (m\ n", B3), where m',n"< °o. It would then follow by 

Theorem 5' that m = « ( S 7 ) = contrary to. hypothesis. This proves the 

result. The converse assertion may be proved similarly. 

12. I now pass to problems of the second type, namely those concerning 

the neighbourhoods of an operator of the type considered. There are three 

types of perturbation to be considered, firstly perturbation by the addition of 

a general element of of suitably small norm, secondly perturbation by the 

addition of a completely continuous operator, not necessarily small, and lastly 

perturbation by the addition of an operator which is small and which depends 

analytically upon a scalar complex parameter. 

In this section I treat the case of a small general perturbation. I note 

first a previous result of mine [5], that if 7€:)i, is such that a(T) and /?(7) 

are both finite and T satisfies (Bj)> o r of course (B2) or (J53), then for 

T'€% lying in a neighbourhood of T the same conditions hold, the index 

being thereby stable, so that y(T') = y(T). The additional information that 

cc(T') ^ «(7), together with an extension to unbounded operators, has been 

given by KREIN and KRASNOSEL'SKIJ [12]; see also B. SZ.-NAGY [13]. 

Here I wish to extend such results to the case in which only one of 

«(7),/?(7) is assumed to be finite4). I prove first 

Theorem 8. Let T€&(m, n, B3) where at least one of m,n is finite. 
Then there exists a positive 'number q, such that if T € '){,, ||T'—T|| < o, 
then T'£2)(m, n, B3). 

By hypothesis there exists an Si, such that TX T— 7 = 0 . Suppose 

first that m = a(T)<oo. Since T(XT— /) = 0 it follows that XT—I is 

finite-dimensional, of dimensionality not exceeding m. 

Write now A = 7 '—7, where ||>4|j<(>, and p is to be chosen later. -

Following the argument of § 5 of my previous paper [1] I write 

XT' = (l+XA) + (X T— / ) , 
whence it appears that if we take p <11X11"', then XT' can be represented 

4) In the above-cited paper [11] KREIN and KRASNOSEL'SKIJ refer to a previous paper 

(of which I have unfortunately not yet able to get a copy) by them and D . P . MIL 'MAN [14] 

where there appears a partial extension along these lines, to the effect that if a(7") = 0, 

then i?(7")=/?(7"), even if fi(T) is unbounded. 
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as the sum of an operator with an inverse in % and a finite-dimensional 

operator, and, as mentioned in §4, forms a trivial case of the Riesz theory. 

Thus by Theorem 3 it follows that T is relatively regular. 

It remains to prove that a(T') ^ u(T) = m, the latter being assumed 

finite. As in § 5 of [1], this follows from the equation 

( / + X A ) ' ' X R = / + ( / + X A ) ' L ( X T — / ) . 

The argument is of course similar if we assume n = P(T)< oo. 
Next I prove the result regarding stability of the index. 

Theorem 9. Let B3), where m < oo, so that y(T) = —oo. 
Then there is a positive p such that if T'€3t, || T'—T\\ < p, then 
T' €(Z(m', °o, Ba), where m ^m, so that y(T') = —°o. 

In view of the result of Theorem 8, it is only necessary to prove that 

fj(T')=oo. As in the proof of Theorem 8, XT—I is finite-dimensional, so 

that XT is of Fredholm-Riesz type. Since y(T) ——oo, we deduce that 

y(X)=oo. Furthermore, again as in the proof of Theorem 8, XT' will also 

be of Fredholm-Riesz type, and applying Theorem 7 once more we deduce 

from the fact that / (X ) = oo the result that /(7"') — —oo, showing that 

ji(T') = oo, as required. 

13. I now consider perturbations by a completely continuous operator, 

not necessarily small. In [5] I have proved the result that if 6 ( m , n, B,), 

where m,n<°o, and VOJi, is completely continuous, then T+ n', B,), 

where m',n < oo and y(T+V)^y(T). KREIN and KRASNOSEL'SKIJ [11] have 

given a result in some ways more general than this, in that T need not be 

bounded, but more special in other ways, in particular in that the perturbing 

operator is to be finite-dimensional instead of completely continuous; see 

however B. SZ.-NAGY [13]. I now give an extension to the case of an infinite 

index, namely 

T h e o r e m 10. Let n, B,), where at least one of m,n is finite, 
and let Vk % be completely continuous. Then T+ &(m', n', B3), where m' < oo 
if m<oo, and n'<i» (/«<«>; 

As before there exists X€% such that 1 XT— T=0. Assuming first 

that m = a(T)<oo, we have that XT—/ is finite-dimensional. Writing 

X( T+V) = /+ XV+ (XT— I), 

it appears that X(T-j- V) can be represented as the sum of the identity 

operator, a completely continuous operator, and a finite-dimensional operator, 

so that X(T+ V) is an operator of Fredholm-Riesz type. Thus by Theorem 3 

it follows that T+V is relatively regular, and also that a (T+V)<° ° . 

The case in which n=p(T)<oo is of course discussed similarly. 

As regards the stability of the index we have 
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T h e o r e m 11. Let T€Q(m, oo, where m <°c, so that y(T) = — 
and let be completely continuous. Then T+V€Q(m', °c,B3), where 
m' <00, so that y(T+ V) = —°c. 

The proof, like that of Theorem 9, proceeds by application of Theorem 7 

to the operators XT, X(T+ V). 

The result can be dualised in an obvious way. 

14. Before proceeding to analytic perturbations, 1 remark that the results 

of the last two sections are in some ways best possible results. 

We have shown for example that the set of all 7£ such that at least 

one of «(7),/?(7) is finite and such that 7 is relatively regular is an open 

set in 9ti- If we relax the restriction on «(7),/?(7) the result would 

become that the set of all T€% which are relatively regular is open. This 

however is true only if 3i is finite-dimensional. For the zero operator is 

relatively regular, and if all 7 in a neighbourhood of zero of the form ||7|j < p 

were also to be relatively regular, then so would all 7£9ii, by multiplication 

by a suitable scalar. This however is only possible when 91 is finite-dimen-

sional5)» since otherwise we could construct a TZdh which was completely 

continuous without being finite-dimensional, and which would therefore not 

be relatively regular, as mentioned in § 4. 

In the same way the statement that if T is relatively regular and V is 

completely continuous, then 7 + V is also relatively regular, is not necessarily 

true without the restriction that at least one of «(7), /?(7) should be finite. 

This again is shown by the particular case 7 = 0 . We can however assert 

that if 7 is relatively regular and K is finite-dimensional, then T-\-K is 

relatively regular. This follows easily from Theorem 2, since if 7 X 7 — 7 = 0 , 

then (T+K)X(T+K)—(7+ K) is finite-dimensional. We may regard this 

as a consequence of the fact that the finite-dimensional operators form an 

ideal (left and right) of relatively regular operators in the ring 9®,, though 

whether there are any other such ideals which are not trivial is not obvious. 

15. The rest of this paper is devoted to the case in which T=Tx 
depends analytically upon a complex scalar parameter L In this section I 

consider the behaviour of Ti in the small; the basic fact to be established is 

that in the neighbourhood of any ¿-value, under certain restrictions, the 

functions «(7?) and /?(71) take constant values, not exceeding their values at 

the ¿-value in question. In the case in which both values are finite this result 

is known6). Here therefore I give the extension to the case in which only one 

*>) S e e KAPLANSKY [10]. 

c) See for instance my previous paper [1]: the" argument there was applied to a case 

¡in which a and ß had equal values and in which T;. had a spccial polynomial form, but 

¡applies more generally. See also the papers of GOHBERG cited in [1]. 
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of a and ft need be finite. Without loss of generality we may take the pertur-

bation to be about ¿ = 0. I prove now 

T h e o r e m 12. Let T€G.(m, <x, B3), where m<<x>, and let Ax be an 
analytic function of ¿, with values in 9fu defined in a neighbourhood of 1 = 0 
and vanishing at ¿ = 0. Then there is a positive number q and a non-negative 
integer m' with m ' ^ r a , such that for 0 < ¡¿| < p we have T—Az£ S(m', °o, B3). 

Taking such that TXT=T, and writing P, = 1—XT, so that 

P, is of finite dimensionality not exceeding m, we derive the equation 

(I—XAi)lX(T—Ax) = /—(/—XAx)lP„ 

valid at any rate if ( /— X A x ) has an inverse, and so in a ¿-region of the 

form \k\<o for some positive o. The reasoning by which it is deduced that 

a(T—Ax) takes a constant value, not exceeding a(T), in a region of the 

form 0<|A|<p, has already been given in § §5—7 of [1]. 

The remaining assertions of this theorem, that for 0 < |/| <q we have 

that T—Ax is relatively regular with fi(T—Ax)=°° follow from Theorem 9. 

This completes the proof of Theorem 12. 

Theorem 12 can of course be dualised. 

16. I now pass to deductions regarding the behaviour in the large. With 

the assumptions and notation of Theorem 12, let us consider the maximal 

connected region which includes ¿ = 0 and such that for every ¿-value in this 

region T—Ax exists, is relatively regular and furthermore u{T—>h)<oo. By 

Theorem 12, this ¿-region is non-empty and is open in the complex ¿-plane. 

The basic fact now to be established is that in this region we have 

almost everywhere a(T—Ax) = m',P(T—Ax)=°°; more precisely, we have 

p(T—Ax)=<x> everywhere in this region, and « (7—A x ) = m' everywhere 

except possibly at isolated points, with no limit point in this region, at which 

m' <u(T—Ax) Such isolated points form a natural generalisation of the 

concept of an eigen-value. We have by Theorem 12 that a(T—Ax) = m 
ji(T—/4;.)=c« in a region of« the form 0 < | ĵ < i>; the extension to the 

whole ¿-region with the above-noted exceptional points is achieved by the 

argument given for a more special case in § 8 of [1]. 

It may happen that this ¿.-region covers the entire ¿-plane. This will for 
00 

example be the case if Tx has the form T+Z^Vr, where T satisfies the 

i 

conditions of Theorem 12, the Vr are completely continuous, and the series is 

absolutely convergent for all ¿ ; a more special case of this kind was the 

subject of [1]. Another example with this property would be 7 x = 7 — I A, 
where T satisfies the conditions of Theorem 12 and A belongs to an ideal of 

generalised nilpotent operators. 

A 4 
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17. 1 now discuss the notions in spectral theory which accord best 

with the ideas of the present paper. Let as before Tx denote an anaiytic 

function of A with values in 9t,; for simplicity we will take Tx to be an 

integral function. The standard case Tz—T—¿/ is of course included. 

Let us denote by 2 ( B a ) the set of all ¿-values for which T>. is relatively 

regular, and by S0(53) the subset of 2(53) of /.-values for which in addition 

at least one of «(7\)> 0(7*) is finite. By Theorem 8, or Theorem 12, 2,,(B.;) 

is an open set; the example T\ — IV, where V is completely continuous, 

shows that 2(5;.) need not be an open set. 

We know that every, ¿-value in 20(BJ is an interior point of an open 

¿-region in which the functions « and /? take constant values almost every-

where. The case in which one of these values is infinite was examined in 

the last two sections; as already mentioned, the case in which both values 

are finite has been dealt with in previous papers. Our procedure is then to 

divide up 2 0 ( B 3 ) into these open regions. 

Let then m, n denote a pair of numbers, admissible values for which 

are zero, any positive integer, or + « , with the proviso that at least one of 

m and n must be finite. Corresponding to any such pair m, n there can exist at 

most a denumerable sequence of open connected regions of the ¿-plane, which 

we denote by 2 , ( m , n , B:1) (r— 1,2,...); and with the property that in any 

one of them T>.€H(m, n, B3), with the possible exception of at most a denu-

merable sequence of isolated points, the generalised eigen-values, at which 

Tx€S(m + /:, n + k, B;!), for some varying positive k. 
We show later how within any such region 2 , (m, n, B3) we may 

associate with Tx certain meromorphic functions with singularities at the 

generalised eigen-values. 

18. Before proceeding to a detailed analysis of one of these regions 

2 r ( m , n, Z?3) it will perhaps be useful to compare the above system of spectral 

classification with other known classifications. 

Closely related to the above classification are the concept of the Fred holm 

region and its generalisations. The Fredholm region, introduced by NIKOL'SKIJ 

(see [1] for reference) in the case in which 7\ depends linearly on k, will 

consist of the totality of sets 2,(/n, m, B,.), where m<°o, i. e. the set of ¿ for 

which ci(T>) = A(7V) <°° and for which T>. is relatively regular or, what comes 

to the same thing, satisfies (fi,) or (B2). The corresponding region in which 

c(7\) and /?(7x) are both finite but not necessarily equal was termed by me 

([5], p. 11) the "generalised Fredholm region" and by GOHBERG (see [1] for 

reference) the "Noether region". Here of course I am concerned with a still 

more general region, in which only one of «(7*), fi(Tx) need be finite, Tx still 
being relatively regular. 
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Rather less appropriate for the present purpose are the notions of spectral 

classification which arise naturally in the spectral theory of self-adjoint operators 

on Hilbert space. Taking for example the formulations of HILLE ([15], pp. 3 1 , 9 7 ) 

and translating them into the terminology of the present paper we should 

classify the ¿-values as follows: 

(i) resolvent set, such that 7\€G(0,0, B3), 

(ii) spectrum, such that 7\ does not belong to 6(0,0, B3). 

The spectrum would then be subdivided as follows: 

(iii) point spectrum, such that «(7k) >0, whether 7* is relatively regular or 

not, 

(iv) residual spectrum, such that «(7\) = 0, /?(T*) > 0, again whether 7\ is 

relatively regular or not, 

(v) continuous spectrum, such that a(T>.) = P(Tx) = 0, but such that 7\ is not 

relatively regular. 

A further definition would be that points belonging to the "point spectrum" 

would be termed "characteristic values". 

To illustrate the effect of these classifications by examples, a set of the 

form Sr(0, l,fi3) would go into the residual spectrum except for what we 

have called generalised eigen-values which would go into the point spectrum ; 

a set" of the form 3 r ( l , 0 , B3), or of the form 2,(1,2, B3) would go entirely 

into the point spectrum. The classification would thus obscure the essential 

similarities between the various regions 3 r (m , n, B3), and in addition would 

lump together operators which are relatively regular with those that are not. 

Certain classifications introduced by HAMBURGER [9] should also be 

mentioned for comparison. HAMBURGER considers the spectral character of an 

operator with respect to a subspace 3)1 of the Hilbert space here I translate 

some of his definitions into the terms of the present paper in the special case 

in which 3>î coincides with £>. An improper eigen-value is a value A such 

that ce(Tx) > 0, /?(7k) = 0, whether Tt. is relatively regular or not. The set of 

such X's forms the co-residual spectrum, the adjoint concept to the residual 

spectrum. If, I now observe, we révise the definition (iii) of the point spectrum 

to be that a(7\)>0 and ft(Tx) > 0, we obtain a partition of the spectrum 

which is at any rate symmetrical as between e(7\) and P(Tx), but which 

does not entirely remove the above objections. 

A further definition of HAMBURGER is that 1. is to be called a point of 

the first or the second kind according as 7\ has or has not a closed range. 

In the present terminology I would write the set of points of the first kind 

as 3(fi2). Since relative regularity implies the closed range property we have, 

for a Banach space, 3(#2)^3(Z?3), the two sets coinciding if 3Ï is a Hilbert 

space. For the case Tx = A—kI, HAMBURGER states (loc. cit. p. 505) that the 

set of points of the first kind form an open set. 
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19. I now pass to the theory of the analytic functions which may be 

associated with 7\ in a particular region 2 r(m, n, B3); as previously, at least 

one of m, n must be finite. These functions are three in number, one forming 

a generalisation of the resolvent, and two being projection operators charac-

terising the left and right null-manifolds of 7\, in cases of course in which 

. m, n > 0. 
Assume then that T is an integral function of ¿ with values in 9i,, and 

let fa be a point of one of the corresponding ¿-regions <3r(m, n, Br), which 

region we denote for brevity by 30 . Varying the notation of § 15, I write 

Tx — Tk,,—Ak=T„—A, so that 4̂ = 0 when l = fa. I assume that fa is not 

a generalised eigen-value, so that a(T„) = m,j3(T0) = n; this restriction has 

sense of course only if m and n are not both infinite. Let X„ be a relative 

inverse of T0, so that T0XoT,, = T0, X0T0X„ = X0. Write also PW = I—X0T„„ 
P.x = I—TaXo, so that Pw and PM are projection operators whose ranges on 

:•){ and are the right and left null-manifolds of T„. 
The problem is then to find analytic expressions for Xx,Pw,Pzx which 

fulfil the same roles for T%, for all ¿€2i>, except possibly at the generalised 

eigen-values in S0- It is easily shown that for ¿ in a neighbourhood of fa 
such functions are given by 

(19. 1) X>. = (r-X0Ay lX0 = Xa(t—AX*)' 1, 

(19.2) Pik — I—XxTx = (/—X0A)' lPw , 

(19.3) Pix = l — n X x = P A I - A X o y x - . 

Concerning these definitions I remark firstly that they have sense for all /. 

such that (/—X0A) and (I—AX0) have inverses in Secondly, these two 

conditions are equivalent, that is to say (I—X0A) and (/—AXa) will both or 

neither have inverses; this is a rather special case of Theorem 1. Thirdly I 

remark that the equivalence of the alternative forms given in each of (19. 1-3) 

can be verified by simple calculations, assuming that ( / — ( / — X a A ) have 

inverses. 

More precisely, we can set up a spectral classification of ¿-values into 

open connected regions <S'r(m,n,B3) for the operators I—X0A, I—AX0 , the 

regions being identical for these two operator-functions by Theorem 1. My 

main concern here is with the particular one of these regions which contains 

¿o. Since these operators have inverses near fa, this region will be of the 

_ form ®r(0,0, Bs), and for brevity I denote it by So. These two operators 

will then have inverses throughout Si, with the possible exception of isolated 

points with no limit-point in Si , which will be eigen-values in the ordinary 

sense for I—AX0 and I— 

20. What I wish to prove here is then that if Xi, is defined by (19. 1) 

then Xx provides a relative inverse of 7\ for all ¿€3 i with the exception of 

eigen-values of /—AX„, I-^X„A; these two operator-functions will have the 
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same eigen-values. It has. therefore to be proved that for such /-values 

(20. 1-2) T-, X,. 7, •• 7,, X, 7 , - X,. 

Before proving this it is necessary to clarify the relationship between 

2„ and 2,',. Assuming, as I do, that at least one of m, n is finite, then it can 

be asserted that 2,',<=2„. For let /£2,',, so that /—X t l A is relatively regular 

and ('.(I—X„A) = {!(I—X„A), both numbers being finite. Assume for defini-

tcness that m < s o that Pw is finite-dimensional. We have the equation 

Xt,T= X„(T„—A) = (I—X„A)—P,II. An application of Theorem 10 then shows 

that X„T is relatively regular and that a(X„T))<oo. It now follows by Theo-

rem 3 that 7?. is relatively regular and that «(7*)<°o. Thus 2,', is a connected 

region throughout which T>. is relatively regular with «(7?.)<°o, and further-

more 2,', contains /.„. But 2„ is the maximal such region containing /„, so 

that 2,',ci3l,, as was to be proved. The argument is of course similar if only 

/7 < . • • 

The position becomes simpler if both m and n are finite, for then 2,', 

and 2„ coincide. In this case, if 2,„ Xu and 7>. will both satisfy conditions 

(A-,) and (Bs) of § 2, so that by Theorem 4 of this paper (or by Theorem 2 

of [5]) X,Tx will satisfy the same conditions, and hence also (/—X0A), by 

Theorem 10. It now follows that 2„ is a connected region, containing /„, in 

which « ( /— X n A ) and fi(l—X„A) are finite and (/—X„A) is relatively regular, 

so that which together with the previous result shows that the two 

regions coincide. It does not of course follow that the generalised eigen-

values in the two regions coincide. 

Reverting to the previous,case, let us only assume that m<oc, and let 

be a point of 2,', which is not a singularity of ( /— X „ A ) ' \ (I—AX„) 1. I wish 

under these assumptions to justify (20.1-2). Of these, (20.2) is trivial since 

Xx—Xi T/.X). = X,.(/— T,X>) = ( l - X A y ' X . P ^ I - A X y , 
by (19.1) and (19.. 3), and this vanishes since X,P,tl = X^l— 7„AT„> = 0. 

Considering now (20. 1) we have by (19.2) 

(20.3) n(I-XxT>.)=---Tk(I-XnA)[Pw, 

and it has to be proved that the right-hand side vanishes. Consider the set of 

</>£:)( such that 7 ^ = 0. For such y, by (19.2) we have <p = (l—XttA)~lPwy, 
so that the linear manifold of such cp is contained in the range of the 

(projection) operator (/—X0.4)"'P,n. But this operator has the same dimen-

sionality as Pw, which is by hypothesis m < <». Furthermore by the hypotheses 

the set of such r/> is of dimensionality not less than m, the minimum, value 

of a(Tx) throughout the region 20. It follows that the set of such q> is of 

dimensionality precisely m, and that the set coincide with the range of 

(I—XoAy'Po, so that the right-hand side of (20.3) vanishes. 

Summing up we have proved that if k £ 2o is not an eigen-value of 

(/—X„A), (I—AX»), then it is not a generalised eigen-value of 7?., and 
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furthermore the relative inverse of 7\ is given by (19. 1). It follows from this 

that for such I the projection operators characterising the right and left 

null-manifolds of 7*. are given by (19.2-3). 

The argument is of course similar if instead of m < oc we assume 

that n < oo. 

While we have proved that the generalised • eigen-values of T>. are 

included in the (in this case ordinary) eigen-values of either of (/—XbA), 

(I—AX0), the possibility remains that the latter two operators might have 

eigen-values which were not generalised eigen-values of Tk. If m and n are 

not both zero the relative inverse is of course not unique, which suggests 

the question of whether in this case Xn can be chosen so as to make the 

two sets of singularities identical. If m = n = 0, so that T„ has an inverse 

which is also the relative inverse, it is readily seen that the two sets are 

the same. 

21. I conclude this paper by illustrating some of these concepts in a 

simple case in which only one of the indices a, p is finite7). 

Consider the space of sequences of complex numbers 

h 
with the norm, say, 11/11 = ^ 1 / 4 , and the bounded linear transformation 

0 

(21.1) T f = (Jo, 0, / , 0 , /2, 0,...) 

for which obviously a(T) = 0, /?(T)=oo. A relative inverse, in fact in this 

case a left inverse, is given by 

(21-2) * / = ( / „ / 2 , / 0 . . . ) , 

so that XT=I, TXT= T, XTX = X. 
I now consider two examples of spectral theory involving this operator. 

Take first' Tx=--T—lI, where 7 is given by (21.1). Since ||7|| = 1 it is clear 

that 7\ has an inverse for > 1. We have further, if X is given by (21.2), 

XTx = I—lX, and since ||X|| = 1 it follows that for < 1 a left inverse, 

and so a relative inverse, of 7\ is given by ( / — X X ) ' X. Thus the whole 

¿-plane is divided up into the following three regions: (i) the region |A|> 1, 

which will be of type 3(0, 0,B3), (it) the region \l\ < 1, of type-3(0, 

(iii) the region ¡¿|=1, which does not lie in the region I termed 3„(Ba)> 

where Tk is relatively regular and at least one of a(T>.), fi(T>.) is finite. In 

this case there are no eigen-values, either generalised or ordinary, though 

these may be introduced by making slight modifications to the operator T. 

7) A similar example in which a and fi are both finite but different has been briefly 

considered by BEURLING [16], p. 2 4 2 , HAMBURGER [9], p. 5 0 4 . 
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As a second example 1 take Ъ.= Т—к A, where 7 is given as before 

by (21.1), and A is given by 

A / = (/o .7o,/ i , / . .Л,--•)• 

We have then 

T,f= (/„(1-Л), -;./o, ( 1 - Я ) / , , - / / , , . • .)> 

from which it is clear that a "relative resolvent" Xx, which in this case is a 

left inverse and is independent of I , is given by 

(/.-/., A-/„•• •)• 
It follows that in this case the whole Я-plane is a region of the form 

2(0, °o, B:i), and again there are no generalised eigen-values. 

Apropos of the remarks at the end of § 20, I now show that for the 

last example the "relative resolvent" may be chosen so that it has singularities 

which are not generalised eigen-values of 7k. We take the left inverse of 7 

given by 

X'f = (/,—QO/H f>—ajit...), 
where the a, form any bounded sequence of complex numbers. We have 

then X'Tx = X'(T—lA) = I—lX'A, and the corresponding relative resolvent 

is given by (/—?.X 'A)~ x X' , provided that ( / — k X ' A ) has an inverse. However 

we have 

X'Af=((\-a0)f„, (I—a,)/,,...), . \ 

so that the singularities of ( /— k X ' A ) ' 1 will be at the points Я = (1—a r) , 

(r = 0,1,...). We may of course choose the ar so as to make these singula-

rities dense along a closed curve, or dense inside a region, and we shall 

then have cases in which the connected region in which (/—AX'A) 1 exists, 

denoted in the notation of § 20 by 2i , is a proper sub-region of 20 , the 

connected region in which 7* is relatively regular with at least one of 

« ( 7 \ ) , f i n i t e ; this, it will be recalled, was shown to be impossible in 

cases in which «(7\), are both finite. 
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