## On the factorizations of the linear fractional group $L F\left(2, p^{\prime \prime}\right)$.

By Noboru ITô in Nagoya (Japan).

In the factorization theory of finite groups we refer to the following two theorems of J. Szép: (1) Let $G$ admit a maximal Sylow factorization. If neither of the factors is normal, then $G$ is simple. (2) Let $H$ be a non-factorizable simple group. Let $P$ be a minimal representation module of $H$ over the prime field of characteristic $p$. Let $G$ be the holomorph of $P$ by $H$. Then in any factorization of $G$, the meet of the factors contains no normal subgroup ( $\uparrow 1$ ) of either of the factors. The converse is also true ${ }^{1}$ ) $)^{3}$ ).

Now the purpose of the present paper is to enumerate the factorizations of the linear fractional group $L F\left(2, p^{n}\right)$. This may be done without much difficulties, since all the subgroups of $L F\left(2, p^{\prime \prime}\right)$ are known ${ }^{4}$ ). Some of our results, however, may be modified so as to be applied to the higher degree case.

Next, we shall give some remarks on the above theorems of J. Szép: (1) We show that $L F\left(2, p^{\prime \prime}\right)$ with $p^{\prime \prime} \equiv 3(\bmod 4)$ admits a maximal Sylow factorization in which neither of the factors is normal. The only exceptionals are $L F(2,3)$ and $L F(2,7)$. Therefore J. Szép's theorem.(1) is applicable to prove the simplicity of such groups. In fact, proofs on this line are, as it seems to the writer, more easily comprehensible than the other known proofs. (2) We show that $L F\left(2, p^{n}\right)$ with $p^{n} \equiv 1(\bmod 4)$ admits no factorization. The only exceptionals are $\operatorname{LF}(2,5), \operatorname{LF}\left(2,3^{2}\right)$ and $L F(2,29)$. Therefore we may take such an $L F\left(2, p^{\prime \prime}\right)$ as $H$ in J. Szep's theorem'(2).

## § 1.

Let $G$ be a product of two proper subgroups $H$ and $K: G=H \cdot K$. Then we say that $G$ is factorizable and $G=H \cdot K$ is a factorization of $G$, where $H$ and $K$ are the factors of this factorization. Let $H_{1}$ and $K_{1}$ be any conjugate subgroups of $H$ and $K$ respectively. We can get $H_{1}$ by transforming $H$ with a suitable element of $K$, and similarly with $K_{1}$. Therefore $G$ admits also the factorization $G=H_{1} \cdot K_{1}$. We say that this factorization of $G$ is equivalent to the original one. Further we refer to the number of non-equivalent factorizations of $G$ simply as the number of factorizationsi of $G$.

[^0]We introduce an order into the set of all the factorizations of $G$ as follows. Let $G=H \cdot K$ and $G=\bar{H} \cdot \bar{K}$ be two factorizations of $G$. We say that $G=H \cdot K$ is g:eater than $G: \cdots \tilde{H} \cdot \tilde{K}$ if we have either $H \supset \tilde{H}$ and $K \supset \tilde{K}$ or $H \supset \tilde{H}$ and $K \supsetneq \widetilde{K}$. In this sense we use the terminologies, such as a maximal factorization and a minimal factorization. A factorization is maximal if and only if both factors are maximal subgroups. If $H \cap K=: 1$, with a factorization $G=H \cdot K$, we call this factorization an exact factorization. Obviously an exact factorization is a minimal factorization. An exact factorization $G=H \cdot K$ such that $(H: 1, K: 1)=-1$ we call a Sylow factorization. Then every soluble group admits, by P. Hall's theorem, just one Sylow factorization ${ }^{5}$ ). There exists, however, a group admitting more than one Sylow factorization, for instance, $L F(2,11)$ and $L F(2,23)$ as we show in $\S 3$. Further we remark that these notions are easily modified to those of the factorization classes.

## § 2.

We summarize here the necessary results on subgroups of the iinear fractional group $\left.L F\left(2, p^{\prime \prime}\right) .{ }^{6}\right)$
(1) Let $q$ be a prime such that $p^{2 n} \equiv 1(\bmod q)$ and $\cdot p^{\prime \prime \prime} \equiv 1(\bmod q)$ for any $m<2 n$. Assume $q \geqq 7$. Then every maximal subgroup of $L F\left(2, p^{\prime \prime}\right)$, whose order is divisible by $q$, is a dihedral group $D$ of order $p^{\prime \prime} \div 1$ for $p>2$ and of order $2\left(2^{\prime \prime}+1\right)$ for $p=2$. Further, all such subgroups, with a fixed $q$, are conjugate with one another.

The same holds for $q=5$ and $q=3$ if the order of a maximal subgroup is divisible by $q^{2}$. On the contrary, if the order of a maximal subgroup is divisible by $q$ to the first power only, then the subgroup may be one of the following three types of groups for $q=3$ : (1) the tetrahedral group $A_{4}$ for $p^{\prime \prime} \equiv 3(\bmod 8)$, (2) the octahedral group $S_{4}$ for $p^{\prime \prime}=1(\bmod 8)$, and (3) the icosahedral group $A_{5}$, for $p^{\prime \prime} \leq \pm 1(\bmod 10)$; and it may be $A_{5}$ for $q=5$ and $p^{\prime \prime} \equiv \pm 1(\bmod 10)$. Further, the $A_{+}$'s are all conjugate with one another and the $S_{4}$ 's and the $A_{5}$ 's constitute two classes of conjugate subgroups.
(2) Assume $p>2$. Every maximal subgroup of $L F\left(2, p^{\prime \prime}\right)$ containing a $p$-Sylow subgroup of $L F\left(2, p^{\prime \prime}\right)$ is a normalizer $N$ of the $p$-Sylow subgroup. They are clearly all conjugate with one another.
(3) Assume $p=2$ and $n>2$. Every maximal subgroup of $L F\left(2,2^{\prime \prime}\right)$, whose order is divisible by $2^{n-1}$, is the normalizer $N$ of a 2 -Sylow subgroup. They are clearly all conjugate with one another.

[^1]${ }^{\text {i }}$ ) See ${ }^{4}$ ).
(4) A theorem of E. Galois. $L F\left(2, p^{n}\right)$ always contains subgroups of index $p^{n}+1$, but contains subgroups of lower index only when $p^{n}=2,3,5,7,3^{2}, 11$.

## § 3.

(1) Let us consider the linear fractional group $G=L F\left(2, p^{n}\right)$ other than $L F\left(2,2^{3}\right)$ and $L F(2, p)$, where $p$ is a Fermat prime: $p=2^{\kappa}-1$. Since the order of $G$ is $\frac{p^{n}\left(p^{2 n}-1\right)}{2}$ for $p>2$ and is $2^{n}\left(2^{2 n}-1\right)$ for $p=2$, we see, by a theorem of K. ZsigmONDY ${ }^{7}$ ), that there exists a prime $q$ such that $p^{2 n} \equiv 1(\bmod q)$ and $p^{m} \equiv 1(\bmod q)$ for any $m<2 n$. Let $q$ be the largest one among such primes. We first treat the case $q \geqq 7$.

Let us assume that $G$ is factorizable and let $G=H \cdot K$ be a maximal factorization. Hence both $H$ and $K$ are maximal subgroups of $G$. Since the order of either $H$ or $K$ is divisible by $q$, we may assume, by symmetry, that the order of $K$ is divisible by $q$. Then we have, by $\S 2(1)$, that $K=-D$. Now we further assume that $p>2$. Since the order of $K$ is prime to $p, H$ contains a $p$-Sylow subgroup of $G$. Therefore, by $\S 2(2), H=N$. Since the orders of $K$ and $N$ are $p^{\prime \prime}+1$ and $\frac{p^{\prime \prime}\left(p^{\prime \prime}-1\right)}{2}$ respectively, clearly $N \cap D-1$. Conversely, if $N \cap D=1$, then $G$ admits clearly the factorization $G=N \cdot D$. Now if $\frac{p^{\prime \prime}-1}{2}$ is odd, that is, if $p^{\prime \prime} \equiv 3(\bmod 4)$, then $\frac{p^{\prime \prime}\left(p^{\prime \prime}-1\right)}{2}$ and $p^{\prime \prime}+1$ are relatively prime to each other. Therefore $D \dot{\cap} N=1$. Hence in this case $G$ admits the only one factorization $G=N \cdot D$. On the other hand if $\frac{p^{\prime \prime}}{2}-1$ is even, that is, if $p^{\prime \prime} \equiv 1(\bmod 4)$, then both $\frac{p^{\prime \prime}-1}{2}$ and $p^{\prime \prime}+1$ are even. Since all the elements of order 2 are conjugate with one another and every conjugate subgroup of $N$ can be attained from $N$ by the transformation with a suitable element of $D$, the element of order 2 of $D$ can be assumed to be contained in $N$. Therefore $N \cap D>1$. Hence in this case $G$ admits no factorization.
(2) Now let us assume $p=2$. Under our assumptions we have clearly $n \geqq 4$. Since the order of $D$ is divisible by 2 only to the first power, we have, by $\S 2(3), H=N$. Since the orders of $D$ and $N$ are $2\left(2^{\prime \prime}+1\right)$ and $2\left(2^{n}-1\right), G$ clearly admits the factorization $G=D \cdot N$, where the order of $D \cap N$ is 2 . Further, let $Z$ be the cyclic subgroup of order $2^{\prime \prime}+1$ of $D$. Then also $G=Z \cdot N$, where $Z \cap N==1$. Hence in this case $G$ admits just two factorizations: $G=D \cdot N$ and $G=Z \cdot N$.

[^2](3) Next we treat the case $q:=5$. We can, however, by $\S 2$ (1), assume that $q$ divides $p^{\prime \prime \prime}-1$ to the first power only and that $p^{\prime \prime \prime} \equiv 1(\bmod q)$ for any $m こ 2 n$. Since at least one of the three numbers $p-1, p^{2}-1$ and $p^{4}-1$ is divisible by 5 , we clearly have that $n \leq 2$. More precisely if $p=4(\bmod 5)$, then $n:-1$, and if $p \ldots 2$ or $3(\bmod 5)$, then $n: 2$. Further, by a celebrated theorem of E. Galois and by § $2(1)$, we have only to consider $L F(2, p)$ for $p \leqq 59$ and $p=4(\bmod 5)$, and $L F\left(2, p^{2}\right)$ for $p^{\prime} \leqq 59$ and $p=2$ or $3(\bmod 5)$. Under our assumptions $\operatorname{LF}\left(2,2^{2}\right), L F\left(2,3^{\prime}\right), L F(2,19)$ and $\operatorname{LF}(2,29)$ only can enter into our consideration. Let us first consider $L F(2,19)$ and $L F(2,29)$. At any rate, since $19-3(\bmod 4), L F(2,19)$ admits the factorization $L F(2,19) \quad N \cdot D$, and since $29=1(\bmod 4), L F(2,29)$ does not admit such a factorization. Now let us assume that $L F(2,19)$ and $L F(2,29)$ admit the following factorizations: $L F(2,19)=N \cdot A_{5}$ and $L F(2,29)=N \cdot A_{5}$, where $A_{3}$ is the icosahedral group. We must have that the order of $N \cap A_{\overline{5}}$ is 3 for $\operatorname{LF}(2,19)$ and is 2 for $L F(2,29)$. Now since these actually hold good for $N \cap A_{\mathrm{i}}, L F(2,19)$ and $L F(2,29)$ admit actually such factorizations. Since a 3-Sylow subgroup of $L F(2,19)$ is cyclic, we clearly have that $L F(2,19) \cdots N \cdot A_{5}$ is a minimal factorization. On the other hand, let $S$ be the subgroup of order 29.7 of $N$. Then clearly $L F(2,29)$ admits the factorization: $L F(2,29)=S \cdot A_{;}$, where $S \cap A_{3}$ 1. Since $A_{5}$ 's constitute just two classes of conjugate subgroups in both $L F(2,19)$ and $L F(2,29)$, we have that $L F(2,19)$ admits just three factorizations $L F(2,19)=N \cdot D$ and two $L F(2,19)=N \cdot A_{i}$, and that $L F(2,29)$ admits just four factorizations: two $\operatorname{LF}(2,29)=N \cdot A_{3}$ and two $\operatorname{LF}(2,29)$ $=S \cdot A_{i}$.
(4) Secondly let us consider $L F\left(2,3^{3}\right)$ and $L F\left(2,2^{2}\right)$. We remark that these are isomorphic to $A_{i j}$ and $A_{i}$ respectively, where $A_{n}$ is the alternation group of degree $n$. Now maximal subgroups, of $L F\left(2,3^{2}\right)$, whose orders are divisible by 3 are $N, S_{4}$, and $A_{5}$, where $S_{4}$ is the octahedral group. Since $3^{:}-1(\bmod 4), L F\left(2,3^{\prime}\right)$ admits no factorization of the form $L F(2,3)=H \cdot D$, where $H$ is one of the three groups $N, S_{4}$ and $A_{5}$. Therefore we clearly have, by $\S 2(1)$, that $K=A_{\mathfrak{F}}$. Since a 2 -Sylow subgroup of $N$ is cyclic, the order of $N \cap A_{5}$ is 6 . Therefore $L F\left(2,3^{2}\right)$ admits the factorization $L F(2,3)=N \cdot A_{5}$. Since a subgroup of index 6 of $A_{5}$ is $D$, and since all the elements of order 2 of $\operatorname{LF}\left(2,3^{3}\right)$ are conjugate with one another, and since $N$ contains no subgroup of order 12, the factorization $L F\left(2,3^{2}\right)=N \cdot A_{i}$ is minimal. Next we consider the case that the $H=S_{4} \cdot S_{4}$ 's constitute just two classes of conjugate subgroups in $L F\left(2,3^{\prime \prime}\right)$ which we represent by $S_{4^{\prime \prime}}^{(1)}$ and $S_{4}^{(2)}$ respectively. Similarly the $A_{\varepsilon}$ 's constitute just two classes of conjugate subgroups in $\operatorname{LF}\left(2,3^{3}\right)$, which we represent by $A_{i}^{(1)}$ and $A_{s}^{(2)}$ respectively. Thereby we can assume, as we easily see, that the order of $S_{i}^{(i)} \cap A_{;}^{(i)}$ is 4 for $i=1,2$ and the order of $S_{4}^{(i)} \cap A_{;}^{(j)}$ is 12 for $i, j=1,2$ and $i \neq j$. Therefore $L F\left(2,3^{2}\right)$ admits the factorization $L F\left(2,3^{2}\right)=S_{4}^{(i)} \cdot A_{i}^{(i,}$ for $i=1,2$ and does not admit the factorization $L F\left(2,3^{2}\right)$ $=S_{4}^{(i)} \cdot A_{i}^{(i)}$ for $i, j=1,2$ and $i \neq j$. Now let $A_{\downarrow}^{(i)}$ be the tetrahedral subgroup
af $S_{+}^{(i)}$ for $i=1,2$. Since clearly the order of $A_{4}^{(i)} \cap A_{i}^{(i)}$ is 4 for $i=1,2$, we have that $L F\left(2,3^{\prime}\right)$ does not admit the factorization $L F\left(2,3^{3}\right)=A_{4}^{(i)} \cdot A_{i}^{(i)}$ for $i \quad 1,2$. Therefore $\operatorname{LF}\left(2,3^{2}\right)^{-=}=S_{4}^{(i)} \cdot A_{-1}^{(\prime)}$ for $i=1,2$ is a minimal factorization, where $S_{4}^{(i)} \cap A_{i}^{(i)}$ is of order 4. Finally we consider the case $H=A_{i}^{(1)}$ and $K-A_{3}^{(2)}$. Then we easily see that the order of $A_{i}^{(1)} \cap A_{:}^{(\underline{2})}$ is 10 . Therefore $L F\left(2,3^{j}\right)$ admits the factorization $L, F\left(2,3^{j}\right)=A_{i}^{(1)} \cdot A_{i}^{(2)}$. Further let $A_{4}^{(i)}$ be a tetrahedral subgroup of $A_{5}^{(i)}$ for $i=-=1,2$. Then, since clearly the order of $A_{+}^{(1)} \cap A^{(-1)}$ and $A_{+}^{(2)} \cap A_{3^{(1)}}^{(2)}$ is $2, L F\left(2,3^{\prime \prime}\right)$ admits the factorizations $L F\left(2,3^{\prime}\right)=$ $=A_{4}^{(1)} \cdot A_{i}^{(2)}$ and $L F(2,3) \quad A_{5}^{(1)} \cdot A_{4}^{(2)}$ where $A_{4}^{(1)} \cap A_{i}^{(2)}$ and. $A_{i}^{(1)} \cap A_{4}^{(2)}$ are of order 2. These factorizations are clearly minimal" factorizations. In altogether, $L F\left(2,3^{3}\right)$ admits just seven factorizations: : two $L F\left(2,3^{2}\right)=N \cdot A_{5}$, two $L F\left(2,3^{\prime}\right) \cdots S_{4} \cdot A_{5}, \quad L F\left(2,3^{3}\right)=A_{5} \cdot A_{5}$ and two $L F\left(2,3^{2}\right)=A_{4} \cdot A_{5}$. Now the case of $L F\left(2,2^{\prime \prime}\right)$ is rather evident. We immediately have the following result: $L F\left(2,2^{\prime \prime}\right)$ admits just two factorizations: $L F\left(2,2^{\prime \prime}\right)=\cdots N \cdot D$ and $L F\left(2,2^{2}\right)=Z \cdot N$.
(5) Next we treat again the case $q: 3$. We can, as in the case $q=5$, assume, by $\S 2(1)$, that $q$ divides $p^{2 \prime \prime}-1$ to the first power only and that $p^{m} \equiv 1(\bmod q)$ for any $m<2 n$. Since at least one of dwo numbers $p-1$ and $p^{2}-1$ is divisible by 3 , clearly $n-1$ and $p-2(\bmod 3)$. Moreover, by the theorem of E . Galois and by $\S 2(1)$, we have only to consider $L F(2, p)$ for $p \leftrightharpoons 59$. Under our assumptions $L F(2,2), L F(2,5) L F(2,11)$ and $L F(2,23)$ only can enter into our consideration. Clearly $L F(2,2)$ admits just one factorization $L F(2,2)=N \cdot Z$, where $Z$ is the 3 -Sylow subgroup. Since $L F(2,5)$ $\sim L F\left(2,2^{2}\right) \approx A_{5}$, we have first trivially that $L F(2,5)$ admits just two factorization: $L F(2,5)=D \cdot N$ and $L F(2,5)=: Z \cdot N$. Let us next consider $L F(2,11)$. At any rate, since $11 \equiv 3(\bmod 4), L F(2,11)$ admits the factorization $L F(2,11)=N \cdot D$. Further naturally $H=N$. Now, since clearly $N \cap A_{4}=1$, we see that $L F(2,11)$ admits the following factorizations: $L F(2,11)=N \cdot A_{4}$ and $L F(2,11)=N \cdot A_{3}$. Now let $Z$ be the 11 -Sylow subgroup of $N$. Since again we clearly have that $Z \cap A_{i}=1, L F(2,11)$ admits the factorization $L F(2,11)=Z \cdot A_{5}$. We remark here that the $A_{5}$ 's constitute just two classes of conjugate subgroups in $L F(2 ; 11)$. Thus we see that $L F(2,11)$ admits just six factorization: $L F(2,11)=N \cdot D, L F(2,11)=N \cdot A_{4}$, two $L F(2,11)=N \cdot A_{\text {; }}$, and two $L F(2,11)=Z \cdot A_{i}$. Finally let us consider $L F(2,23)$. At any rate, since $23 \equiv 3(\bmod 4), L F(2,23)$ admits the factorization $L F(2,23)=N \cdot D$. Further we have naturally that $H=N$. Now since clearly $N \cap S_{4}=1$, we see that $L F(2,23)$ admits the factorization $L F(2,23)=N \cdot S_{4}$ where $N \cap S_{4}=1$. Since the $S_{4}$ 's constitute just two classes of conjugate subgroups in $\operatorname{LF}(2,23)$, we have that $L F(2,23)$ admits just three factorizations $L F(2,23)=N \cdot D$ and two factorizations $L F(2,23)=N \cdot S_{4}$.

Remark. Obviously the factorizations of $\operatorname{LF}(2,11): \operatorname{LF}(2,11)=$ $=N \cdot D=N \cdot A_{4}=Z \cdot A_{3}^{(1)}=Z \cdot A_{3}^{(2)}$ and those of $L F(2,23): L F(2,23)=N \cdot D=$ $=N \cdot S_{4}^{(1)}=N \cdot S_{4}^{(2)}$ are all Sylow factorizations. Clearly $D$ and $A_{4}$ in $L F(2,11)$,
or $D$ and $S_{i}$ in $L F(2,23)$, are not isomorphic with each other. Similarly $A_{3}^{(1)}$ and $A_{5}^{(2)}$ in $L F(2,11)$, or $S_{4}^{(1)}$ and $S_{4}^{(2)}$ in $L F(2,23)$ are not conjugate with each other. This shows the Sylow structure theory of P. Hall on soluble groups certainly fails to hold for general finite groups. It may be of interest to find a general method of constructing groups in which the Sylow structure theory does not hold.

Let us lastly consider $L F\left(2.2^{3}\right)$ and $L F(2, p)$ for $p=2^{\prime \prime}-1 \quad(k \geqq 2)$. Since a 3 -Sylow subgroup of $L F\left(2,2^{3}\right)$ is cyclic, we may assume, by a theorem of H. Wielandt ${ }^{8}$ ), that either $H$ or $K$, say $H$, by symmetry, contains a 3-Sylow subgroup of $L F\left(2,2^{3}\right)$. Therefore, as before, we have that $H=D$. Then, since the order of $K$ must be divisible by $2^{2}$, we have, by $\S 2$ (3), that $K=N$. Hence $L F\left(2,2^{3}\right)$ admits just two factorizations: $L F\left(2,2^{3}\right) \cdots N \cdot D$ and $L F\left(2,2^{3}\right)=N \cdot Z$, where $Z$ is the cyclic subgroups of order 9 of $K$. In other words $L F\left(2,2^{3}\right)$ admits the same factorizations as $L F\left(2,2^{\prime \prime}\right)$ for $n \cong 4$. Now we treat $\operatorname{LF}(2,3)$. Since $L F(2,3)$ is isomorphic to the tetrahedral group, we see immediately that $L F(2,3)$ admits the only one factorization $L F(2,3)=N \cdot D$, where $N$ is a 3 -Sylow subgroup and $H$ is the 2-Sylow subgroup of $L F(2,3)$. . So, consider $L F(2, p)$ for $p=2^{k}-1(k \geqq 3)$. At any rate we have, by $\S 2(2)$, that $H=N$. Since the order of $N$ is odd, $K$ clearly contains a 2 -Sylow subgroup of $L F(2, p)$. Now let us assume that $k \geqq 4$. Then by $\S 2(1)$, a 2 -Sylow subgroup of $L F(2, p)$ is maximal. Clearly it is a dihedral group. Therefore $K=D$. Hence we have that $L F(2, p)$ for $p=2^{\prime}-1(k \geqq 4)$ admits the only one factorization $L F(2, p)=N \cdot D$, where $K$ is a $\cdot 2$-Sylow subgroup. Finally treat $L F(2,7)$. Here we have, by $\S 2(1)$, that $L F(2,7)$ contains as a maximal subgroup the octahedral group $S_{4}$. Therefore we have that $K=S_{4}$. Let $Z$ and $D$ be the 7-Sylow subgroup and a 2-Sylow subgroup of $N$ and $S_{4}$ respectively. Since cleary $Z \cap S_{4}=1$ and $N \cap D=1$, and since $S_{4}$ 's constitute just two classes of conjugate subgroups in $L F(2,7)$, we have that $L F(2,7)$ admits just five factorizations: two $L F(2,7)=N \cdot S_{4}$, two $L F(2,7)=Z \cdot S_{4}$ and $L F(2,7)=N \cdot D$.

Remark. Thus we see that there exists a simple group with a nilpotent maximal subgroup; $\operatorname{LF}(2, p)$ for $p=2^{k}-1$ and $k \equiv 4$ is such one. Naturally such a group is not nilpotent-factorizable, since, otherwise, it must be soluble ${ }^{9}$ ). It may be of interest to seek for a simple group with a maximal $p$-Sylow subgroup for $p>2$.

MATHEMATICAL INSTITUTE
NAGOYA UNIVERSITY.
(Received December 20, 1952.)

[^3]
[^0]:    ${ }^{\text {I }}$ ) J. Szép, On factorisable simple groups, these Acta, 14 (1951), 22.
    9) J. Szép, Zur. Theorie der endlichen einfachen Gruppen, these Acta, 14 (1951), 111-112. - Remark of the referee: By (2) the author means the exceptional case of the theorem in the cited paper. In a previous letter to J. Szép the author remarked that the $M_{i}$ figuring in the proof of this theorem is, in the exceptional case of the theorem, an elementary abelian $p$-group.
    ${ }^{\text {3 }}$ ) For definitions see $\S 1$.
    ${ }^{\text {y }}$ ) Cf. L. E. Dickson, Linear Groups (Leipzig, 1901), especially Chapter XII.

[^1]:    ${ }^{\text {i }}$ ) P. Hall proved that every soluble group is representable uniquely (up to the conjugation) as a product of pairwise commutative Sylow subgroups. See P. Hall, On the Sylow systems of a soluble group, Proc. London Math. Soc., 43 (1937), 316-323. This theorem can be considered as a generalization of the so-called fundamental theorem of the elementary number theory.

[^2]:    i) K. Zsigmondiy, Zur Theorie der Potenzreste, Monatshefte für Math. und Phys., 3 (1892), 265-284.

[^3]:    8) H. Wielandt, Über das Produkt paarweise vertauschbarer nilpotenter Gruppen, Math. Zeitschrift, 55 (1951), 1-7.
    ${ }^{9}$ ) Cf. N. Itô, Remarks on factorizable groups, these Acta, 14 (1951), 83-84.
