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On the factorizations 
of the linear fractional group LF(2,p"). 

By NOBORU ITÖ in Nagoya (Japan). 

In the factorization theory of finite groups we refer to the following 

two theorems of J. SZÉP: (1) Let G admit a maximal Sylow factorization. If 

neither of the factors is normal, then G is simple. (2) Let H be a non-fac-

torizable simple group. Let P be a minimal representation module of H over 

the prime field of characteristic p. Let G be the holomorph of P by //.Then 

in any factorization of G, the meet of the factors contains no normal sub-

group (4= 1) of either of the factors. The converse is also true1) -)*). 

Now the purpose of the present paper is to enumerate the factori-

zations of the linear fractional group LF(2,pu). This may be done without 

much difficulties, since all the subgroups of LF(2,p") are known4). Some 

•of our results, however, may be modified so as to be applied to the higher 

degree case. 

Next, we shall give some remarks on the above theorems of J. SZÉP: 

<1) We show that LF(2,p") with p" = 3(mod4) admits a maximal Sylow 

factorization in which neither of the factors is normal. The only exceptionals 

are LF(2, 3) and LF(2,1). Therefore J. SZÉP'S theorem (1) is applicable to 

prove the simplicity of such groups. In fact, proofs on this line are, as it 

seems to the writer, more easily comprehensible than the .other known proofs. 

(2) We show that LF(2, p") with pn= 1 (mod 4) admits no factorization. The 

only exceptionals are LF(2, 5), LF(2, 32) and LF(2, 29). Therefore we may 

take such an LF(2,p") as H in J . SZÉP'S theorem'(2). 

§ 1-

.Let G be a product of two proper subgroups H and K: G = H-K. Then 

we say that G is factorizable .and G = H K is a factorization of G, where 

H and K are the factors of this factorization. Let H, and Kx be any conjugate 

subgroups of H and K respectively. We can get Hx by transforming H with 

a suitable element of K, and similarly with Kx. Therefore G admits also the 

factorization G = //1A
r,. We say that this factorization of G is equivalent 

to the original one. Further we refer to the number of non-equivalent facto-

rizations of G simply as the number of factorizations of G. 

') J. SZÉP, On factorisable simple groups, these Acta, 14 (1951), 22. 

-) J. SZÉP, Zur. Theorie der endlichen einfachen Gruppén, these Acta, 14 (1951), 

111—112. — Remark of the referee: By (2) the author means the exceptional case of the 

Iheorem in the cited paper. In a previous letter to J. SZÉP the author remarked that the S)I 

figuring in the proof of this theorem is, in the exceptional case of the theorem, an elem-

entary abelian p-group. 

') For definitions see § 1. 

J ) Cf. L. E. DICKSON, Linear Groups (Leipzig, 1901), especially Chapter XII. 
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We introduce an order into the set of all the factorizations of G as 

follows. Let G = H K and G = H K be two factorizations of G. We say that 

G = HK is greater than G----H-K if we have either H=> H and K=> K or 

H^>H and K ^ K . In this sense we use the terminologies such as a maximal 
T > ' 

factorization and a minimal factorization. A factorization is maximal if and 

only if both factors are maximal subgroups. If H D K = 1, with a factorization 

G = HK, we call this factorization an exact factorization. Obviously an exact 

factorization is a minimal factorization. An exact factorization G — H-K such 

that (HA, K:\)=--= 1 we call a Sylow factorization. Then every soluble group 

admits, by P . HALL'S theorem, just one Sylow factorization0). There exists, 

however, a group admitting more than one Sylow factorization, for instance, 

LF(2, 11) and LF(2,23) as we show in § 3. Further we remark that these 

notions are easily modified to those of the factorization classes. 

§ 2. 
We summarize here the necessary results on subgroups of the iinear 

fractional group LF(2,p").6) 
(1) Let q be a prime such that (mod q) and/7"'=El (mod q). for 

any m < 2n. Assume q s 7. Then every maximal subgroup of LF(2, p"), 
whose order is divisible by q, is a dihedral group D of order p" -J- 1 for 

p > 2 and of order 2(2"+1) for /7 = 2. Further, all such subgroups, with 

a fixed q, are conjugate with one another. 

The same holds for q = 5 and g = 3 if the order of a maximal 

subgroup is divisible by q\ On the contrary, if the order of a maximal sub-

group is divisible by q to the first power only, then the subgroup may be 

one of the following three types of groups for q = 3: (1) the tetrahedral group 

A4 for p" = 3 (mod 8), (2) the octahedral group S4 for p" 1 (mod 8), and (3) 

the icosahedral group AT, for f n E + l (mod 10); and it may be A , for <7 - = 5 

and 1 (mod 10). Further, the yl4's are all conjugate with one another 

and the £,'s and the A,'s constitute two classes of conjugate subgroups. 

(2) Assume p > 2. Every maximal subgroup of LF(2,p") containing a 

/7-Sylow subgroup of LF(2,p") is a normalizer N of the p-Sylow subgroup. 

They are clearly all conjugate with one another. 

(3) Assume /7 = 2 and n> 2. Every maximal subgroup of LF(2,2"), 

whose order is divisible by 2""', is the normalizer N of a 2-Sylow~subgroup. 

They are clearly all conjugate with one another. 

P. HALL proved that every soluble group is representable uniquely (up to the con-

jugation) as a product of pairwise commutative Sylow subgroups. See P. HALL, On the 

Sylow systems of a soluble group, Proc. London Math. Soc., 43 (1937), 316—323. This 

theorem can be considered as a generalization of the so-called fundamental theorem of the 

elementary number theory. 

») See •>). 



81 N. ltô : Factorizations of the linear fractional group. 

(4) A theorem of E. GALOIS. LF(2,p") always contains subgroups of index 

p" + 1, but contains subgroups of lower index only when p" — 2, 3, 5, 7,3", 11. 

§ 3 . 

(1) Let us consider the linear fractional group G = LF(2,p") other than 

LF(2,2X) and LF(2,p), where p is a Fermat prime: /?== 2K—1. Since the 

order of G is for p > 2 and is 2"(2"" —1) for p= 2, we see, by 

a theorem of K. ZSIGMONDY
 7), that there exists a prime q such that 

p-" = 1 (mod q) and pm 1 (mod q) for any m < 2n. Let q be the largest one 

among such primes. We first treat the case q ¡^7. 

Let us assume that G is factorizable and let G=HK be a maximal 

factorization. Hence both H and K are maximal subgroups of G. Since the 

order of either H or K is divisible by q, we may assume, by symmetry, that 

the order of A' is divisible by q. Then'we have, by §2(1), that K-- D. Now 

we further assume that p> 2. Since the order of K is prime to p, H con-

tains a p-Sylow subgroup of G. Therefore, by §2(2), H=--N. Since the 

p"(p"—i) 
orders of K and N are p"-j-1 and ^ respectively, clearly NnD^ 1. 

Conversely, if NHD—l, then G admits clearly the factorization G~ND. 
v"—1 p" (p" — 1) 

Now if -i—^— is odd, that is, if p"^3 (mod 4), then r - and p" -j- 1 

are relatively prime to each other. Therefore DnN — 1. Hence in this case 
p" ] 

G admits the only one factorization G = N-D. On the other hand if --^ — 

is even, that is, if p" ^ 1 (mod 4), then both ^ ^ ^ and p" +1 are even. 

Since all the elements of order 2 are conjugate with one another and every 

conjugate subgroup of N can be attained from N by the transformation 

with a suitable element of D, the element of order 2 of D can be assumed to 

be contained in N. Therefore NfiD>\. Hence in this case G admits no 

factorization. 

(2) Now let us assume p = 2. Under our assumptions we have clearly 

n a 4. Since the order of D is divisible by 2 only to the first power, we 

have, by § 2 (3), H = N. Since the orders, of D and N are 2(2"+ 1) and 

2(2" — 1), G clearly admits the factorization G = D N, where the order of 

DHN is 2. Further, let Z be the cyclic subgroup of order 2" + 1 of D. Then 

also G = ZN, where Z f [ N = \ . Hence in this case G admits just two fac-

torizations: G = D N and G = Z N. 

' ) K . ZSIGMONDY, Zur Theorie der Potenzreste, Monatshefte für Math, und Phys., 3 

( 1892 ) , 2 6 5 — 2 8 4 . 

A C) 
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(3) Next we treat the case q --5. We can, however, by § 2(1), assume 

that q divides p-"—1 to the first power only and that p'" ^ 1 (mod q) for any 

m <2/7. Since at least one of the three numbers p—l,p-—1 and p4 — 1 is divi-

sible by 5, we clearly have that n S 2. More precisely if PUR 4 (mod 5), then 

n - - 1, and if p 2 or 3(mod5), then n ^2. Further, by a celebrated the-

orem of E . GALOIS and by § 2 ( 1 ) , we have only to consider LF(2,p) for p-G 59 

and p —4 (mod 5), and LF(2,pr) for pf £ 59 and p 2 or 3 (mod 5). Under 

our assumptions LF(2, 2% LF(2, 3'), LF{2, 19) and LF(2,29) only can enter 

into our consideration. Let us first consider LF(2, 19) and LF(2,29). At any 

' rate, since 19~ 3 (mod 4), LF(2, 19) admits the factorization LF(2,19) N D, 
and since 29i: 1 (mod4), LF(2,29) does not admit such a factorization. Now 

let us assume that LF(2, 19) and LF(2, 29) admit the following factorizations: 

LF(2, 19)- -AM , and LF(2, 29) = N-Ar„ where A,, is the icosahedral group. 

We must have that the order of NDAr, is 3 for LF(2, 19) and is 2 for 

LF(2,29). Now since these actually hold good for NC\A;„ LF(2,19) and 

¿F(2,29) admit actually such factorizations. Since a 3-Sylow subgroup of 

LF(2, 19) is cyclic, we clearly have that LF(2, 19)=.AM5 is a minimal fac-

torization. On the other hand, let 5 be the subgroup of order 29-7 of N. 
Then clearly LF(2,29) admits the factorization: LF(2, 29) = <S A, where 

SnA , 1- Since A,,'s constitute just two classes of conjugate subgroups in 

both LF(2, 19) and LF(2, 29), we have that LF(2, 19) admits just three fac-

torizations LF(2, 19)= N D and two LF(2, 19) = N - A r „ and that LF(2,29) 

admits just four factorizations: two LF(2, 29) = N-A-, and two LF{2, 29)- = 

(4) Secondly let us consider LF{2,2r) and LF(2,2-). We remark that 

these are isomorphic to A,, and A, respectively, where A„ is the alternation 

group of degree n. Now maximal subgroups, of LF(2,3-), whose orders are 

divisible by 3 are.//, St, and A;„ where St is the octahedral group. Since 

3'J — 1 (mod 4), LF(2, 3") admits no factorization of the form LF(2, 3 ) = H • D, 
where H is one of the three groups N, S, and A5. Therefore we clearly Have, 

by §2(1), that K=Ar>. Since a 2-Sylow subgroup of N is cyclic, the order 

of N n A , is 6. Therefore LF(2, 32) admits the factorization LF(2, 3) = N-Ar,. 
Since a subgroup of index 6 of A5 is D, and since all the elements of order 

2 of LF(2,3") are conjugate with one another, and since //contains no 

subgroup of order 12, the factorization LF{2, 32) = vV Ar, is minimal. Next we 

consider the case that the H = Si Si's constitute just two classes of conjugate 

subgroups in L F(2,3-) which we represent by SJ1' and Sf' respectively. Simi-

larly the A 's constitute just two classés of conjugate subgroups in LF(2,3-), 

which we represent by Ai,n and A!2) respectively. Thereby we can assume, as we 

easily see, that the order of Si" fl A',0 is 4 for / = 1 , 2 and the order of S f D A'," 

is 12 for i,j= 1, 2 and /4=7- Therefore LF(2, 32) admits the factorization 

LF(2, 32) = S4' Ai," for / = 1,2 and does not admit the factorization LF(2, 32) 

sT• A1;'1 for i,j= 1,2 and /=|=y. Now let Ai° be the tetrahedral subgroup 
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of S'^ for / 1,2. Since clearly the order of A**'DAr," is 4 for / = 1 , 2 , we 

have that LF(2,31) does not admit the factorization LF(2, 3") = A^-Ar," for 

/ 1,2. Therefore LF(2, 32) = Si" A-," for / = 1 , 2 is a minimal factorization, 

where Sj'nA','1 is of order 4. Finally we consider the case H = A(?? and 

K - Af*. Then we easily see that the order of Ar^nA.^ is 10. Therefore 

LF(2,32) admits the factorization LF(2, 3") = A'/'-A-f1. Further let Ai0 be 

a tetrahedral subgroup of A?,'* for / = 1 , 2 . Then, since clearly the order of 

AV'nAf and Aif'nAl," is 2, LF(2,3") admits the factorizations LF(2, 3") = 

= Aj "• Aif' and LF(2, 3) A^'-Af where Ai"o A.?' and Ai."n A f are of order 

2. These factorizations are clearly minimal , factorizations. In altogether, 

LF(2,3') admits just seven factorizations:- two LF(2,3'-') = N-A;„ two 

LF(2, 3-) ---•• S4-A.„ LF(2, 3-) = A,-A, and two LF(2, 32) = A,-A,,. Now the 

case of LF(2,2-) is rather evident. We immediately have the following result: 

L F(2, 2') admits just two factorizations: L F(2, 2J) = /V- D and L F{2,22) = Z-N. 
(5) Next we treat again the case i/ 3. We can, as in the case q = 5, 

assume, by §2(1), that q divides p-"— 1 to the first power only and that 

p'" =E 1 (mod q) for any m<2n. Since at least one of ¿wo numbers p—1 

and p1— 1 is divisible by 3, clearly n- 1 and pr::2(mod3). Moreover, by 

the theorem of E . GALOIS and by § 2 (1) , we have only to consider LF(2,p) for 

p"-; 59. Under our , assumptions LF(2,2), LF(2,5) LF(2,11) and LF(2,23) 

only can enter into our consideration. Clearly LF(2, 2) admits just one fac-

torization LF(2, 2) = N Z, where Z is the 3-Sylow subgroup. Since LF(2, 5) 

^ LF(2, A,, we have first trivially that LF(2,5) admits just two facto-

rization: ¿F(2, 5) = D /V and LF(2, 5) ----- Z-/V. Let us next consider LF(2, 11). 

At any rate, since 1*1 (mod 4), LF(2,11) admits the factorization 

LF(2, 11)== ND. Further naturally H = N. Now, since clearly j V n A 4 = l , 

we see that LF(2, 11) admits the following factorizations: LF(2, 11) = /V A, 

and LF(2, 11) = N-Ar,. Now let Z be the 11-Sylow subgroup of N. Since 

again we clearly have that Z H A ^ = 1 , LF(2,11) admits the factorization 

LF(2, l l ) = Z-Ar,.We remark here that the A,,'s constitute just two classes of 

conjugate subgroups in LF(2, 11). Thus we see that LF(2, 11) admits just six 

factorization: LF(2, \\) = N D, LF(2, 11) - N-A,, two LF{2, 11) = N-A;, 
and two LF(2, 11) = Z-Ar,. Finally let us consider LF(2, 23). At any rate, since 

23 = 3 (mod 4), LF(2,23) admits the factorization LF{2, 23) = N D. Further 

we have naturally that H = N. Now since clearly 7VnS4 = l, we see that 

LF(2,23) admits the factorization LF(2, 23) = N St where NnS4= 1. Since 

the S4's constitute just two classes of conjugate subgroups in LF (2, 23), we 

have that LF(2,23) admits just three factorizations LF(2,23) = N-D and two 

factorizations LF(2, 23) = N-St. 

R e m a r k . Obviously the factorizations of LF(2,11): LF(2,11) = 
= N D = N- A4 = Z-Ai1' = Z A f and those of L F{2, 23): LF(2, 23) = N-D = 

=7V-Sl1) = Af-Sf are all Sylow factorizations. Clearly D and A4 in ¿/^(2, 11), 
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or D and & in LF(2,23), are not isomorphic with each other. Similarly 

A.'," and Af in LF(2,11), or 51° and ST in LF(2,23) are not conjugate 

with.each other. This shows the Sylow structure theory of P. HALL on soluble 

groups certainly fails to hold for general finite groups. It may be of interest 

to find a general method of constructing groups in which the Sylow structure 

theory does not hold. 

Let us lastly consider LF(2. 2:1) and LF(2,p) for (k £: 2). 

Since a 3-Sylow subgroup of LF(2,2S) is cyclic, we may assume, by a the-

orem of H. WIELANDT8), that either H or K, say H, by symmetry, contains 

a 3-Sylow subgroup of L F(2, 23). Therefore, as before, we have that H = D. 
Then, since the order of K must be divisible by 21, we have, by § 2 (3), that 

K=N. Hence LF(2,23) admits just two factorizations: LF(2,2') ND and 

LF(2,23) = NZ, where Z is the cyclic subgroups of order 9 of K. In other 

words LF(2, 23) admits the same factorizations as LF(2,2") for n 4. Now 

we treat LF(2,3). Since LF(2,3) is isomorphic to the tetrahedral group, we 

see immediately that LF(2, 3) admits the only one factorization LF(2,3)= ND, 
where N is a 3-Sylow subgroup and H is the 2-Sylow subgroup of LF(2, 3). 

So, consider LF(2,'p) for p = 21'—1 (k a 3). At any rate we have, by § 2(2), 

that H=^N. Since the order of N is odd, K clearly contains a 2-Sylow sub-

group of LF(2,p). Now let us assume that £ g 4. Then by § 2 (1), a 2-Sylow 

subgroup of LF(2,p) is maximal. Clearly it is a dihedral group. Therefore 

K=D. Hence we have that LF(2,p) for p = 2'—1 (A: S 4) admits the only 

one factorization LF(2,p) = N D, where A'is a 2-Sylow subgroup. Finally 

treat LF(2,7). Here we have, by §2(1), that LF(2,7) contains as a maximal 

subgroup the octahedral group St. Therefore we have that K=S4. Let Zand 

D be the 7-Sylow subgroup and a 2-Sylow subgroup of N and respec-

tively. Since cleary Z n S 4 = l and NnD = \, and since s constitute just 

two classes of conjugaté subgroups in LF(2, 7), we have that LF(2, 7) admits 

just five factorizations: two LF(2,7)== N-S4, two LF(2,1)^ Z S4 and 

LF(2, 7) = N D. 
R e m a r k . Thus we see that there exists a simple group with a nil-

potent maximal subgroup; LF(2,p) for p = 2k—1 and k & 4 is such one. 

Naturally such a group is not nilpotent-factorizable, since, otherwise, it must be 

solubleD). It may be of interest to seek for a simple group with a maximal 

jD-Sylow subgroup for p > 2. 
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s) H. WIELANDT, Über das Produkt paarweise vertauschbarer nilpotenter Gruppen, 

Math. Zeitschrift, 55 (1951), 1—7. 
a) Cf. N. ITÖ, Remarks on factorizable groups, these Ada, 14 (1951), 83—84. 


