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Uber zwei Extremaleigenschaften des Kreisbogens
' und der Kugelfliche.

Von A. MOOR und A. TOROK in Debrecen.

Wir werden zeigen, dafl die Kreisbdgen und die Kugelflichen die Lésung
von zwei Maximum-Minimum-Problemen liefern. In § 1 werden wir. einen
Hilfssatz von. H. BRUNN') in verschérfter Form, sowie sein Analogon im Raum
beweisen. In § 2 behandeln wir die beiden Extremalelgenschaften der Kreis-
bogen und der Kugelflachen

§ 1. Der Hilfssatz von H. Brunn.

Ein Mond M bedeutet im folgenden eine géschlossene Kurve, die aus
zwei Konvexbodgen besteht, deren Tangenten stetig sind und die auf dieselbe
Seite der Verbindungsgeraden ihrer gemeinsamen Endpunkte A, A, fallen und
aufler ihren Endpunkten keine gemeinsame Punkte besitzen. Die Kriimmung
#(s) der Konvexbogen soll stiickweise stetig sein (der Parameter s bedeutet
die Bogenlinge); in einem Punkt P, wo x(s) nicht stetig ist, sollen x(s—0)
und x(s-0) existieren.

Einer der Konvexbdgen des Mondes liegt im konvexen Bereich, der

vom anderen Bogen und von der Strecke A,A, begrenzt wird: . dieser heifit
~der innere Bogen, der andere der dufere Bogen des Mondes. Der Mond M
ist einfach, wenn die Totalkriimmung seines duBeren Bogens = - ist. Offen-
bar ist dann die Totalkriimmung seines inneren Bogens auch = 7.

Lemma 1. Die Maximalkriimmung des dufleren Bogens eines einfachen
Mondes ist grofier als die Minimalkriimmung seines inneres Bogens.?)

" 1) H. Brunn, Uber Ovale und Eiflichen, Inaquguraldissertation Miinchen 1887, S. T;
Gvua (Juuus) Sz.-Nacy, Ein Beweis des Vierscheitelsatzes, Jahresbericht der Deutschen
Math.-Vereinigung, 52 (1943), 198—200. _

?) In den zitierten Arbeiten von H. Brunn und Gv. Sz.-Naov ist nur bewiesen, daB
die Maximalkriimmung des 4uBeren Bogens nicht kleiner ist,.als die Minimalkriimmung des
inneren Bogens..

’
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Beweis: Ist y, der dufiere und 7, der innere Bogen des einfachen
Mondes M, so ist es moglich, durch die Ecken A, und A, zwei parallele
Geraden g, und g, so zu legen, daB sie die beiden Bogen nur in den Ecken
treffen. Verschiebt man 7. in der Richtung dieser parallelen Geraden so, daf
y, iiber y, passiert, so geht y, schlieBlich in einen Bogen y; iiber, der ganz
auf der konkaven Seite von 7, liegt, mit y, aber mindestens einen Punkt
gemeinsam hat. Die gemeinsamen Punkte von y, und y; bilden eine ge-
schlossene Menge U (die moglicherweise aus einem einzigen Punkte besteht).
Es sei P ein Punkt am Rande von U. In P trennen sich y, und y;. In dem
Punkte P beriihren sich diese Bogen, weil die Ecken von M offenbar keine
gemeinsamen Punkte von 7, und y; sein konnen. Wir wihlen nun P als
Anfangspunkt eines Koordinatensystems, dessen x-Achse eine gemeinsame
Halbtangente von y,,y; bildet und so gerichtet ist, daf y, und y; in der
ersten Viertelebene (wo also die Koordinaten der Punkte nicht negativ sind)
in der Umgebung vom P keinen gemeinsamen Punkt (auBer P) besitzen. Die
y-Achse soll nach der konkaven Seite von y, und y; zeigen (vgl. Figur I).
Die Bogen 7, und 7, kann man durch die Gleichungen :

8 8

(1a) Xi =‘f(cosf %:(s) ds) ds

(1b) yi= _[(sin f x:() ds) ds

0 0
angeben®), wo sich der Index /=1 auf y, und der Index i = 2 auf y, bezieht,
und wo x, und x, die entsprechenden Krﬂmmungen und s die von P gerechnete
Bogenldnge bedeuten.

Figur 1.

Wnr tragen auf y; und y, vom Punkte P aus Bogen von der glelchen
Liange s auf und wir behaupten, da8

@) ¥:(8) > yi(s)- T

3) Vgl. etwa Duscuexk—Maver, Lehirbuch der Differentialgeometrie 1. (Leipzig und
Berlin, 1930), S. 52.
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Es sei B der Punkt auf y; mit PB—=s (vgl. Figur 1) und projizieren wir
B senkrecht bzw. parallel zur x-Achse auf y,. So bekommen wir die Punkte
A bzw. C, fiir die die Ungleichungen -

©) . PB<PA+1B, AB<AC

bestehen. Die erste Ungleichung folgt sofort daraus, dab der konvexe Bogen
PB im Inneren des Konvexberexches liegt, der von PA AB und BP begrenzt

wird. Aus (3) folgt nun PB<PC und das beweist die Unglenchung (2).
Es sei nun J >0 so klein gewihlt, daB
8

@ \Jm@®<? C (i=1,2)

0

[

‘besteht, und daB x;(s) im Intervall 0<s<6 stetig ist. Wire in diesem Intervall .

G %(S) = (s,
so bestinde nach (1b) und (4) '

V() —n(s) =f(si’n J‘-sxzds-f sin Jiz,ds) ds=0
-0 0 . 0.

im Widerspruch zur Ungleichung (2). Es gibt also Werte von s, fiir die
x,(s) > x,(s), und das beweist die Richtigkeit von Lemma 1.

‘Wir wollen jetzt das Analogon des Lemmas von H. BRUNN im Raum
formulieren. Unter einem rdumlichen Mond M, verstehen wir eine geschlos-
sene konkave Fliche, die aus zwei konvexen Flichen § und §:; mit stetigem
GauB’schen KriimmungsmaB besteht und die auBer ihrer Schnittlinie — die
eine sich nicht schneidende geschlossene Raumkurve ist — keinen weiteren
gemeinsamen Punkt haben. Wenn eine der sphérischen Bilder von §, und 73,
das andere enthilt, dann wird diejenige Fldche, deren sphdrisches Bild das
groBere ist, dupere Fliche des Mondes genannt; die andere ist die innere
Fldiche. Sind die sphdrischen Bilder gleich, so ist die dufieré Fldche diejenige,
die an der konvexen Seite der anderen liegt. Der rdumliche Mond ist einfach,
wenn das sphirische Bild der duBeren Fliche auf einer Halbkugel liegt.

Das Analogon des H:lfssatzes von H. BRUNN fiir die rdumlichen Monde
ist das folgende: :

Lemma 2. Das Maximum des Gauf’schen Kr[immungsmaﬁes bzw. das
Maximum der mittleren Kriimmung der duferen Fldche eines einfachen rdum-
lichen Mondes M, ist nicht kleiner als das Minimum des Gauf'schen Kriim-
mungsmapes, bzw. das Minimum der. mittleren Kriimmung der inneren Fldche.

Beweis. Bezeichne §, bzw, §, die duBere, bzw. innere Fliche von M,,
weiter bezeichne S die* Schnittlinie von §, und . Da M, einfach ist, kann
man durch die Punkte von S parallele Geraden legen, die $, nur in den
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Punkten der Schnittlinie S treffen. Es entsteht somit eine Zylinderfliche, die
M, in ihrem Inneren enthdlt. Wenn man die #duBere Fliche §, von M,
parallel mit den Erzeugenden der Zilinderfliche auf die Weise bewegt, daB
¥, liber §, passiert, so erreicht §, schlielich eine Stellung §,, in der §, die
Flache &, an der konkaven Seite berithrt. Offenbar ist ein Bertihrungspunkt:
P, den wir nach der Bewegung erhalten haben, immer ein innerer Punkt des
Mondes (P¢§ S).

Die Tangentenebene der Fliche 3, im Punkt P ist hiernach mit der
von §, identisch. Wenn N eine gemeinsame Normalebene von §, und §, im
gemeinsamen Bertihrungspunkt P -ist, dann folgt wegen der innerlichen Beriih-
rung, daB die Kriimmung des in N liegenden Normalschnittes von-J, nicht
kleiner, als die des in N liegenden Normalschniftes von %, ist. Bedeutet also
# die Kriimmung eines beliebigen Normalschnittes von §, im Beriihrungs-
punkt P, x, die von §, in P, und liegen die beiden Normalschmtte in einer
gemeinsamen Ebene, so ist '
) HZ=x. '

Bezeichnen K! und K/’ die Hauptkrimmungen von §; (i=1,2), so"
kann man x: nach der Formel von EULER in der Form _
a x; = K cos? ¢, + K}’ sin® ¢; (i=12)
darstellen, wo ¢; den Winkel des Normalschnittes mit der ersten Hauptrich-

tung von 3§; im Punkt P bedeutet. Bestimmt die zu N senkrechte Normal-
ebene N die Normalschnitte mit den Kriimmungen x; (i = 1,2), so folgt aus

der Gleichung (7) (wegen (ﬁ:(/,.i.*.:;f),, daB

;(Z,-’r J—',)=H. (l= ],2)
ist, wo Hiz% (K! 4+ K!") die mittlere Krimmung von J; bedeutet. Da neben
(6) auch -

8) mEx

giiltig ist, so folgt nach (6) und (8), dab H,= H, im Punkte P besteht,.
wonach die zweite Halfte von unserem Lemma 2 bewiesen ist.

Um auch dessen erste Hilfte beweisen zu kdnnen, berechnen wir x;x;..
Da neben (7) auch . _
' x: = K sin® i+ K{’ cos’ g ) (i=1,2)

gilt, so ist wegen cos* ¢; = (1— sin® @;)*:
Xk = K K'+ 4 (sm 20 (K — K")2 ‘ (i=1,2).

Aus dieser Gleichung folgt, dab z;x.-;.l{.-’ # ist. Nach (6) und (8) besteht

-
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dann die Ungleichung
(9) ) KXy = xlxl>K’K
wenn wir fir die Richtungen der _betrachteten Normalebenen gerade d1e
Hauptrichtungen von &, im Punkte P wihlen.
Betrachten wir jetzt die Hauptkriimmungen von &, im Punkt P SO
bekommen wir aus (9)
o K Ky = K K{
und das beweist den zweiten Teil von Lemma 2.
Vermutlich kann auch im Lemma 2 das Zeichen ,=* durch ,>% ersetzt
werden, doch solite dazu eine viel feinere Uberlegung benutzt werden.

§ 2. Die Extremaleigenschaften der Kreise und der Kugel.

1. Es sei ¢ (0<e <) ein Winkel mit dem Scheitel O. Auf jedem
Schenkel von e sei je ein Punkt T, T, gegeben, so daf OT,= O7,. Wir
bezeichnen die von 7; bzw. T, ausgehenden Halbgeraden der Schenkel von
a mit g, bzw. g,.

0

Figur 2.

- Einen Bogen C werden wir zuldssig nennen, wenn er die Endpunkte

T,, T, und in diesen die Halbtangenten g, g, hat, und wenn seine Tangente

stetig ist. Fiir die Kriimmung von C sollen dieselben Bedingungen erfilit

werden, wie bei den Monden, auBerdem soll C im Dreieck OT\T; liegen.

Wir betrachten folgende Probleme: Es soll derjenige unter den zuldssigen

Bigen C bestimmt werden, dessen maximale Kriimmung am kleinsten ausfillt,
und auch derjenige, dessen minimale Kriimmung am grofiten ausfallt. :

Sei k, der Kreisbogen, mit der Krimmung x,, der die Schenkel von «

in den Punkten - T,, T, bertihrt und sonst im Innern des Dreiecks OT,T,

liegt (vgl. Figur 2). Es besteht der

AN
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Satz 1. Bedeutet x(s) die Krummung eines zuldssigen Bogens C (C = k,),
so besteht die Ungleichung

(10) . max x(s) > x#, > min x(s),
also ist k, die einzige Losung beider Extremalprobleme.

Beweis: Durchschneidet C den Kreis 4,, so entsteht mindestens ein

einfacher Mond, wo C -der duBiere Bogen, und ein einfacher Mond, wo C der

_inneré Bogen ist. Dann folgt Satz 1 aus Lemma 1.

Schneidet aber C den Kreis 4, nicht, so bilden C und k, einen
einfachen Mond, dessen Bogen einander in 7, beriihren. Wenn C der duBere
Bogen ist, so folgt die erste Ungleichung von (10) wieder aus Lemma 1,
wihrend die zweite Ungleichung von (10) aus der Tatsache folgt, daB sich
C vom Kreis &, in einem  Punkt P* (moglicherweise in Tl) trennen mus.
In der Umgebung von P‘ gibt es dann Punkte von C, wo die Krimmung
von C kleiner ist al$ dle]emge von k. Ist endlich C der innere Bogen, so
folgt (10) wieder nach Lemma 1 bzw. aus der -Berithrung in einem Punkte
Q’, wo C und k, sich trennen. '

. Damit haben wir den Satz 1 vollstindig bewiesen.

2. Das Analogon des Problems im dreidimensionalen Raum kann leicht -

formuliert und auf Grund des Lemmas 2 .gelost werden.

Es soll G einen geraden Kreiskegel bedeuten, auf dessen Erzeugenden
wir vom Spitzpunkt des Kegels aus gleich lange Strecken auftragen. Die
Endpunkte bilden einen Kreis, den wir mit k, bezeichnen - wollen. Wir
bezeichnen nun als zaldssige Eiflichen diejenigen offenen Eifldchen (die also
- einen Teil einer geschlossenen Eifliche bilden), die den Kegel @ lings &,
berithren (d. h. die Erzeugenden -von @ sind. Tanganten der zuldssigen
Eiflichen), und deren Gesamtkrﬁmmung <2z ist. Offenbar sind diese offenen
Eiflachen einfach.

Es soll diejenige unter den zuldssigen Eifldchen §-bestimmt werden, deren
maximale (minimale) Gauf'sche bzw. mittlere Kriimmung- am kleinsten
(groﬁten) ausfallt.

Es soll nun &, die den Kegel @, lings &, beruhrende Kugelfliche bezelch-
nen, deren Gesamtkrimmung < 2st ist. Bedeutet r 'den Radius der Kugel-
fliche $,, so besteht der

"~ Satz 2. Ist K bzw. H die Gau,B_sclze bzw. mlttlere Krummung einer

zuldssigen Eifliche § (F==8,), so ist:

1 .
F;mlﬂ[\’,

(11b) max.H = 1 = min H.

(11a) maxK-Z

-~

il
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Fiir die Kugelfliche R, (moglickerweise auch fiir andere Flichen) erreicht
“also.die Maximal- bzw. Minimalkriimmung der zuldssigen Eiflichen den klein-
sten bzw. groften Wert. '

Beweis des Satzes 2. Nach Lemma 2 foigt dieser Satz unmittelbar,
da eine beliebige zuldssige. Fliche § mit &, zusammen einen einfachen rdum-
lichen Mond bildet, deren Fldchen einander. ldngs k, bertihren. Wir konnen
jetzt weiter in analoger Weise verfahren, wie beim Beweis des Satzes 1.

(Eingegangen am 1. Dezember 1953)



