
163 

Über zwei Extremaleigenschaften des Kreisbogens 
und der Kugelfläche. 

Von A. MoÖR und A. TÖRÖK in Debrecen. 

Wir werden zeigen, daß die Kreisbögen und die Kugelflächen die Lösung 
von zwei Maximum-Minimum-Problemen liefern. In § 1 werden wir einen 
Hilfssatz von. H . BRUNN ') in verschärfter Form, sowie sein Analogon im Raum 
beweisen. In § 2 behandeln wir die beiden Extremaleigenschaften der Kreis-
bögen und der Kugelflächen. 

§ 1. Der Hilfssatz von H. Brunn. 

Ein Mond M bedeutet im folgenden eine geschlossene Kurve, die aus 
zwei Konvexbögen besteht, deren Tangenten stetig sind und die auf dieselbe 
Seite der Verbindungsgeraden ihrer gemeinsamen Endpunkte Au A2 fallen und 
außer ihren Endpunkten keine gemeinsame Punkte besitzen. Die Krümmung 
x(s) der Konvexbögen soll stückweise stetig sein (der Parameter s bedeutet 
die Bogenlänge); in einem Punkt P, wo x(s) nicht stetig ist, sollen x(s—0) 
und *(s + 0) existieren. 

Einer der Konvexbögen des' Mondes liegt im konvexen Bereich, der 
vom anderen Bogen und von der Strecke A ^ begrenzt wird: dieser heißt 
der innere Bogen, der andere der äußere Bogen des Mondes. Der Mond M 
ist einfach, wenn die Totalkrümmung seines äußeren Bogens ^ ;-T ist. Offen-
bar ist dann die Totalkrümmung seines inneren Bögens auch ^ TI. 

L e m m a 1. Die Maximalkrümmung des äußeren Bogens eines einfachen 
Mondes ist größer als die Minimalkrümmung seines inneres Bogens.2) 

i) H. BRUNN , Über Ovale und Eiflächen, Inauguraldissertation München 1887, S. 7; 

GYULA (JULIUS) SZ .-NAGY , Ein Beweis des Vierscheitelsatzes, Jahresbericht der Deutschen 
Math.- Vereinigung, 52 (1943), 198—200. 

-) In den zitierten Arbeiten von H. BRUNN und G Y . SZ .-NAOY ist nur bewiesen, daß 

die Maximalkrümmung des äußeren Bogens nicht kleiner ist, als die Minimalkrümmung des 

inneren Bogens. 
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B e w e i s: • Ist y2 der äußere und y, der innere Bogen des einfachen 
Mondes Af, so ist es möglich, durch die Ecken A, und A2 zwei parallele 
Geraden und g2 so zu legen, daß sie die beiden Bogen nur in den Ecken 
treffen. Verschiebt man y2 in der Richtung dieser parallelen Geraden so, daß 
y2 über y, passiert, so geht y2 schließlich in einen Bogen y2 über, der ganz 
auf der konkaven Seite von y, liegt, mit y, aber mindestens einen Punkt 
gemeinsam hat. Die gemeinsamen Punkte von y, und y2 bilden eine ge-
schlossene Menge U (die möglicherweise aus einem einzigen Punkte besteht). 
Es sei P ein Punkt am Rande von U. In P trennen sich y, und y2. In dem 
Punkte P berühren sich diese Bögen, weil die Ecken von M offenbar keine 
gemeinsamen Punkte von y, und y2 sein können. Wir wählen nun P als 
Anfangspunkt eines Koordinatensystems, dessen x-Achse eine gemeinsame 
Halbtangente von y„ y'2 bildet und so gerichtet ist, daß y, und y2 in der 
ersten Viertelebene (wo also die Koordinaten der Punkte nicht negativ sind) 
in der Umgebung vom P keinen gemeinsamen Punkt (außer P) besitzen. Die 
;y-Achse soll nach der konkaven Seite von y, und y2 zeigen (vgl. Figur 1). 
Die Bögen yi "A kann man durch die Gleichungen: 

8 8 

(la) Xi = [(cos f x,<(s)</s)</£ 
O 0 

8 8 
(lb) y, = f(sin f x,(s) £/s) ds 

0 0 

angeben3), wo sich der Index i— 1 auf y, und der Index / = 2 auf y2 bezieht, 
und wo *, und x.2 die entsprechenden Krümmungen und s die von P gerechnete 
Bogenlänge bedeuten. 

Wir tragen auf y2 und y, vom Punkte P aus Bögen von der gleichen 
Länge s auf und wir behaupten, daß 
(2) > * ( « ) • 

3) Vgl. etwa D U S C H E K — M A Y E R , Lehrbuch der Differentialgeometrie I . (Leipzig und 

Berlin, 1 9 3 0 ) , S . 5 2 . 



Über zwei Extremaleigenschaften des Kreisbogens und der Kugelfläche. .159 

Es sei B der Punkt auf y2 mit PB = s (vgl. Figur 1) und projizieren wir 
B senkrecht bzw. parallel zur x-Achse auf yx. So bekommen wir die Punkte 
A bzw. C, für die die Ungleichungen 

(3) PB<PA + ÄB, ÄB<ÄC 
bestehen. Die erste Ungleichung folgt sofort daraus, daß der konvexe Bogen 
PB im Inneren des Konvexbereiches liegt, der von PA, Aß und BP begrenzt 
wird. Aus (3) folgt nun PB<PC, und das beweist die Ungleichung (2). 

Es sei nun d > 0 so klein gewählt, daß 
4. 

(4) J * , ( s ) f f e < y 0 = 1 , 2 ) 

-. • 0 

besteht, und daß x,(s) im Intervall 0 < s < d stetig ist. Wäre in diesem Intervall 
(5) *ä(s) =§ *,(«), 
so bestände nach (lb) und (4) 

8 8 8 
y2(s)—yi(s) = J(sin Jx 2 ds— sin j * ! i / s ) d s ^ 0 

- 0 0 0 

im Widerspruch zur Ungleichung (2). Es gibt also Werte von s, für die 
x2(s)>x1(s), und das beweist die Richtigkeit von Lemma 1. 

Wir wollen jetzt das Analogon des Lemmas von H. BRUNN im Raum 
formulieren. Unter einem räumlichen Mond Mr verstehen wir eine geschlos-
sene konkave Fläche, die aus zwei konvexen Flächen & und % mit stetigem 
Gauß'schen Krümmungsmaß besteht und die außer ihrer Schnittlinie — die 
eine sich nicht schneidende geschlossene Raumkurve ist — keinen weiteren 
gemeinsamen Punkt haben. Wenn eine der sphärischen Bilder von & und % 
das andere enthält, dann wird diejenige Fläche, deren sphärisches Bild das 
größere ist, äußere Fläche des Mondes genannt; die andere ist die innere 
Fläche. Sind die sphärischen Bilder gleich, so ist die äußere Fläche diejenige, 
die an der konvexen Seite der anderen liegt. Der räumliche Mond ist einfach, 
wenn das sphärische Bild der äußeren Fläche auf einer Halbkugel liegt. 

Das Analogon des Hilfssatzes von H. BRUNN für die räumlichen Monde 
ist das folgende: 

L e m m a 2. Das Maximum des Gauß'schen Krümmungsmaßes bzw. das 
Maximum der mittleren Krümmung der äußeren Fläche eines einfachen räum-
lichen Mondes Mr ist nicht kleiner als das Minimum des Gauß'schen Krüm-
mungsmaßes, bzw. das Minimum der mittleren Krümmung der inneren Fläche. 

B e w e i s . Bezeichne & bzw, % die äußere, bzw. innere Fläche von Mr, 
weiter bezeichne S die»Schnittlinie von und Da Mr einfach ist, kann 
man durch die Punkte von 5 parallele Geraden legen, die % nur in den 
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Punkten der Schnittlinie 5 treffen. Es entsteht somit eine Zylinderfläche, die 
Air in ihrem Inneren enthält. Wenn man die äußere Fläche % von MT 
parallel mit den Erzeugenden der Zilinderfläche auf die Weise bewegt, daß 
% über g, passiert, so erreicht % schließlich eine Stellung g2f in der % die 
Fläche g, an der konkaven Seite berührt. Offenbar ist ein Berührungspunkt 
P, den wir nach der Bewegung erhalten haben, immer ein innerer Punkt des 
Mondes ( P $ S ) . 

Die Tangentenebene der Fläche $ä im Punkt P ist hiernach "mit der 
von & identisch. Wenn N eine gemeinsame Normalebene von g, und % im 
gemeinsamen Berührungspunkt P ist, dann folgt wegen der innerlichen Berüh-
rung, daß die Krümmung des in N liegenden Normalschnittes von nicht 
kleiner, als die des in N liegenden Normalschnittes von g, ist. Bedeutet also 
xt die Krümmung eines beliebigen Normalschnittes von & im Berührungs-
punkt P, *2 die von in P, und liegen die beiden Normalschnitte in einer 
gemeinsamen Ebene, so ist 
(6) 2 , 2 = * , . 

Bezeichnen K! und Kl' die Hauptkrümmungen von % (/ = 1,2), so 
kann man x, nach der Formel von EULER in der Form 
(7) = K! cos2

 <pt + Ki' sin2
 <j>i (i = 1 , 2 ) 

darstellen, wo <p; den Winkel des Normalschnittes mit der ersten Hauptrich-
tung von im Punkt P bedeutet. Bestimmt die zu N senkrechte Normal-
ebene N die Normalschnitte mit den Krümmungen ( / = 1,2), so folgt aus 

der Gleichung (7) jwegen y = </•;-f-yjv daß 

2 (*. + *;) = " ; ( / = 1 , 2 ) 

ist, wo //¡ = -y (Ki + K") die mittlere Krümmung von & bedeutet. Daneben 

(6) auch 
(8) S * i 

gültig ist, so folgt nach (6) und (8), daß H2 ^ Hx im Punkte P besteht, 
wonach die zweite Hälfte von unserem Lemma 2 bewiesen ist. 

Um auch dessen erste Hälfte beweisen zu können, berechnen wir 
Da neben (7) auch 

*,• = A7sin>,- + Äi" cos2 (pi ( / = 1 , 2 ) 
gilt, so ist wegen cos4^ = ( 1 ^ sin2 9p;)2: 

= Kl Kr + - 1 ( s i n 2 (ptfiKi'-Kry (i = 1, 2 ) . 

Aus dieser Gleichung folgt, daß %.K(K" ist. Nach (6) und (8) besteht 
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dann die Ungleichung 
(9) x2*2 ^ a K[K", 
wenn wir für die Richtungen der -betrachteten Normalebenen gerade die 
Hauptrichtungen von >m Punkte P wählen. 

Betrachten wir jetzt die Hauptkrümmungen von % im Punkt P, so 
bekommen wir aus (9) 

KK'i K[K" 
und das beweist den zweiten Teil von Lemma 2. 

Vermutlich kann auch im Lemma 2 das Zeichen „¡s" durch „>" ersetzt 
werden, doch sollte dazu eine viel feinere Überlegung benutzt werden. 

§ 2. Die Extremaleigenschaften der Kreise und der Kugel. 

1. Es sei a (0 < a < ri) ein Winkel mit dem Scheitel O. Auf jedem 
Schenkel von a sei je ein Punkt Tu T2 gegeben, so daß ÖT1 = OT2. Wir 
bezeichnen die von 7i bzw. T2 ausgehenden Halbgeraden der Schenkel von 
a mit gx bzw. g*. 

Figur 2. 

Einen Bogen C werden wir zulässig nennen, wenn er die Endpunkte 
7i, T2 und in diesen die Halbtangenten gug* hat, und wenn seine Tangente 
stetig ist. Für die Krümmung von C sollen dieselben Bedingungen erfüllt 
werden, wie bei den Monden, außerdem soll C im Dreieck OTxT2 liegen. 

Wir betrachten folgende Probleme: Es soll derjenige unter den zulässigen 
Bögen C bestimmt werden, dessen maximale Krümmung am kleinsten ausfällt, 
und auch derjenige, dessen minimale Krümmung am größten ausfälU. 

Sei k0 der Kreisbogen, mit der Krümmung x0, der die Schenkel von a 
in den Punkten 7i, T3 berührt und sonst im Innern des Dreiecks OT^T^ 
liegt (vgl. Figur 2). Es besteht der 

A 11 
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S a t z 1. Bedeutet x{s) die Krümmung eines zulässigen Bogens C (C ^ k0), 
so besteht die Ungleichung 

(10) max x(s) > x0 > min x(s), 
8 J» 

also ist k« die einzige Lösung beider Extremalprobleme. 

B e w e i s:- Durchschneidet C den Kreis Ar0, so entsteht mindestens ein 
einfacher Mond, wo C der äußere Bogen, und ein einfacher Mond, wo C der 
innere Bogen ist. Dann folgt Satz 1 aus Lemma 1. 

Schneidet aber C den Kreis k0 nicht, so bilden yC und k0 einen 
einfachen Mond, dessen Bogen einander in 7i berühren. Wenn C der äußere 
Bogen ist, so folgt die erste Ungleichung von (10) wieder aus Lemma 1, 
während die zweite Ungleichung von (10) aus der Tatsache folgt, daß sich 
C vom Kreis k0 in einem Punkt P* (möglicherweise in 7i) trennen muß. 
In der Umgebung von P* gibt es dann Punkte von C, wo die Krümmung 
von C kleiner ist als diejenige von k0. Ist endlich C der innere Bogen, so 
folgt (10) wieder nach Lemma 1 bzw. aus der Berührung in einem Punkte 
Q", wo C und k0 sich trennen. 

Damit haben wir den Satz 1 vollständig bewiesen. 
2. Das Analogon des Problems im dreidimensionalen Raum kann leicht 

formuliert und auf Grund des Lemmas 2 gelöst werden. 
Es soll ©A einen geraden Kreiskegel bedeuten, auf dessen Erzeugenden 

wir vom Spitzpunkt des Kegels aus gleich lange Strecken auftragen. Die 
Endpunkte bilden einen Kreis, den wir mit k0 bezeichnen wollen. Wir 
bezeichnen nun als zulässige Eiflächen diejenigen offenen Eiflächen (die also 
einen Teil einer geschlossenen Eifläche bilden), die den Kegel ®k längs k„ 
berühren (d. h. die Erzeugenden von ®n sind. Tanganten der zulässigen 
Eiflächen), und deren Gesamtkrümmung < 2„T ist. Offenbar sind diese offenen 
Eiflächen einfach. 

Es soll diejenige unter den zulässigen Eiflächen % bestimmt werden, deren 
maximale (minimale) Gauß'sche bzw. mittlere Krümmung am kleinsten 
(größten) ausfällt. , 

Es soll nun Äo die den Kegel <8* längs k0 berührende Kugelfläche bezeich-
nen, deren Gesamtkrümmung < 2JT ist. Bedeutet r den Radius der Kugel-
fläche 5t0, so besteht der 

S a t z 2. Ist K bzw. H die Gauß'sche bzw. mittlere Krümmung einer 
zulässigen Eifläche % (g~Ä0), so ist: 

(IIa) m a x K s s minK, 

(IIb) max.// ^ y ^ min H. 
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Für die Kugelfläche (möglicherweise auch für andere Flächen) erreicht 
also, die Maximal- bzw. Minimalkrümmung der zulässigen Eiflächen den klein-
sten bzw. größten Wert. 

B e w e i s des S a t z e s 2. Nach Lemma 2 folgt dieser Satz unmittelbar, 
da eine beliebige zulässige Fläche % mit Ä„ zusammen einen einfachen räum-
lichen Mond bildet, deren Flächen einander längs k0 berühren. Wir können 
jetzt weiter in analoger Weise verfahren, wie beim Beweis des Satzes 1. 

(Eingegangen am 1. Dezember 1953.) 


