On a problem in set theory.

By G. FODOR in Szeged.

P. ERDÓS has posed the following problem :

Let m be an infinite cardinal number, φ the initial number of power m, and Γ_m the set of ordinal numbers less than φ . Further let n be a given cardinal number which is smaller than m. Suppose S is a given set of power m, and that to every element γ of Γ_m there corresponds a subset $S(\gamma)$ of S such that $\overline{S(\gamma)} < n$. Problem: Is there a subset Γ of power m of Γ_m such that

$$\overline{S - \bigcup_{\gamma \in F} S(\gamma)} = \mathfrak{m} ?$$

If we replace the condition n < m by $n \le m$, the answer is in general negative. Indeed, let $S = \Gamma_m$ and define the set $S(\gamma)$ as the set of all $\beta < \gamma$. Clearly for any subset Γ of power m of Γ_m we have

$$S - \bigcup_{\gamma \in \Gamma} S(\gamma) = 0.$$

ERDOS has proved 1) that the answer to the problem (with n < m) is in the affirmative, but his proof uses the generalized continuum hypothesis.

We shall give in this paper a proof without using the generalized continuum hypothesis.²)

First we prove the following

Lemma 1. Let q be a regular cardinal number and \mathfrak{p} a cardinal number which is smaller than q. If to every element γ of $\Gamma_{\mathfrak{q}}$ there corresponds an ordinal number $g(\gamma) \in \Gamma_{\mathfrak{p}}$, then there exists an ordinal number $\pi \in \Gamma_{\mathfrak{p}}$ and a subset Γ of power q of $\Gamma_{\mathfrak{q}}$ such that for every element γ of Γ we have $g(\gamma) < \pi$.

Proof. Let $H(\alpha)$ denote for every ordinal number $\alpha \in \Gamma_p$ the set of all $\gamma \in \Gamma_q$ for which $g(\gamma) = \alpha$. It is clear that

$$\Gamma_{\mathfrak{q}} = \bigcup_{\alpha \in F_{\mathfrak{p}}} H(\alpha).$$

As $\mathfrak{p} < \mathfrak{q}$ and \mathfrak{q} is regular it follows that there exists an ordinal number $\pi' \in \Gamma_{\mathfrak{p}}$ for which $\overline{H(\pi)} = \mathfrak{q}$. By the definition of $H(\alpha)$ the lemma holds with $\Gamma = H(\pi')$ and $\pi = \pi' + 1$.

¹) P. Erdős, Some remarks on set theory. III, Michigan Math. Journal, 2 (1953.54), 51-57.

²) I am indepted to P. ERDôs and L. GILLMAN who after reading the first draft of this paper simplified my original proof.

Let \mathfrak{a} be a transfinite singular cardinal number and \mathfrak{b} a regular cardinal number which is smaller than \mathfrak{a} . Further let \mathfrak{r} denote the smallest cardinal number such that \mathfrak{a} is the sum of \mathfrak{r} cardinal numbers each of which is less than \mathfrak{a} . If $\mathfrak{b} > \mathfrak{r}$ and to every element γ of $\Gamma_{\mathfrak{a}}$ there corresponds an ordinal number $h(\gamma) \in \Gamma_{\mathfrak{b}}$ then there exists an ordinal number $\pi \in \Gamma_{\mathfrak{b}}$ and a subset Γ of power \mathfrak{a} of $\Gamma_{\mathfrak{a}}$, such that for every element γ of Γ we have $h(\gamma) < \pi$.

Proof. Let μ denote the initial number of \mathfrak{r} . There exist regular cardinal numbers $\mathfrak{a}_1, \mathfrak{a}_2, \ldots, \mathfrak{a}_{\xi}, \ldots$ ($\xi < \mu$) such that $\mathfrak{a}_\beta > \mathfrak{a}_\alpha$ for $\beta > \alpha$, $\mathfrak{b} < \mathfrak{a}_{\xi} < \mathfrak{a}$ for every $\xi < \mu$ and

$$\mathfrak{a} = \sum_{\boldsymbol{\xi} < \mu} \mathfrak{a}_{\boldsymbol{\xi}}.$$

By lemma 1 there exists for every ordinal number $\xi < \mu$ an ordinal number $\pi_{\xi} \in \Gamma_b$ such that there are a_{ξ} ordinal numbers $\gamma \in \Gamma_a$ satisfying $h(\gamma) < \pi_{\xi}$. Indeed, let $\mathfrak{q} = \mathfrak{a}_{\xi}$, $\mathfrak{p} = \mathfrak{b}$ and $g(\gamma) = h(\gamma)$ on $\Gamma_{\mathfrak{a}_{\xi}}$. As $\mathfrak{b} < \mathfrak{a}_{\xi}$ and \mathfrak{a}_{ξ} is regular, the conditions of lemma 1 are fulfilled. Accordingly, there exists an ordinal number $\pi_{\xi} \in \Gamma_b$ and a subset Γ_{ξ} of power \mathfrak{a}_{ξ} of $\Gamma_{\mathfrak{a}_{\xi}}$ such that for every element γ of Γ_{ξ} we have $g(\gamma) = h(\gamma) < \pi_{\xi}$.

Since r < b and b is regular there exists an ordinal number $\pi \in \Gamma_b$ for which $\pi_{\xi} < \pi$ for every ξ , $0 \leq \xi < \mu$. Let

$$\Gamma = \bigcup_{\xi < \mu} \Gamma_{\xi}.$$

Clearly the power of Γ is a. Let $\gamma \in \Gamma$. It follows that $\gamma \in \Gamma_{\xi_0}$ for some ordinal number $\xi_0 < \mu$. By the definition of Γ_{ξ} we have $h(\gamma) < \pi_{\xi_0}$. As $\pi_{\xi} < \pi$ and $\pi \in \Gamma_{\mathfrak{h}}$ the lemma 2 is proved.

Theorem. Let S be a given infinite set of power m, and n a given cardinal number which is smaller then m. If to every element γ of Γ_m there corresponds a subset $S(\gamma)$ of S such that $\overline{S(\gamma)} < n$, then there exists a subset Γ of power m of Γ_m for which

$$\overline{S-\bigcup_{\gamma\in\Gamma}S(\gamma)}=\mathfrak{m}.$$

Proof. If there exists a regular cardinal number \hat{s} for which $m > \hat{s} \ge n$, decompose S into the union of \hat{s} disjoint sets M_x , of power m,

$$S = \bigcup_{\mathbf{x} \in \Gamma_{\mathfrak{g}}} M_{\mathbf{x}}.$$

Since $\overline{S(\gamma)} < n$ and $\mathfrak{s} (\geq n)$ is regular, there exists an $f(\gamma) \in \Gamma_{\mathfrak{s}}$ so that for any $\varkappa > f(\gamma)$, $M_{\mathfrak{s}} \cap S_{\gamma}$ is empty. Thus, for a suitable \mathfrak{s} , there exist by our lemmas an ordinal number $\pi \in \Gamma_{\mathfrak{s}}$ and a subset Γ of power \mathfrak{m} of $\Gamma_{\mathfrak{m}}$ such that for every element γ of Γ we have $f(\gamma) < \pi$, hence

$$S - \bigcup_{\gamma \in \Gamma} \widehat{S}(\gamma) \supset \bigcup_{\pi \leq x \in \Gamma_{\varsigma}} M_{x}$$
$$S - \bigcup_{\gamma \in \Gamma} S(\gamma) = \mathfrak{m}.$$

i. e.

Suppose now that there is no regular cardinal number \hat{s} , for which $n \leq \hat{s} < m$. In this case m is obviously regular.

Denote by N the set of all elements x of S for which $x \in S(\gamma)$ for every ordinal number γ , $\gamma \in \Gamma_m$. As $S(\gamma) < \mathfrak{n}$ ($\gamma \in \Gamma_m$), we have $\overline{N} < \mathfrak{n}$. Let (1) $x_0, x_1, x_2, \dots, x_{\omega}, x_{\omega+1}, \dots, x_{\zeta}, \dots (\zeta < q)$

be any well-ordering of X = S - N of the type φ . We shall define by transfinite induction a (single-valued) mapping H(x) of the set X on the set $\{S(\gamma)\}_{\gamma \in I_m}$ in the following manner: Let γ_0 be the smallest ordinal number $\gamma \in \Gamma_m$ for which $x_0 \notin S(\gamma)$, the existence of such a γ follows from the fact that $x_0 \in X$. Put $H(x_0) = S(\gamma_0)$. Let β be an arbitrary ordinal number, $1 \leq \beta < \varphi$, and suppose that γ_{ζ} and $H(x_{\zeta})$ are defined for every $\zeta < \beta$. If there is an ordinal number $\gamma \neq \gamma_{\zeta}$ ($\zeta < \beta$), $\gamma \in \Gamma_m$, for which $x_{\beta} \notin S(\gamma)$, then let γ_{β} be the the smallest such ordinal number and let $H(x_{\beta}) = S(\gamma_{\beta})$. In the opposite case, i. e. if $x_{\beta} \in S(\gamma)$ for any $\gamma \neq \gamma_{\zeta}$ ($\zeta < \beta$), $\gamma \in \Gamma_m$, then let ζ_0 be the smallest ordinal number ζ ($\zeta < \beta$) for which $x_{\beta} \notin S(\gamma_{\zeta})$ and let $\gamma_{\beta} = \gamma_{\zeta}$, $H(x_{\beta}) = S(\gamma_{\zeta_0})$. The existence of such a ζ follows from the fact that $x_{\beta} \in X$.

Let $\alpha \in \Gamma_{\mathfrak{m}}$. We prove that

(i) if $A_{\alpha} = \{ \dot{\eta}_{\mathcal{K}} \}$ is the set of those $\eta \in \Gamma_{\mathfrak{m}}$ for which $\alpha = \gamma_{\eta}$, arranged in their natural order, then the power of A_{α} is smaller than n.

Suppose the contrary i. e. $\overline{A_{\alpha}} \ge n$. Let ψ be the initial number of n and ϱ_0 the smallest ordinal number ϱ for which $\eta_{\zeta} < \varrho$ for every $\zeta < \psi$. Obviously $\varrho_0 \in \Gamma_m$, because m is regular and $\overline{\psi} = n < m$. Let μ be an element of Γ_m for which $\mu = \gamma_{\xi}$ ($\xi < \varrho_0$). By the definition of the set A_{α} and the mapping H(x) we have $x_{\tau\zeta} \in S(\mu)$ if $1 \le \zeta < \psi$. This is impossible, since $\overline{S(\gamma)} < \mathfrak{n}$ ($\gamma \in \Gamma_m$).

By a theorem of S. PICCARD³), there exists a subset R of power in of X for which

 $(2) \qquad \qquad R \cap H(R)^4 = 0.$

The set R is well-ordered according to (1). Let $R = \{x_{\beta_{\xi}}\}_{\xi \in \varphi}$. By (i) the power of the set Γ of all distinct $\gamma_{\beta_{\xi}}$'s $(\xi < \varphi)$ is m. According to (2)

$$R \subseteq S - H(R) = S - \bigcup_{\xi \subseteq \varphi} S(\gamma_{\beta_{\xi}}) = S - \bigcup_{\gamma \in \mathcal{L}} S(\gamma).$$

As $R = \overline{S}$ we obtain that

$$\overline{S - \bigcup_{\gamma \in I'} S(\gamma)} = \mathfrak{m}.$$

The theorem is proved.

(Received February 1, in revised form July 4, 1954.)

4)
$$H(R) := \bigcup_{x \in R} H(x)$$
.

³) We mean the following theorem. Let p be a regular cardinal number, $p \ge \aleph_0$, and E a set of power p. If to every element $x \in E$ there corresponds a subset $E(x)(x \notin E(x))$ of E such that for any $x \in E$ the power of the set E(x) is smaller than a given cardinal number q which is smaller than p, then E has a subset E' of power p for which $E' \cap E(E') = 0$. [Sophie Piccard, Sur un problème de M. Ruziewicz de la théorie des relations, Fundamenta Math., 29 (1937), 5-9.]