On a problem in set theory.

By G. FODOR in Szeged.

P. Erdós has posed the following problem:

Let n be an infinite cardinal number, φ the initial number of power m, and Γ_{n} the set of ordinal numbers less than φ. Further let n be a given cardinal number which is smaller than m . Suppose S is a given set of power \mathfrak{m}, and that to every element γ of Γ_{m} there corresponds a subset $S(\gamma)$ of S such that $\bar{S}(\gamma)<\mathfrak{n}$. Problem: Is there a subset Γ of power \mathfrak{m} of $\Gamma_{\mathfrak{m}}$ such that

$$
\bar{S} \overline{\bigcup_{\gamma \in F}} \overline{S(\gamma)}=\mathfrak{m} ?
$$

If we replace the condition $\mathfrak{n}<\mathfrak{m}$ by $\mathfrak{n} \leqq \mathfrak{m}$, the answer is in general negative. Indeed, let $S=\Gamma_{\mathrm{m}}$ and define the set $S(\gamma)$ as the set of all $\beta<\gamma$. Clearly for any subset Γ of power \mathfrak{m} of Γ_{in} we have

$$
S-\bigcup_{\gamma \in \Gamma} S(\gamma)=0 .
$$

Erdos has proved ${ }^{1}$) that the answer to the problem (with $\mathfrak{u}<\mathrm{m}$) is in the affirmative, but his proof uses the generalized continuum hypothesis.

We shall give in this paper a proof without using the generalized continuum hypothesis. ${ }^{\text {. }}$)

First we prove the following
Lemma 1. Let \mathfrak{q} be a regular cardinal number and \mathfrak{p} a cardinal number which is smaller than q . If to every element γ of Γ_{q} there corresponds an ordinal number $g(\gamma) \in \Gamma_{p}$, then there exists an ordinal number $\pi \in \Gamma_{\nu}$ and a subset Γ. of power \mathfrak{q} of Γ_{q} such that for every element γ of Γ we have $g(\gamma)<\pi$.

Proof. Let $H(\alpha)$ denote for every ordinal number $a \in \Gamma_{\mathrm{p}}$ the set of all $\gamma \in \Gamma_{\mathrm{q}}$ for which $g(\gamma)=a$. It is clear that

$$
\Gamma_{9}=\bigcup_{a \in F_{p}} H(a) .
$$

As $\mathfrak{p}<\underline{q}$ and \mathfrak{q} is regular it follows that there exists an ordinal number $\boldsymbol{x}^{\prime} \in \Gamma_{\nu}$ for which $\overline{H\left(\overline{\tau^{\prime}}\right)}=\mathbf{q}$. By the definition of $H(c)$ the lemma holds' with $\Gamma \equiv H\left(\cdot x^{\prime}\right)$ and $\boldsymbol{x}=\boldsymbol{\pi}+1$.

[^0]Lemma 2. Let a be a transfinite singular cardinal number and ba regular cardinal number which is smaller than a. Further let \mathfrak{r} denote the smallest cardinal number such that \mathfrak{a} is the sum of \mathfrak{r} cardinal numbers each of which is less than a . If $\mathrm{b}>\mathrm{r}$ and to every element γ of Γ_{a} there corresponds an ordinal number $h(\gamma) \in \Gamma_{\mathfrak{b}}$ then there exists an ordinal number $\pi \in \Gamma_{b}$ and a subset Γ of power a of Γ_{a}, such that for every element γ of Γ we have $h(\gamma)<\pi$.

Proof. Let μ denote the initial number of \mathfrak{r}. There exist regular cardinal numbers $\mathfrak{a}_{1}, \mathfrak{a}_{2}, \ldots, \mathfrak{a}_{\xi}, \ldots(\xi<\mu)$ such that $\mathfrak{a}_{\beta}>\mathfrak{a}_{\boldsymbol{a}}$ for $\beta>\mathfrak{a}, \mathfrak{b}<\mathfrak{a}_{\xi}<\mathfrak{a}$ for every $\xi<\mu$ and

$$
\mathfrak{a}=\sum_{\xi<\mu} \mathfrak{a}_{\xi} .
$$

By lemma 1 there exists for every ordinal number $\xi<\mu$ an ordinal number $\pi_{\xi} \in \Gamma_{\mathfrak{b}}$ such that there are \mathfrak{a}_{ξ} ordinal numbers $\gamma \in \Gamma_{\mathrm{a}}$ satisfying $h(\gamma)<\pi_{\xi}$. Indeed, let $\mathfrak{q}=\mathfrak{a}_{\xi}, \mathfrak{p}=\mathfrak{b}$ and $g(\gamma)=h(\gamma)$ on $\Gamma_{\mathfrak{a} \xi}$. As $\mathfrak{b}<\mathfrak{a}_{\xi}$ and \mathfrak{a}_{ξ}. is regular, the conditions of lemma 1 are fulfilled. Accordingly, there exists an ordinal number $\pi_{\xi} \in \Gamma_{\mathrm{b}}$ and a subset Γ_{ξ} of power a_{ξ} of $\Gamma_{\mathrm{a} \xi}$ such that for every element γ of Γ_{ξ} we have $g(\gamma)=h(\gamma)<\pi_{\xi}$. .

Since $\mathfrak{r}<\mathfrak{b}$ and \mathfrak{b} is regular there exists an ordinal number $\boldsymbol{x} \in I_{\mathfrak{b}}$ for which $\boldsymbol{x}_{\boldsymbol{\xi}}<\boldsymbol{\pi}$ for every $\boldsymbol{\xi}, 0 \leqq \xi<\mu$. Let

$$
\Gamma=\bigcup_{\xi<\mu} \Gamma_{\xi} .
$$

Clearly the power of Γ is a. Let $\gamma \in \Gamma$. It follows that $\gamma \in \Gamma_{\xi_{0}}$ for some ordinal number $\xi_{0}<\mu$. By the definition of Γ_{ξ} we have $h(\gamma)<\pi \tau_{\varepsilon_{0}}$. As $\tau_{\xi} \ll \tau$ and $\pi \in \Gamma_{\mathfrak{b}}$ the lemma 2 is proved.

Theorem. Let S be a given infinite set of power \mathfrak{m}, and \mathfrak{n} a given cardinal number which is smaller then m. If to every element γ of Γ_{m} there corresponds a subset $S(\gamma)$ of S such that $\overline{S(\gamma)}<n$, then there exists a subset Γ of power m of Γ_{m} for which

$$
\overline{S=} \overline{\bigcup_{\gamma \in \Gamma} S(\gamma)}=\mathfrak{m} .
$$

Proof. If there exists a regular cardinal number $\overline{\mathfrak{s}}$ for which $\mathfrak{m}>\overline{\mathfrak{s}} \geqq \mathfrak{n}$, decompose S into the union of \mathfrak{s} disjoint sets M_{\times}, of power \mathfrak{m},

$$
S=\bigcup_{x \in \Gamma_{\mathrm{s}}} M_{x} .
$$

Since $\overline{\bar{S}(\gamma)}<\mathfrak{n}$ and $\overline{\mathfrak{s}}(\geqq \mathfrak{n})$ is regular, there exists an $f(\gamma) \in \Gamma_{\mathrm{o}}$ so that for any $\kappa>f(\gamma), M_{x} \cap S_{\gamma}$ is empty. Thus, for a suitable s, there exist by our lemmas an ordinal number $\pi \in \Gamma_{\mathrm{s}}$ and a subset Γ of power \mathfrak{m} of Γ_{m} such that for every element γ of Γ we have $f(\gamma)<\pi$, hence
i. e.

$$
S-\bigcup_{\gamma \in \Gamma} \mathcal{S}(\gamma) \quad \supset_{\pi \leqq x \in \Gamma_{s}} M_{x}
$$

$$
\overline{S-\bigcup_{\gamma \in V} \bar{S}(\gamma)}=m .
$$

Suppose now that there is no regular cardinal number $\hat{\mathfrak{s}}$, for which $\mathrm{n} \leqq \mathrm{m}<\mathrm{m}$. In this case m is obviously regular.

Denote by N the set of all elements x of S for which $x \in S(\gamma)$ for every ordinal number $\because, \quad ; \in \Gamma_{\mathrm{m}}$. As $S(\gamma)<\mathrm{n}\left(\gamma \in I_{\mathrm{m}}\right)$, we have $\bar{N}<n$. Let

$$
\begin{equation*}
x_{11}, x_{1}, x_{2}, \ldots, x_{\omega}, x_{\omega+1}, \ldots, x_{6}, \ldots(5<q) \tag{1}
\end{equation*}
$$

be any well-ordering of $X=S-N$ of the type φ. We shall define by transfinite induction a (single-valued) mapping $H(x)$ of the set X on the set $\left\{S\left(\gamma^{\prime}\right\}_{\gamma \in r_{m}^{\prime}}\right.$ in the following manner: Let $\%_{0}$ be the smallest ordinal number $\gamma \in \Gamma_{\mathrm{m}}$ for which $x_{n} \notin S(\gamma)$, the existence of such a $;$ follows from the fact that $x_{0} \in X$. Put $H\left(x_{0}\right)=S(\%)$. Let β be an arbitrary ordinal number, $1 \leqq \beta<\varphi$, and suppose that γ_{6} and $H\left(x_{6}\right)$ are defined for every $\zeta<\beta$. If there is an ordinal number $\gamma \neq \gamma_{6}(\xi<\beta), \gamma \in \Gamma_{\mathrm{m}}$, for which $x_{\beta} \notin S(\gamma)$, then let γ_{β} be the the smallest such ordinal number and let $H\left(x_{\beta}\right)=S\left(\gamma_{\beta}\right)$. In the opposite case, i. e. if $x_{\beta} \in S(\gamma)$ for any $\gamma \neq \gamma_{6}(\zeta<\beta), \gamma \in \Gamma_{\mathrm{m}}$, then let ζ_{n} be the smallest ordinal number $\zeta(;<\beta)$ for which $x_{\beta} \nsubseteq S\left(\gamma_{i}\right)$ and let $\gamma_{\beta}=\gamma_{\xi_{n}}^{\prime}, H\left(x_{\beta}\right)=S\left(\gamma_{\zeta_{0}}\right)$. The existence of such a ζ follows from the fact that $x_{\beta} \in X$.

Let $a \in \Gamma_{\mathrm{m}}$. We prove that
(i) if $A_{a}=\left\{\dot{B}_{j}\right\}$ is the set of those $\eta_{i} \in Y_{\mathrm{m}}$ for which $a==\gamma_{\eta}$, arranged in their natural order, then the power of A_{σ} is smaller than n.

Suppose the contrary i. e. $\overline{\overline{A_{a}}} \geqq n$. Let ψ be the initial number of \mathfrak{n} and ϑ_{n} the smallest ordinal number ρ for which $\eta_{i}<\boldsymbol{o}$ for every $\zeta<\psi$. Obviously $o_{n} \in \Gamma_{\mathrm{m}}^{\prime}$, because m is regular and $\bar{\psi}=\mathrm{n}<\mathrm{m}$. Let μ be an element of Γ_{m} for which $\mu \neq \gamma \xi\left(\xi<\rho_{n}\right)$. By the definition of the set A_{a} and the mapping $H(x)$ we have $x_{r_{6}} \in S(\mu)$ if $1 \leqq \zeta<\psi$. This is impossible, since $\bar{S}(\gamma)<n\left(\gamma \in I_{\mathrm{m}}\right)$.

By a theorem of S . Piccard ${ }^{3}$), there exists a subset R of power m of X for which

$$
\begin{equation*}
\left.R \cap H(R)^{4}\right)=0 . \tag{2}
\end{equation*}
$$

The set R is well-ordered according to (1). Let $R=\left\{x_{\beta_{\xi}}\right\} \varepsilon$. . By (i) the power of the set Γ of all distinct $\chi_{\beta_{\xi}}$'s $(\xi<\varphi)$ is m . According to (2)

$$
R \subseteq S-H(R)=S-\bigcup_{\xi \sim \varphi} S\left(\gamma \beta_{\xi}\right)=S-\bigcup_{\gamma \in C} S(\gamma) .
$$

As $\ddot{R}=\bar{S}$ we obtain that

$$
\bar{S}-\bigcup_{\gamma \in I^{\prime}} S(\bar{\gamma})=\mathfrak{n} .
$$

The theorem is proved.
(Received February 1, in revised form July 4, 1954.)

[^1]
[^0]: ${ }^{1}$). P. Erdobs, Some remarks on set theory. III, Michigan Math. Journal, 2 (1953.54). 51-57.
 ${ }^{2}$) I am indepted to P. Erdós and L. Gilman who after reading the first draft of this paper simplified my original proof.

[^1]: ${ }^{3}$) We mean the following theorem. Let p be a regular cardinal number, $p \geqq \mathfrak{N}_{0}$, and E a set of power p. If to every element $x \in E$ there corresponds a subset $E(x)(x \notin E(x))$ of E such that for any $x \in E$ the power of the set $E(x)$ is smaller than a given cardinal number η which is smaller than p, then E has a subset E^{\prime} of power p for which $E^{\prime} \cap E\left(E^{\prime}\right)=0$. [Sophie Piccard, Sur un problème de M. Ruziewicz de la théorie des. relations, Fundamenta Math., 29 (1937), 5-9.]
 ${ }^{\text {1) }} H(R)===\bigcup H(x)$.

