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On a new type of radical.1) 
By L. FUCHS in Budapest. 

§ 1. Introduction. 

In the theory of noncommutative rings a central role is played by the 
radical of a ring R. The radical was first defined only in case R satisfied 
the minimum condition on one-sided ideals,2) but later it was extended in 
different ways to rings without finiteness assumptions.1) In such rings most 
definitions are based on the concept of nilpotency (either for ideals or ele-
ments) or quasiregularity. The main purpose of introducing a suitable radical 
is to obtain some structure theorems for rings having no radical in one 
sense or another. Hence one is inclined to feel the radical — to speak 
roughly — a certain measure of "irregularity" of the ring and therefore it is 
natural to expect that the radical should be zero if the ring is imbeddable in 
a skewfield, or more generally, if it is free of zerodivisors. Although the 
radical of N. JACOBSON has been proved to be the most useful radical in the 
most general case and, besides, the Jacobson radical has also an important 
group-theoretic interpretation,4) it may yet happen that in a domain of integ-
rity, moreover, in a discrete valuation ring, the. Jacobson radical does not 
coincide with the zero ideal/') Therefore, it is justified to say that, in spite 
of its usefulness, the Jacobson radical is in certain cases superfluously wide. 

The present note has for its aim to present a new type of radical, one 
which contains only zerofactors, but not necessarily exclusively nilpotent ele-
ments. We base our definition of radical on the concept of zerofactor, at first 
introducing a new notion called left- and right-zeroid which is a rather special 

') This paper is an extended version of my previous note [10] published in Hungarian. 
(Numbers in brackets refer to the. Bibliography given at the end of this paper.) 

2) S e e KOTHE [14], DEURING [8], ALBERT [1], VAN DER WAERDEN [21], PERLIS [20], JACOB-
SON [12], ARTIN—NESBITT—THRALL [2|, Чеботарёв [7]. 

3) S e e BAER [3], JACOBSON [13], BROWN—MCCOY [5] . 
4) See FUCHS [11]. (In rings with one-sided identity the Jacobson radical corresponds 

to the Frattini subgroup of its additive group considered as an operator-group whose ope-
rator-domain is the ring itself.) 

;>) This is the case e. g. in the ring of all p-adic integers. 
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case of left- resp. right-zerofactor. Our radical will then be defined as the 
meet of the join of all left-zeroid and the join of all right-zeroid ideals. Many 
of the main properties of the known radicals retain their validity in the pre-
sent case, but it will turn out that zerofactors are not so easy to handle, and 
therefore, our present treatment possesses mainly theoretical rather than 
practical interest. 

After the definition, we shall prove in § 3 that our radical (which may 
be called the zeroid radical) is the intersection of certain (in general not all) 
prime ideals of the ring. The next § 4 is devoted to discussing the con-
nections of the new radical with the old types. It will turn out that the zeroid 
radical in general properly contains the union of all nil ideals0) as well as 
the McCoy radical, but from the point of view of inclusion it has nothing 
to do with the Jacobson radical. As regards the residue class ring with res-
pect to the radical, it remained an open question whether it is radical free 
or not; we have proved only that it contains no nonzero nil ideal. In § 6 we 
show that the minimum condition on one-sided ideals implies that the zeroid 
radical coincides with the classical one (the join of all nilpotent left ideals). 
The radical of a matrix ring will also be discussed; under a certain condi-
tion it consists of all matrices whose elements lie in the radical of the underlying 
ring. Finally, some remarks are added concerning the commutative case. 

§ 2. Definit ion. 

Let R be an arbitrary associative (but not necessarily commutative) ring. 
An element a in R is said to be a left-zero factor (l-zerofactor) if there is a' 
b=\= 0 in R such that a£> = 0;£> is then called a right-annihilator of a. If A 
is a nonvoid subset of R, in particular an ideal7) of R, then we call A l-zero-
factor if each element of A is a /-zerofactor, and call A annihilable from the 
right if for some c=)=0 in R we have Ac = 0. 

If the ideal A has the property that A + B is a /-zerofactor whenever B 
is a /-zerofactor ideal, then A will be called a l-zeroid (left-zeroid) ideal. It 
is obvious that a /-zeroid ideal is necessarily a /-zerofactor. The existence of 
/-zeroid ideals is guaranteed by the fact that in any ring the zero ideal 0 is 
a /-zeroid ideal. 

The sum of two l-zeroid ideals is also one. For, suppose A and B are 
two /-zeroid ideals and C is any /-zerofactor ideal. As B is /-zeroid, B-\-C 
is a /-zerofactor and hence, A being/-zeroid, {A + 5 ) + C = A + ( 5 + C) is a 
/-zerofactor ideal. This proves that A-\-B is /-zeroid, as stated. 

i;) An ideal is called a nil ideal if all of its elements are nilpotent. Observe that a 
nil ideal is not necessarily nilpotent. 

7) Ideal will throughout mean twosided ideal. For right- resp. leftideal we shall 
write abbreviatedly /--ideal resp. /-ideal. 
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Hence it is easy to conclude that the join of all /-zeroid ideals is again 
a /-zeroid ideal. It will be called the left-radical of R and denoted by Z(,). 

Changing the roles of left and right, we may introduce analogously the 
notion of /--zeroid ideals and then define the right-radical Zin of R as the 
join of all r-zeroid ideals. 

The following example will serve to illustrate that in general the left— 
and right^radicals are different, moreover, it may happen that one of them 
properiy contains the other. Let R be a ring whose additive group R+ is a 
finite abelian group of type (2, 2); a and b will denote the generator elements 
of the direct summands of R+ in some direct decomposition. Let the multipli-
cation in R be defined by ax = x and bx = x for all x£R. Then (a + 6)x = 0 
for all x£R. It is readily checked that in R the associative law of multipli-
cation and both distributive laws hold, so that R is a ring of four elements. 
Now a + b is a left-annihilator of R, i. e. Z(r) = /?. On the other hand we 
have Z w = {0, a-\-b) (Z^ is at the same time the maximal nilpotent ideal in 
R), thus in this example Z^czZ^ holds.8) 

In order to obtain a radical which is left-right symmetric, we define the 
radical Z of R as the intersection of its left- and right-radicals:'') 

Z = Z « n Z « . 
Z is the join of all ideals which are both /- and /--zeroid. 

It is evident that Z=R if and only if each element of R is both / -and 
r-zerofactor. Such a ring may be called a radical ring. 

For the connection of our radical with the known types of radical we 
refer to § 4. 

§ 3. The radical as the intersection of prime ideals. 

W . KRULL has proved [15 ] that in a commutative ring the sum of all 
nilpotent ideals, i. e. the nilpotent radical is the intersection of all prime ideals 
of the ring. This fact has been proved by MCCOY in general rings for the 
radical introduced by him [18]. A similar result holds for the Jacobson radical 
in rings with onesided unit element [13]. The theorem we are going to prove 
shows that these results have an analogue in the case of the zeroid radical; 
indeed, Z is the intersection of certain prime ideals of the ring. 

We call an ideal M maximal l-zerofactor (r-zerofactor) if it is maximal 
. with respect to the property of being a /-zerofactor (r-zerofactor). ZORN'S 

lemma ensures that every /-zerofactor (r-zerofactor) ideal belongs at least to 
one maximal /-zerofactor (r-zerofactor) ideal. 

. s) The sign c is used to denote proper inclusion. 
'•') This definition is not entirely the same as given in [10]; there we have understood 

by the radical what we now call left-radical. 
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Theorem 1.10) The left-radical Z(l) of R is equal to the intersection of 
all maximal l-zerofactor ideals M; these M are prime ideals. 

Suppose Zm does not belong to some maximal /-zerotactor ideal M. 
Then Z(')JrM is no /-zerofactor, in violation of the fact that is a /-zeroid 
ideal. Hence Z(})^kM for all maximal /-zerofactor ideals M. 

Conversely, if X is the intersection of all maximal /-zerofactor ideals 
and A is any /-zerofactor ideal, then some maximal /-zerofactor M contains 
A, and therefore X+A^kM. This establishes that X+A is a /-zerofactor, i. e. 
X is contained in Z®, in fact. 

What we have still to verify is the primeness of the' maximal /-zerofactor 
ideals M, by a prime ideal being understood an ideal P with the property 
that the product of two ideals, X and Y, does not belong to P unless either 
X or Y belongs to P. Now, if neither X nor Y belongs to A/, then both X+M 
and Y+M contain elements x + m' and y + m" (x£ X, Y, m', m"£M), 
respectively, which are not /-zerofactors. If X Y ^ M , then the product 
{x + m') (y-\-m") = xy-\-m (m£M) must be a /-zerofactor, say, annihilated 
by a from the right. Now either a is a right-annihilator of y-\-m", or, if this 
is not the case, then (y + m")a =j=0 is a right-annihilator of x + m'. This 
contradiction establishes the prime character of the maximal /-zerofactor ideals. 

Theorem 1 implies at once: 

T h e o r e m la. The radical Z of R is the intersection of all maximal 
1-zerofactor and maximal r-zerofactor ideals which are necessarily prime ideals. 

On account of the fact that the residue class ring with respect to a 
prime .ideal does not contain annihilate ideals, it follows from a general 
structure theorem of B I R K H O F F : N ) 

T h e o r e m 2. The residue class ring R/Z of R with respect to the radi-
cal is a subdirect sum of rings without annihilable ideals. 

Calling a ring semisimple if its radical Z is 0, we have 

C o r o l l a r y . A semisimple ring is a subdirect sum of rings without 
annihilable ideals. 

§ 4. Connections between the different radicals. 

In this section the following known radicals will be considered: the 
nilpotent radical N (the join of all nilpotent ideals), the nil radical U (or the 
upper radical defined as the join of all nil ideals of the ring), the McCoy 

10) In the commutative case this theorem may be found in [9], and in the noncom-
mutative case a similar result is contained in CURTIS' paper [6]. 

n ) S e e BIRKHOFF [4], MCCOY [17] a n d BROWN—MCCOY [5]. 
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radical M (the set of all elements belonging to no m-system12) not containing 0) 
and the Jacobson radical J (the join of all right-quasiregular / -ideals). Before 
entering into the discussion of the connection of the zeroid radical with the 
mentioned radicals, we observe that in general rings the following inclusion 
relations are valid : 

<1) NcMcUcJ. 
Indeed, the inclusion NciM follows at once from the fact that M is the inter-
section of all prime ideals P of the ring,111) and therefore A' = 0 c P i m p l i e s 
AczP, i.e. áll nilpotent ideals are contained in M. To prove the second 
inclusion, observe that if for some a 6 R we have a" 4= 0 (// = 1 ,2 , . . . ) , then 
a maximal ideal P containing no power of a is prime. For, each proper 
overideal of P contains some power of a, and therefore the product of two 
such overideals") is never contained in P. Consequently, only nilpotent ele-
ments may belong to M = Q P, and hence M^U.ir') For the last inclusion 

all primes P 

of (1) we refer ÍOJACOBSON'S paper [13] where it is shown that each nilpotent 
element is .right-quasiregular. 

As regards the zeroid radical Z, from Theorem la it results immedia-
tely: M^Z. Moreover, we may prove the inclusion relation U<~Z. To this 
end, let h be a nilpotent element and A a /-zerofactor ideal. If h" = 0, then 
a'=(h -Hz)" (a£A) belongs to A, because each term in the expansion is either 0 
or contains a as a factor. Hence some b =j= 0 annihilates a' from the right. Let 
1 be the least exponent for which b is a right-annihilator of (h + a)'. Then10) 
(h + a)1-1 6=hQ is a right-annihilator of h + a, i. e. h + a is a /-zerofactor. Con-
sequently, every nil ideal is /-zeroid, and similarly, r-zeroid. Hence U^LZ, in fact. 

A simple example will show that in general Z does not coincide with 
U, not even under the assumption of commutativity and maximal condition. 
For instance, let P denote the ring of all polynomials in two indeterminates 
u and v, with rational numbers for coefficients, and let R be the residue 
class ring P/(u2, uv) of P with respect to the ideal (it1, uv). Then it is easy 
to see that (u)/(u-,uv) is the join of all nil ideals ( = nilpotent ideals), while 
(u, v)/(u2, uv) is the zeroid radical of this ring. 

In order to make clear that the direction in which the nil radical was 
extended by N. JACOBSON to his radical is quite different from ours, we show 
by examples that it may well happen that the zeroid radical Z properly con-

12) By an /»-system S is meant a subset of the ring R with the property: a, b£S 
imply the existence of an x£R such that axb£ S. 

13) For this result see MCCOY [18]. 
14) Clearly, there is no loss of generality in confining ourselves to the overideals of P. 
!8) By LEVITZKI'S result [16], M is the lower radical L of the ring in the sense of 

BAER [3] and since L ^ U holds, the relation M^U follows immediately from these well-
known results. But it may easily be proved directly as shown in the text. 

1(i) In case / = 1 , put here simply b. 
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tains the Jacobson radical J as well as conversely, and in the most general 
case neither contains the other. For the possibility J c z Z the last example 
will serve where J = (u)/(ir, uv). To illustrate the case ZczJ, let us consider 
the ring of rational numbers with odd denominators; a simple calculation 
shows t h a t / = (2), while Z is obviously 0. 

Before illustrating the most general case, we prove a lemma which has 
its own interest too. 

Lemma 1.17) If R is the direct sum of a finite number of nonzero 
rings Ri (which are ideals in R), 
(2) /? = £, + . . . + /?„, 
and Z'P (Z{r)) is the l-radical (r-radical) of Rh then for the l-radical Z « of R 
we have 

2(V) — | & ' f = ^ f o r some ' = 1' • • •' 

~ i Z(1° + . . . + z l ° if zV 4= Ri for all i = 1 , . . . , n, 

and the same for the r-radical Z w of R. 
It suffices to verify the statement for the /-radical It is immediately 

seen that an element a = a^ -f • • • + an of R (ai £ Ri) is a /-zerofactor if and 
only if for at least one7 the component aL is a /-zerofactor in R-. Hence it 
results that if Z<i') = Ri for some /, then every element of R is a /-zerofactor, 
i .e. Z( ,) = R. But if Z(P4=/?i for every /, then taking any /-zerofactor ideal 
Bi in each Rit we see that if an ideal A is /-zeroid, then A-\-B* (where 
B* = Ri + ... + Ri-! + Bi + /?,;+! + ... +RH) must be a /-zerofactor from which 
we infer that Ai + Bi (A-, the z'th component of A in decomposition (2)) is a 
/-zerofactor, that is to say, Ai is a /-zeroid ideal in Rc. This implies the 
second alternative of the statement. 

We also remark that if R is the (discrete) direct sum of an infinity of 
its subrings then R is a radical ring. In fact, in this case every element of 
R is a /-zerofactor as well as a r-zerofactor. 

Now, from the lemma and the fact that the Jacobson radical of a direct 
sum of rings is the direct sum of the respective Jacobson radicals, we con-
clude that the direct sum of the two rings given as examples in the paragraph 
last but one before Lemma 1 is an instance for a ring in which none of the 
Jacobson radical and the zeroid radical contains the other. 

What has been said about the connections of the different types of 
radical implies 

T h e o r e m 3. In general rings for the different radicals the following 
situation holds: 

n ) Observe that Lemma 1 is not true for the radical Z in place of the /-radical. 
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§ 5. The residue class ring with respect to the radical. 

The known types of radical have the property that the residue class 
ring with respect to the radical has zero radical where, obviously, both radi-
cals are to be taken in one and the same sense. Whether or not the same 
result holds for the zeroid radical is an open question. Here we prove the 
following weaker result. 

T h e o r e m 4. The nil radical of the residue class ring R/Z with respect 
to the zeroid radical Z of R is always zero. 

We show that if some ideal C/Z in R/Z is a nil ideal then C/Z = Z/Z. Let 
' c £ C and ck £ Z. If A is a /-zerofactor ideal in R and a £ A, then (c + a)'; £ Z + A , 
i. e. (c-j-o)k and thus also c + a is a /-zerofactor. Consequently, C is a /-zeroid 
ideal and analogously, a r-zeroid ideal, completing the proof. 

§ 6. The radical of a ring with min imum condit ion 
on one-sided ideals. 

Assume the ring R contains a unit element e and the r-ideals of R 
satisfy the minimum condition. We shall prove that in this case the zeroid 
radical Z contracts to the classical radical N, i.e. the join of all nilpotent 
r-ideals. 

Before entering into the proof of this statement, let us remark that 
without the existence of a unit element e this assertion need not be true.is) 
If R,,R2 are simple rings (with minimum condition on r-ideals) such that 
Rl = 0 and Rl = R2, then the nilpotent radical of Rr + R* (direct sum) is Rlt 

while the zeroid radical coincides with the whole ring, in view of Lemma 1. 
Recall that in a ring with minimum condition on r-ideals the nilpotent 

radical and the nil radical coincide, so that they are equal to the intersection 
of all prime ideals P of the ring.10) Therefore, if we can show that each 
prime ideal P is a /-zerofactor, then this will imply Z<= Z( , ) = n P = N (use 
Theorem 1) whence by Theorem 3 we shall obtain Z=Nand this will esta-
blish our assertion. 

Let P(=}=/?) be a (prime) ideal in R. If P were not a /-zerofactor, then, by the 
minimum condition on r-ideals, there would be a minimal r-ideal Qr which 
is contained in P and is not a /-zerofactor. Let c denote an element in Qr 

which is not a /-zerofactor. Then, by minimality, we must have Qr = (c)r, 
the r-ideal generated by c. Further, c(c)r is a r-ideal in Qr and, since it con-

From the discussions of this section it will be clear that instead of assuming the 
existence of an identity element it will suffice to suppose the presence of a right identity 
in the ring. 

>'•>) Cf. Theorem 3. 
A 4 
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tains c~, it is neither a /-zerofactor; consequently, we have 
c ( c ) r = ( c ) r . 

This equality ensures the existence of an element q £ (c)r = Q,. such that 
cq = c, that is, c(q—e) = 0. The last equation shows that c is a /-zerofactor, 
for q as an element of P is surely different from e. The contradiction com-
pletes the proof of 

T h e o r e m 5. In a ring with unit element and minimum condition on 
r-ideals the radical Z coincides with the join of all nilpotent r-ideals. 

In view of this theorem we see that a ring with unit element is semi-
simple in the classical sense (i.e. contains no nilpotent r-ideals other than 0 
and satisfies the-minimum condition on r-ideals) if and only if it contains 
no zeroid ideals different from 0 and satisfies the minimum condition on 
one-sided ideals. 

Our last proposition may be generalized by demonstrating that a ring 
which is regular in the sense of J. v. NEUMANN [19] has zero zeroid radical, i. e. 
Z = 0. The proof is carried out by showing at first that each (prime) ideal P 
of a regular ring R is a /-zerofactor. If a£P then there is an x £ R such that 
axa = a. Since P=j=/?, we have xa=¡=e (the unity of R); consequently, 
a(xa—e) = 0, i.e. a is a/-zerofactor and hence Z=M (the McCoy radical). 
By making use of Theorem 3, the proof will be completed by observing that 
the nil radical U of a regular ring is necessarily 0, for (a)r =f=0 contains the 
idempotent element ax. 

§ 7. The radical of a matrix ring. 

We remember that the ring of all nxn matrices over a ring R possesses 
the property that its nilpotent radical arises as the ideal of all matrices whose 
elements lie in the nilpotent radical of R. We next intend to show that the 
corresponding result for the zeroid radical can also be proved provided we 
make a further assumption on R (see (*) below). 

For convenience, we introduce the following notations. If 5 is any ring, 
the complete matrix ring of order n over 5 will be denoted by Sn and the 
zeroid radical of S„ by Z(S„). It is readily seen that if A is an ideal in 5 
then An is an ideal in 5„. 

We suppose the ring R under consideration satisfies: 

( If A is a l-zerofactor (r-zerofactor) ideal and au ..., am is a finite 
(*) < subset of A, then there is an element c =)= 0 in R with the property 

\ a,c = 0 (resp. ca,- = 0)-for i=\,..., m. 

In order to verify that under (*) we have Z„ = Z(/?„), we first prove 
a simple lemma. 
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L e m m a -2. An ideal E in the complete matrix ring Rn over R with 
property (*) is a l-zerofactor if and only if there exists a l-zerofactor ideal 
A in R such that ££ An. 

At first, in order to verify the sufficiency of the stated condition, sup-
pose A is a /-zerofactor ideal and E<^An- If a is a matrix in E, then the 
set of all elements of a is a finite set in A, consequently, by (*), there exists 
an element c=)=0 in R which is a common right annihilator of this set. But 
then the diagonal matrix <c, . . . , c > of order n annihilates a from the right. 

We assume, conversely, that E is a /-zerofactor ideal in Rn. Let A be 
the ideal in R generated by all the elements of the matrices in .=. Plainly, 
E^A„ and it is enough to show that A is a /-zerofactor. LetaM£.4 , so that 
a ^ ^ a V -1 1-at], where, without loss of generality, we may suppose that 
a(P is, say, an element standing in the (/,,,, k,v) position of a matrix a\r) £ E\ 
If we denote by (x)/;, the matrix with x in the (J, k) position and zeros else-
where, then the. matrices20) 

s=l 

are readily seen to be diagonal matrices of the type < x i / o f ) j ' r , . . . , xraf)yr >. 

All o f b e l o n g to so 

that the same is true for 

+ • • • + = < xra(v)yv,.. ., xraMyr > 

and also for /?=/S0)_| )-/№, i.e. p has a right annihilator matrix y=f=0 t in Rn. Now, any nonzero element c of y annihilates ^xva(r)yv from the right, 
r=l 

showing that the ideal RAR is a /-zerofactor. We infer that A3(^RAR) and 
hence A is a /-zerofactor ideal in R. This completes the proof of Lemma 2. 

As an immediate consequence of this lemma we obtain that An is a 
l-zerofactor ideal in Rn if and only if A is a l-zerofactor ideal in R. This 
observation, together with the same on /--zerofactors, is important in the 
demonstration of . 

T h e o r e m 6. If R satisfies (*), then the radical of the ring of all 
matrices with elements in R consists of all matrices whose elements lie in the 
radical of R. 

Let E = Z(Rn) and A a /-zerofactor ideal in R. Thus An is a /-zero-
factor ideal in Rn. As E -\-A„ must be a /-zerofactor ideal, by Lemma 2 there 
is some /-zerofactor ideal B in R such that E + An^Bn. Since A was arbitrary, 
we conclude that E ^ Z ^ . By symmetry we have E ^ Z ^ whence . E ^ Z n . 

20) x,, and yu denote arbitrary elements of R. 
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On the other hand, if H is any /-zerofactor ideal in ./?„, then by Lemma 2 
we have / / £ £ „ for some /-zerofactor ideal B of R. Thus Zn + B n = 
= ( Z + 5 ) , l . Since Z-\-B must be a /-zerofactor, we are led to the conclusion 
that Zn + H is a /-zerofactor ideal in R„, i. e. Z „ ^ (R„). Similarly we 
have Z„£Z ( r )( /?») and the theorem is proved. 

§ 8. Remarks concerning commutat ive rings: 

1. N. JACOBSON has proved that in an algebra over a field 0 the ele- • 
ments of his radical are either nilpotent or are transcendental over 0. A similar 
result may be established for our radical in commutative algebras 91 provided 
21 satisfies the trivial necessary condition of containing at least one regular 
(i. e. no zerofactor) element. 

T h e o r e m 7. Let 2( be a commutative algebra over a field <3>, with at 
least one regular element. Then besides the nilpotent elements only transcen-
dental elements over 0 may belong to the radical Z of 2(. 

For, let a be algebraic over the underlying field 0. Then the subalgebra 
23 generated by a has a finite basis over 0 and it follows at once the existence 
of an integer n such that 93a" = 33a""1. Assume a£Z, the radical of 31, and 
a"1 =j= 0 for each positive integer m. Then there is a y in 23, and so in Z, 
satisfying ya" = qan with a regular element q £ St. Thus (y—q)an = 0, i. e. 
the ideal (y—q) is a zerofactor. Since (y) £ Z, we obtain that the ideal 
OO + i?—<l) is a zerofactor, which is absurd, q being a regular element 
belonging to it. This also shows that if 2t is algebraic, the radical of 21 is 
the totality of the nilpotent elements. 

2. It is a well known fact that every ring can be represented as a sub-
direct sum of subdirectly irreducible rings.21) Therefore it might be of some 
interest to have information about the radical of a subdirectly irreducible ring. 
The result we find in the commutative case will show that the radical of such 
a ring has a very simple structure. 

T h e o r e m 8. The radical of a subdirectly irreducible commutative ring 
consists of the set of all zerofactors. 

It suffices to prove that if both x and y are zerofactors, then the ideaf 
(x) + (y) is 4 zerofactor. But 

C = 0 : [ ( x ) + (y)] = 0 : x n 0 : y = t = 0 , -

since 0:JC and 0 :y are ideals and the ring is by hypothesis subdirectly irre-
.ducible.. Any nonzero element of C annihilates each element of (x)-f (j>). 

21) See MCCOY [17], for instance. 
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It is easy to prove that the radical Z has now a nonzero annihilator. In fact, 
let y be any nonzero element of the intersection of all ideals 0 : x where л: 
runs over all elements of Z ; then Zy = 0. It also follows that Z is a prime 
ideal; indeed, it is the only maximal zerofactor ideal which is prime by 
Theorem 1. 
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