On a class of infinite products whose value can be expressed in closed form.

By MIKLÓS MIKOLÁS in Budapest.

1. The familiar formula of WALLIS

$$\prod_{m=1}^{\infty} \frac{(2m)^2}{(2m-1)(2m+1)} = \frac{\pi}{2}$$

gives a very simple, not-trivial example of an infinite product with wellknown value. L. FEJER suggested the problem to find a possibly wide class of infinite products, including the WALLIS product, whose value can be expressed in finite form by means of the elementary functions.

In a previous paper¹) I discussed the product

$$P = \prod_{n=0}^{\infty} \frac{\left(\frac{a_n + a_{n+1} + \dots + a_{n+r}}{r+1}\right)}{a_n a_{n+1} \cdots a_{n+r}}$$

for fixed $\nu \ge 1$, $\{a_n\}$ meaning a strictly increasing sequence of *positive* numbers; it was proved that *P* is convergent if and only if the series $\sum_{n=0}^{\infty} \left(\frac{a_{n+\nu}}{a_n} - 1\right)^2$ converges, and some formulae were deduced for the case of an arithmetical progression.

2. Now let d, A and D mean fixed *complex* numbers $\neq 0$, and let z be a complex variable. We denote by $\mathfrak{A}_{r}(z)$, $\mathfrak{G}_{v}(z)$ the arithmetic and geometric mean²), respectively, of $z, z+d, \ldots, z+(\nu-1)d$, and consider, for a fixed $\nu \geq 2$, the product

(3)
$$Q = \prod_{\substack{z=A+nD\\n=0,1,2,...}} \left(\frac{\mathfrak{A}_{\nu}(z)}{\mathfrak{G}_{\nu}(z)} \right)^{\nu} = \prod_{\substack{z=A+nD\\n=0,1,2,...}} \frac{\left(z+\frac{\nu-1}{2}d\right)^{\nu}}{z(z+d)\dots(z+\overline{\nu-1}d)};$$

¹) Cf. M. MIKOLAS, Sur un produit infini, these Acta, 12 A (1950), 68–72. — The auxiliary function used here, $\mathfrak{E}(t, \alpha) = \prod_{n=0}^{\infty} \left(1 - \frac{t^2}{(n+\alpha)^2}\right)$, may be written also in the form $\Gamma(\alpha)^2/\Gamma(\alpha+t)\Gamma(\alpha-t)$.

²) Any value of the ν^{th} root may be chosen.

58

(1)

(2)

M. Mikolás: On a class of infinite products whose value can be expressed in closed form. 59

Q may be regarded plainly as a generalization of the WALLIS product. — Let. for the sake of brevity, $\alpha = \frac{A}{D}$, $\delta = \frac{d}{D}$, $h = \frac{v-1}{2}$.

We need the following well-known facts from the theory of the gammafunction:

(4)
$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^{z}}{z(z+1) \dots (z+n)} \qquad (z \neq 0, -1, -2, \dots),$$

(5)
$$\Gamma(z+1) = z \Gamma(z) \qquad (z \neq 0, -1, -2, \dots),$$

(6)
$$\Gamma(z) \Gamma(1-z) = \pi \operatorname{cosec} \pi z \qquad (z \neq 0, +1, +2, \dots),$$

$$\frac{\Gamma(z+1)}{\Gamma(z)\Gamma(1-z)}$$

(6)
$$\Gamma(z)\Gamma(1-z) = \pi \operatorname{cosec} \pi z$$
 $(z \neq 0, \pm 1, \pm 2,...)$
(7) $\prod_{\mu=0}^{\nu-1} \Gamma\left(z + \frac{\mu}{\nu}\right) = (2\pi)^{\mu} \nu^{\frac{1}{2}-\nu z} \Gamma(\nu z)$ $(\nu z \neq 0, -1, -2,...)$

furthermore

(8)
$$\Gamma(m) = (m-1)! \qquad (m = 1, 2, ...),$$

(9)
$$\Gamma\left(\frac{1}{2}\right) = \sqrt[3]{\pi}.$$

Theorem I. The product (3) converges if and only if neither of the numbers $\alpha + h\delta$, $\alpha + \mu\delta$ ($\mu = 0, 1, ..., \nu - 1$) is 0 or a negative integer. In this case Q can be written in closed form by means of the gamma-function, namely

(10)
$$Q = \Gamma(\alpha)\Gamma(\alpha + \delta)\cdots\Gamma(\alpha + \overline{\nu - 1}\delta)\cdot\Gamma(\alpha + h\delta)^{-\nu}.$$

Especially, if 0 = 1, we have for $\nu =$

(11)
$$Q = \alpha \left(\frac{\Gamma(\alpha)}{\Gamma(\alpha + \frac{1}{2})}\right)^2$$

and for any $\nu > 2$

(12)
$$Q = \frac{(a+\nu-2)(a+\nu-3)^2\cdots(a+[h])^{2h-[h]}}{\alpha(a+1)^2\cdots(a+[h]-1)^{[h]}} \left(\frac{\Gamma(a+[h])}{\Gamma(a+h)}\right)^{\nu}; {}^{s})$$

if $\delta = \frac{1}{v}$, (10) becomes

(13)
$$Q = (2\pi)^h \nu^{\frac{1}{2} - \nu \alpha} \frac{\Gamma(\nu \alpha)}{\Gamma\left(\alpha + \frac{h}{\nu}\right)^\nu};$$

in case $\alpha + h\delta = 1$ we obtain by putting $\Theta_{\mu} = 1 - (\alpha + \mu\delta)$

(14)
$$Q = \prod_{\mu=0}^{\left\lfloor \frac{\nu}{2} \right\rfloor^{-1}} \frac{\pi \Theta_{\mu}}{\sin \pi \Theta_{\mu}},$$

provided that neither of $\Theta_1, \Theta_2, \ldots$ is an integer.

3) [h] denotes the integer part of h. — If ν is odd, the last factor in (12) (including gamma-values) may be plainly omitted.

M. Mikolás

Proof. 1° If one of $\alpha + h\delta$, $\alpha + u\delta$ ($\mu = 0, 1, ..., r-1$) is zero or a negative integer, then the nominator or denominator of

(15)
$$Q_{N} = \prod_{n=0}^{N} \frac{(A+nD+hd)^{n}}{(A+nD)(A+nD+d)\cdots(A+nD+\overline{n-1}d)} = \prod_{n=0}^{N} \frac{(a+n)(a+\delta+n)^{n}}{(a+n)(a+\delta+n)\cdots(a+\overline{n-1}\delta+n)}$$

vanishes for N sufficiently large, and so Q_N has the value 0, or it has no meaning, respectively.

Otherwise we write

$$Q_{N} = \frac{\{(a+h\delta)(a+h\delta+1)\cdots(a+h\delta+N)\}^{\nu}}{a(a+1)\cdots(a+N)\cdot(a+\delta)(a+\delta+1)\cdots(a+\delta+N)\cdots(a+\overline{\nu-1}\delta)\cdots(a+\overline{\nu-1}\delta+N)} = \frac{(a+h\delta)(a+h\delta+1)\cdots(a+h\delta+N)}{N! N^{a+h\delta}}^{\nu} \prod_{\mu=0}^{\nu-1} \frac{N! N^{a+\mu\delta}}{(a+\mu\delta)(a+\mu\delta+1)\cdots(a+\mu\delta+N)}.$$

Here, by (4), every fraction has a limit as $N \rightarrow \infty$, moreover

(16)
$$Q = \prod_{n=0}^{\infty} \frac{(\alpha+h\delta+n)^{\nu}}{(\alpha+n)(\alpha+\delta+n)\cdots(\alpha+\nu-1\delta+n)} = \Gamma(\alpha+h\delta)^{-\nu} \prod_{\mu=0}^{\nu-1} \Gamma(\alpha+\mu\delta).$$

2° Let $\delta = 1$. For $\nu = 2$ the last formula becomes at once (11) because of (5). — If $\nu > 2$, we use the relation

(17)
$$\Gamma(z) = (z-1)(z-2)\cdots(z-\lambda)\Gamma(z-\lambda)$$
 $(\lambda = 1, 2, ...),$
arising from (5) by repetition; considering that

 $\Gamma(\alpha + [h] + p) = (\alpha + [h] - 1) \cdots (\alpha + [h]) \Gamma(\alpha + [h]) \quad (p = 1, 2, ..., 2h - [h]),$ $\Gamma(\alpha + [h] - q) = \{(\alpha + [h] - q) \cdots (\alpha + [h] - 1)\}^{-1} \Gamma(\alpha + [h]) \quad (q = 1, 2, ..., [h]),$ (16) may be written in the form (12).

Concerning (13), (14), we have only to put $\delta = \frac{1}{\nu}$, $\delta = \frac{1-\alpha}{h}$ in (16) and then to apply the multiplication theorem of GAUSS (7), furthermore the functional equations (5), (6), respectively.

3. In some particular cases it is possible to find for Q a finite expression which is *free* from gamma-values. We have namely the following

Theorem II. Assume that neither of $a + h\delta$, $a + \mu\delta$ ($\mu = 0, 1, ..., \nu - 1$) is 0 or a negative integer. — On the basis of (5)—(9) exclusively, Q can be transformed into a closed analytical expression built from 2, π , ν , factorial numbers, and from α , δ by means of rational operations, square roots and the sine-function, if and only if at least one of the following conditions is satisfied: 1) δ is an integer and $(\nu - 1)\delta$ is even, 2) $2\alpha + (\nu - 1)\delta = K$, where K means an integer different from zero and the negative even numbers. On a class of infinite products whose value can be expressed in closed form.

Proof. Let α , $\alpha + \delta$, ..., $\alpha + (\nu - 1)\delta$, $\alpha + h\delta$ be complex numbers, different from $0, -1, -2, \ldots$

1° Suppose that δ and $h\delta$ are integers (i. e. $(\nu-1)\delta \equiv 0 \pmod{2}$). Then it follows by (17) ($\mu = 0, 1, ..., \nu - 1$)

(18)
$$\Gamma(\alpha+\mu\delta) = \begin{cases} (\alpha+\mu\delta-1)(\alpha+\mu\delta-2)\cdots(\alpha+h\delta)\Gamma(\alpha+h\delta) & \text{if } (\mu-h)\delta > 0, \\ \{(\alpha+\mu\delta)(\alpha+\mu\delta+1)\cdots(\alpha+h\delta-1)\}^{-1}\Gamma(\alpha+h\delta) & \text{if } (\mu-h)\delta < 0, \end{cases}$$

so that we obtain from (10) by substitution and simplification with $\Gamma(\alpha + h\delta)^{\nu}$ a finite and in α , δ rational expression for Q.

Let $2\alpha + (\nu - 1)\delta = K$ (K = 1, 2, 3, ...; -1, -3, -5, ...). This implies (cf. (5), (9))

(19)
$$\Gamma(\alpha + h\delta) = \Gamma\left(\frac{K}{2}\right) = \begin{cases} (s-1)! & \text{for } K=2s & (s=1,2,...), \\ 2^{-s}(2s+1)!! \sqrt{\pi} & \text{if } K=2s+1 & (s=0,1,2,...), \\ (-2)^{s+1} & \sqrt{\pi} & \text{if } K=-(2s+1) (s=0,1,2,...). \end{cases}$$

Next consider the product

(20)
$$\Gamma(\alpha + \mu \delta)\Gamma(\alpha + \overline{\nu - \mu - 1} \delta) = \Gamma(\alpha + \mu \delta)\Gamma(K - \alpha - \mu \delta)$$

with an integer μ , $0 \le \mu \le \nu - 1$; the second term contains two factorial numbers if $\alpha + \mu \delta$ is a positive integer (cf. (8)), otherwise it can be represented, on the basis of (17) and (6), as a closed expression of π, α, δ by means of rational operations and sine-values.

2° Now, we should like to know all the cases, in which the right-hand side of (10) can be written by using (5)-(9) in form required above. As it is at once to see, in any case in question $\Gamma(\alpha + h\delta)^{-r} \prod \Gamma(\alpha + u\delta)$ must be reducible by (5), (6), (7) (in a definite number of steps) so that the closed expression obtained does not contain values of $\Gamma(z)$ except possibly those with $z = 1, 2, 3, \ldots; \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \ldots$

Concerning the factor $\Gamma(\alpha + h\delta)$, this implies plainly two possibilities: 1) it occurs only 'apparently', i. e. we can simplify with $\Gamma(\alpha + h\delta)^{\nu}$ (after transformations permitted) in the product mentioned; 2) $\alpha + h\delta$ is a positive integer or one of the fractions $\pm \frac{1}{2}, \pm \frac{3}{2}, \ldots$, i. e.

$$\alpha + h\delta = \frac{K}{2}$$
 (K=1, 2, 3, ...; -1, -3, -5, ...).

The case 1) can be realised only if any of the values $\Gamma(\alpha + \mu \delta)$ $(\mu = 0, 1, \dots, \nu - 1)$ can be written by (5) and (17), respectively, as a product of (18) type; but such a relation between $\Gamma(\alpha + \mu \delta)$ and $\Gamma(\alpha + h \delta)$ assumes that $(u-h)\delta$, and therefore, in particular, $(u+1-h)\delta - (u-h)\delta =$

61

62 M. Mikolás: On a class of infinite products whose value can be expressed in closed form.

$$=\delta$$
 and $(\nu-1-h)\delta = \frac{1}{2}(\nu-1)\delta$ are integers $(\mu=0, 1, ..., \nu-1)$. Thus

we have got the first condition of the theorem.

In the case 2) one has $2\alpha + (\nu - 1)\delta = K$ (K=1, 2, 3, ...; -1, -3, -5, ...), i.e. the second condition must be fulfilled.

This completes the proof.

4. We give a few examples. (11) becomes for v = 2 and $\alpha = \delta = 1$

(21)
$$\prod_{m=1}^{\infty} \frac{\left(m+\frac{1}{2}\right)^2}{m(m+1)} = \frac{4}{\tau^2},$$

and with $\alpha = \frac{1}{2}$, $\delta = 1$ the formula (1) of WALLIS.

From (13) it results by putting $\alpha = \frac{1}{2r}$

(22)
$$\prod_{n=0}^{\infty} \frac{\left[(2n+1)\nu\right]^n}{(2n\nu+1)(2n\nu+3)\cdots(2n\nu+2\nu-1)} = 2^{\frac{\nu-1}{2}} \quad (\nu=2,3,\ldots),$$

while for
$$\alpha = \frac{1}{2} + \frac{1}{2\nu}$$
 we obtain

$$\prod_{n=0}^{\infty} \frac{[2(n+1)\nu]^{\nu}}{[(2n+1)\nu+1][(2n+1)\nu+3]\cdots[(2n+1)\nu+2\nu-1]} = (2\pi)^{h}\nu^{-\frac{\nu}{2}}\Gamma\left(\frac{\nu+1}{2}\right) = \\ (23) = \begin{cases} \frac{(2\pi)^{h}h!}{\nu^{\frac{\nu}{2}}} & \text{for } \nu = 3, 5, 7, \dots, \\ \frac{1}{\sqrt{2}}\left(\frac{\pi}{\nu}\right)^{\frac{\nu}{2}}(\nu-1)!! & \text{for } \nu = 2, 4, 6, \dots. \end{cases}$$

Since we have, by (6) and (7),

(24)
$$\prod_{i=1}^{\nu-1} \sin \frac{i\pi}{\nu} = \frac{\nu}{2^{\nu-1}} \qquad (\nu = 2, 3, \ldots).$$

(14) transforms itself for $\nu = 2\varrho$, $\alpha = \frac{1}{2\varrho}$, $\delta = \frac{1}{\varrho}$ ($\varrho = 1, 2, ...$) into

(25)
$$\prod_{n=0}^{\infty} \frac{[(2n+1)\varrho]^{2\varrho}}{(2n\varrho+1)(2n\varrho+3)\cdots(2n\varrho+4\varrho-1)} = \frac{1}{2} \left(\frac{\pi}{\varrho}\right)^{\varrho} (2\varrho-1)!!$$

which is a remarkably simple generalization of (1) (q = 1).

It may be mentioned that (25) follows easily also from (22) and (23) if we take $v = 2\rho$ and multiply the corresponding terms.

(Received January 21, 1955.)