On a class of infinite products whose value can be expressed in closed form.

By MIKLÓS MIKOLÁS in Budapest.

1. The familiar formula of WALLIS

$$
\begin{equation*}
\prod_{m=1}^{\infty} \frac{(2 m)^{2}}{(2 m-1)(2 m+1)}=\frac{\pi}{2} \tag{1}
\end{equation*}
$$

gives a very simple, not-trivial example of an infinite product with wellknown value. L. Fejér suggested the problem to find a possibly wide class of infinite products, including the Wallis product, whose value can be expressed in finite form by means of the elementary functions.

In a previous paper ${ }^{1}$) I discussed the product

$$
\begin{equation*}
P=\prod_{n=0}^{\infty} \frac{\left(\frac{a_{n}+a_{n+1}+\cdots+a_{n+v}}{v+1}\right)^{v+1}}{a_{n} a_{n+1} \cdots a_{n+v}} \tag{2}
\end{equation*}
$$

for fixed $v \geqq 1,\left\{a_{n}\right\}$ meaning a strictly increasing sequence of positive numbers; it was proved that P is convergent if and only if the series $\sum_{n=0}^{\infty}\left(\frac{a_{n+y}}{a_{n}}-1\right)^{2}$ converges, and some formulae were deduced for the case of an arithmetical progression.
2. Now let d, A and D mean fixed complex numbers $\neq 0$, and let z be a complex variable. We denote by $\mathfrak{F}_{r}(z), \mathfrak{G}_{v}(z)$ the arithmetic and geometric mean ${ }^{2}$), respectively, of $z, z+d, \ldots, z+(\nu-1) d$, and consider, for a fixed $\nu \geqq 2$, the product

$$
\begin{equation*}
Q=\prod_{\substack{z=1+n D \\ n=0,1,2, \ldots}}\left(\frac{\Re_{n}(z)}{\mathscr{S}_{v}(z)}\right)^{v}=\prod_{\substack{z=1+n n \\ n=0,1,2, \ldots}} \frac{\left(z+\frac{v-1}{2} d\right)^{v}}{z(z+d) \ldots(z+\overline{v-1} d)} \tag{3}
\end{equation*}
$$

i) Cf. M. Mikolas, Sur un produit infini; these Acta, 12 A (1950), 68-72. - The auxiliary function used here, $\Theta(t, a)=\prod_{n=0}^{\infty}\left(1-\frac{t^{2}}{(n+a)^{2}}\right)$, may be written also in the form $\Gamma(\alpha)^{2} / \Gamma(\alpha+t) \Gamma(\alpha-t)$.
${ }^{2}$) Any value of the $\nu^{\text {th }}$ root may be chosen.
M. Mikolás : On a class of infinite products whose value can be expressed in closed form. 59
Q may be regarded plainly as a generalization of the Wallis product. - Let, for the sake of brevity, $c=\frac{A}{D}, \delta=\frac{d}{D}, h=\frac{\nu-1}{2}$.

We need the following well-known facts from the theory of the gammafunction :

$$
\begin{array}{cc}
\Gamma(z)=\lim _{u \rightarrow \infty} \frac{n!n^{z}}{z(z+1) \ldots(z+n)} & (z \neq 0,-1,-2, \ldots), \\
\Gamma(z+1)=z \Gamma(z) & (z \neq 0,-1,-2, \ldots), \\
\Gamma(z) \Gamma(1-z)=\pi \operatorname{cosec} \pi z & (z \neq 0, \pm 1, \pm 2, \ldots), \\
\prod_{\mu=0}^{v-1} \Gamma\left(z+\frac{\mu}{\nu}\right)=(2 \pi)^{h} \nu^{\frac{1}{2}-v z} \Gamma(\nu z) & (\nu z \neq 0,-1,-2, \ldots), \tag{7}
\end{array}
$$

furthermore

$$
\begin{align*}
& \Gamma(m)=(m-1)!\quad(m=1,2, \ldots) \tag{8}\\
& \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\end{align*}
$$

Theorem I. The product (3) converges if and only if neither of the numbers $a+h \delta, a+\mu \delta(\mu=0,1, \ldots, v-1)$ is 0 or a negative integer. In this case Q can be written in closed form by means of the gamma-function, namely

$$
\begin{equation*}
Q=\Gamma(c) \Gamma(c+\delta) \cdots \Gamma(c+\overline{v-1} \delta) \cdot \Gamma(c+h \delta)^{-\nu} \tag{10}
\end{equation*}
$$

Especially, if $\delta=1$, we have for $v=2$

$$
\begin{equation*}
Q=c\left(\frac{\Gamma(c)}{\Gamma\left(c+\frac{1}{2}\right)}\right)^{2} \tag{11}
\end{equation*}
$$

and for any $v>2$

$$
\begin{equation*}
\left.Q=\frac{(a+v-2)(c+v-3)^{2} \cdots(c+[h])^{2 h-[h]}}{c(c+1)^{2} \cdots(c+[h]-1)^{[h]}}\left(\frac{\Gamma(a+[h])}{\Gamma(a+h)}\right)^{v} ;{ }^{v}\right) \tag{12}
\end{equation*}
$$

if $\delta=\frac{1}{v}$, (10) becomes

$$
\begin{equation*}
Q=(2 \pi)^{h} v^{\frac{1}{2}-v a} \frac{\Gamma(v a)}{\Gamma\left(a+\frac{h}{v}\right)^{2}} \tag{13}
\end{equation*}
$$

in case $a+h \delta=1$ we obtain by putting $\Theta_{\mu}=1-(c+u \delta)$

$$
\begin{equation*}
Q=\prod_{\mu=0}^{\left[\left.\frac{p}{2}\right|_{-1}\right.} \frac{x \Theta_{\mu}}{\sin \pi \Theta_{\mu}} \tag{14}
\end{equation*}
$$

provided that neither of $\Theta_{1}, \Theta_{2}, \ldots$ is an integer.

[^0]Proof. 1° If one of $a+h \delta, ~ c+\mu \delta(\mu=0,1, \ldots, r-1)$ is zero or a negative integer, then the nominator or denominator of

$$
\begin{align*}
Q_{s} & =\prod_{n=0}^{N} \frac{(A+n D+h d)^{r}}{(A+n D)(A+n D+d) \cdots(A+n D+\overline{n-1} d)}= \tag{15}\\
& =\prod_{n=0}^{x} \frac{(c+h \delta+n)^{r}}{(a+n)(a+\delta+n) \cdots(c+\overline{v-1} \delta+n)}
\end{align*}
$$

vanishes for N sufficiently large, and so Q_{s} has the vaiue 0 , or it has no meaning, respectively.

Otherwise we write

$$
Q_{v}=\frac{\cdot}{a(a+1) \cdots(a+N) \cdot(a+\delta)(a+\delta+1) \cdots(a+\delta+N) \cdots(a+v-1 \delta) \cdots(a+\overline{v-1} \delta+N)}=
$$

$$
=\left(\frac{(a+h \delta)(a+h \delta+1) \cdots(a+h \delta+N)}{N!N^{\alpha+h \delta}}\right)^{\nu} \prod_{\mu=0}^{v-1} \frac{N!N^{\alpha+\mu \delta}}{(a+\mu \delta)(a+\mu \delta+1) \cdots(a+\mu \delta+N)} .
$$

Here, by (4), every fraction has a limit as $N \rightarrow \infty$, moreover

$$
\begin{equation*}
Q=\prod_{n=0}^{\infty} \frac{(\alpha+h \delta+n)^{r}}{(\omega+n) \cdot(c+\delta+n) \cdots(\alpha+\overline{v-1} \delta+n)}=\Gamma(c+h \delta)^{-v} \prod_{\mu=0}^{v-1} \Gamma(\omega+\mu \delta) . \tag{16}
\end{equation*}
$$

2° Let $\delta=1$. For $v=2$ the last formula becomes at once (11) because of (5). - If $\nu>2$, we use the relation

$$
\begin{equation*}
\Gamma(z)=(z-1)(z-2) \cdots(z-\lambda) \Gamma(z \cdots) \quad(\lambda=1,2, \ldots), \tag{17}
\end{equation*}
$$

arising from (5) by repetition; considering that
$\Gamma(c+[h]+p)=(c+[h]-1) \cdots(c+[h]) \Gamma(c+[h]) \quad(p=1,2, \ldots, 2 h-[h])$, $\Gamma(c+[h]-q)=\{(c+[h]-q) \cdots(c+[h]-1)\}^{-1} \Gamma(c+[h]) \quad(q=1,2, \ldots,[h])$, (16) may be written in the form (12).

Concerning (13), (14), we have only to put $\delta=\frac{1}{\nu}, \delta=\frac{1-a}{h}$ in (16) and then to apply the multiplication theorem of Gauss (7), furthermore the functional equations (5); (6), respectively.
3. In some particular cases it is possible to find for Q a finite expression which is free from gamma-values. We have namely the following

Theorem II. Assume that neither of $a+h \delta, a+\mu \delta(\mu=0,1, \ldots, v-1)$ is 0 or a negative integer. - On the basis of (5)-(9) exclusively, Q can be transformed into a closed analytical expression built from 2, $\boldsymbol{\pi}, \boldsymbol{v}$, factorial numbers, and from a, δ by means of rational operations, square roots and the sine-function, if and only if at least one of the following conditions is satisfied: 1) δ is an integer and $(\nu-1) \delta$ is even, 2) $2 \omega+(v-1) \delta=K$, where K means an integer different from zero and the negative even numbers.

Proof. Let $a, ~ a+\delta, \ldots, a+(\nu-1) \delta, a+h \delta$ be complex numbers, different from $0,-1,-2, \ldots$
1° Suppose that δ and $h \delta$ are integers $($ i. e. $(r-1) \delta \equiv 0(\bmod 2))$. Then it follows by (17) $(\mu=0,1, \ldots, v-1)$
(18) $\Gamma(c+\mu \delta)= \begin{cases}(c+\mu \delta-1)(c+\mu \delta-2) \cdots(c+h \delta) \Gamma(c+h \delta) & \text { if }(\mu-h) \delta>0, \\ \{(c+\mu \delta)(c+\mu \delta+1) \cdots(c+h \delta-1)\}^{-1} \Gamma(c+h \delta) & \text { if }(\mu-h) \delta<0,\end{cases}$
so that we obtain from (10) by substitution and simplification with $\Gamma(a+h \delta)^{v}$ a finite and in c, δ rational expression for Q.

Let $2 c+(v-1) \delta=K(K=1,2,3, \ldots ;-1,-3,-5, \ldots)$. This implies (cf. (5), (9))

$$
\Gamma(a+h \delta)=\Gamma\left(\frac{K}{2}\right)= \begin{cases}(s-1)! & \text { for } K=2 s \tag{19}\\ 2^{-s}(2 s+1)!!\sqrt{\pi} & \text { if } K=2 s+1 \\ (-2)^{s+1} \frac{\sqrt{\pi}}{(2 s+1)!!} & (s=1,2, \ldots) \\ \text { if } K=-1,2, \ldots)\end{cases}
$$

Next consider the product

$$
\begin{equation*}
\Gamma(\alpha+\mu \delta) \Gamma(c+\overline{v-\mu-1} \delta)=\Gamma(\alpha+\mu \delta) \Gamma(K-\varkappa-\mu \delta) \tag{20}
\end{equation*}
$$

with an integer $\mu, 0 \leqq \mu \leqq \nu-1$; the second term contains two factorial numbers if $a+\mu \delta$ is a positive integer (cf. (8)), otherwise it can be represented, on the basis of (17) and (6), as a closed expression of π, c, δ by means of rational operations and sine-values.
2° Now, we should like to know all the cases, in which the right-hand side of (10) can be written by using (5)-(9) in form required above. As it is at once to see, in any case in question $\Gamma(a+h \delta)^{-v} \prod_{\mu=0}^{v-1} \Gamma(a+\mu \delta)$ must be reducible by (5), (6), (7) (in a definite number of steps) so that the closed expression obtained does not contain values of $\Gamma(z)$ except possibly those with $z=1,2,3, \ldots ; \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \ldots$.

Concerning the factor $\Gamma(\alpha+h \delta)$, this implies plainly two possibilities: 1) it occurs only 'apparently', i. e. we can simplify with $\Gamma(a+h \delta)^{\nu}$ (after transformations permitted) in the product mentioned; 2) $a+h \delta$ is a positive integer or one of the fractions $\pm \frac{1}{2}, \pm \frac{3}{2}, \ldots$, i. e.

$$
a+h \delta=\frac{K}{2} \quad(K=1,2,3, \ldots ;-1,-3,-5, \ldots)
$$

The case 1) can be realised only if any of the values $\Gamma(\alpha+\mu \delta)$ $(\mu=0,1, \ldots, v-1)$ can be written by (5) and (17), respectively, as a product of (18) type; but such a relation between $\Gamma(c+\mu \delta)$ and $\Gamma(c+h \delta)$ assumes that $(\mu-h) \delta$, and therefore, in particular, $(\mu+1-h) \delta-(\mu-h) \delta=$

62 M. Mikolás: On a class of infinite products whose value can be expressed in closed form.
$=\delta$ and $(\nu-1-h) \delta=\frac{1}{2}(\nu-1) \delta$ are integers $(\mu=\dot{0}, 1, \ldots, \nu-1)$. Thus we have got the first condition of the theorem.

In the case 2) one has $2 a+(r-1) \delta=K(K=1,2,3, \ldots ;-1,-3,-5, \ldots)$, i. e. the second condition must be fulfilled.

This completes the proof.
4. We give a few examples.
(11) becomes for $\gamma=2$ and $a=\delta=1$

$$
\begin{equation*}
\prod_{m=1}^{\infty} \frac{\left(m+\frac{1}{2}\right)^{2}}{m(m+1)}=\frac{4}{\pi} \tag{21}
\end{equation*}
$$

and with $a=\frac{1}{2}, \delta=1$ the formula (1) of Wallis.
From (13) it results. by putting $a=\frac{1}{2 \mu}$

$$
\begin{equation*}
\prod_{n=0}^{\infty} \frac{[(2 n+1) v]^{r}}{(2 n v+1)(2 n v+3) \cdots(2 n v+2 v-1)}=2^{\frac{v-1}{2}} \quad(v=2,3, \ldots) \tag{22}
\end{equation*}
$$

while for $\varepsilon=\frac{1}{2}+\frac{1}{2 v}$ we obtain
$\prod_{n=0}^{\infty}{ }_{[(2 n+1) v+1][(2 n+1) v+3] \cdots[(2 n+1) v+2 v-1]} \frac{[2(n+1) v]^{v}}{}=(2 \pi)^{n} v^{-\frac{v}{2}} \Gamma\left(\frac{v+1}{2}\right)=$

$$
= \begin{cases}\frac{(2 \pi)^{h} h!}{v^{\frac{\nu}{2}}} & \text { for } v=3,5,7, \ldots, \tag{23}\\ \frac{1}{\sqrt{2}}\left(\frac{\pi}{v}\right)^{\frac{v}{2}}(v-1)!!\text { for } \nu=2,4,6, \ldots\end{cases}
$$

Since we have, by (6) and (7),

$$
\begin{equation*}
\prod_{l=1}^{\nu-1} \sin \frac{l \pi}{v}=\frac{\nu}{2^{\nu-1}} \quad(v=2,3, \ldots) \tag{24}
\end{equation*}
$$

(14) transforms itself for $y=2 \varrho, a=\frac{1}{2 \varrho}, \delta=\frac{1}{\varrho}(\rho=1,2, \ldots)$ into

$$
\begin{equation*}
\prod_{n=0}^{\infty} \frac{[(2 n+1) \varrho]^{2} \rho}{(2 n \varrho+1)(2 n \varrho+3) \cdots(2 n \varrho+4 \varrho-1)}=\frac{1}{2}\left(\frac{\pi}{\varrho}\right)^{\varrho}(2 \rho-1)!!, \tag{25}
\end{equation*}
$$

which is a remarkably simple generalization of (1) $(o=1)$.
It may be mentioned that (25) follows easily also from (22) and (23) if we take $r=2 o$ and multiply the corresponding terms.

[^0]: ${ }^{3}$) $[h]$ denotes the integer part of h. - If v is odd, the last factor in (12) (including gamma-values) may be plainly omitted.

