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On the theory of quasi-unitary algebras.
By L. PUKANSZKY in Szeged. '

To Professor ‘L. Kalmdr on his 50th birthday.

1. Introduction. ]. DIXMIER has recently introduced the concept of
the quasi-unitary algebra, and developed various theorems clarifying its’
“structure, cf. [2]. This notion contains as special cases the unitary algebras
([6], [9]), and the group algebras of (not necessarily unimodular) locally
compact groups. Also the examples of factors given by ]. vON NEUMANN
in [8] can be interpreted from this point of view. It can be shown in virtue
of this circumstance, that while many properties of the unitary algebras can
be extended to the quasi-unitary case, the latter notion is more general also
in the respect that the corresponding left ring R’ need not be semi-firiite’),_
1. e. it can possess a nontrivial purely infinite component. This makes a
difficulty, in view of the role of the left rings in the investigation of the quasi-
unitary algebras. Thus it is of interest to obtain criteria for those quasi-unitary
algebras R for which R’ is a semi-finite ring, and to clarify their structure.

The present paper is devoted to this problem, -and in part continues
the investigations of Dixmier. Firstly, by continuation of his method we prove
that if R’ is semi-finite, then J=[M’'M "']%), where M is positive, self-adjoint,
. non-singular, nR*%), and M’=SMS (cf. Theorem 1, for the definitions and
notations cf. below 2). This result combined with DixmiER’s Theorem 2 shows
that the representability of / in the form [M'M~'] is a necessary and suffi-
cient condition for the semi-finiteness of RY, and then Q"';P’l. In other -

1) A ring of operators N is called semi-finite, if every projection PEN contains a
finite projection. We say that the projection P is finite if there exists no partial isometry
VEN with V*V=pP, VV*=Q < P.

2) Given two (in general unbounded) closed operators S, T defined on a Hilbert
space , we note by [ST] the minimal closed extension of the product ST (provided it
exists).

3) If T is a closed operator, we denote by TH N that T commutes with every oper-
ator of the commutant N' of N.
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words, Theorem-1 gives- a solution for DIXMIER’s hypothesis 1 (cf. [2] p.
283) in the semi-finite case. ‘

In Theorem 2 we prove, generalizing the corresponding results for
unitary algebras (cf. [6] Theorem 4 and [10] Theorem 18), that if RY is semi-
finite, then R’, M’ and the maximal extension of the canonical trace can be
prescribed. More explicitly, given a semi-finite operator ring N on a Hilbert space,
a positive, self-adjoint, non-singular operator #nN, and 'a maximal normal
trace ¢ defined on a two-sided ideal mE&N,*) there exists a quasi-unitary
algebra R such that R’ is *-isomorphic with N and, under this isomorphism,
M’ and the maximal extension of the canonical trace correspond to A and -
o, respectively. If R is a maximal, then we show that it is determined up
to an isomorphism by this choice (Theorem 3).

Next we investigate some properties of the quasi-unitary algebras with
a semi-finite R’. We show beside others that contrary to the unitary case
the canonical trace need not be maximal (cf. lemma 10 and the remark which
follows). Finally we give a proof for a theorem of DIXMIER about the quasi- -
central elements, which leads to somewhat more general result (Theorem 5 -
cf. Theorem 4 in [2]). : ‘

2. Defimtlons and preliminary results For the following cf. [2],
in particular chapters I, 1I, V—VII. A quasi-unitary algebra R is an algebra’
over the complex numbers, on which an involutive antiautomorphism x — x*,
an automorphism x — ¥/, and an inner product (x, y) are defined, such that
R becomes a pre-Hilbert space satisfying the following axioms:

(@) xs)=(x x),

(i) (x, ) =

(iii) (xy,2)= (y, xi°2),

(iv) the mapping x — yx with fixed y is-continuous,

(v) the linear combinations of the elements of the form xy—{—(xy)J
are dense in R (x,, z arbitrary in R)..

‘A unitary algebra is a quasn—umtary algebra with x’ =x.

Let Hr be the Hilbert space, which is obtained by completion of R.
By axiom (iv), for every x¢R there exists a bounded operator U, (resp. V.)
on Pr satisfying U.y=xy (resp. Voy=yx) for every y€R. The weak (or

4) We recall that a trace ¢ defined on a two-sided ideal m of an operator-ring N
is a positive linear form such that (A B)=g(BA) for A¢ni and BEN. ¢ is regular, if
@(T)=0 for T€m, T=0 implies T=0. A trace o is normal, if it has the following prop-
erty: let Tz be an increasing directed set of positive operators €m with a L. u.b. T7€m,
then we have ¢(T)=1u.b. (7). It is maximal, if it has no proper normal extension.

« .

If we say in the following simply a trace, we suppose that it is normal and maximal. In
the case of semi-finite rings this means, that it is also regular. Every (not necessarily
maximal) trace ¢ has a ‘maximal extension, which is uniquely determined, if N is semi-
finite and m is strongly dense in it. For a theory of traces cf. [1].
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strong) closure of the operators U, (resp. V.) is a ring of operators R’
(resp. R% on Hgr with unit operator. R’ (resp. R7) is called the left (right)
ring of R. The set of boundéd operators on Hr which commute with every
element of RY, coincides with R”; in other words, R? is the commutant of
R’: R” =R (Theorem of commutation). The minimal closed extension / of .
the correspondence x — x7 is positive, self-adjoint, non-singular, and it is.
equal to the minimal closed extension of its restriction to the linear combi-
nations- of the elements xy (x, y€R). Denoting by S the involution of Hr
obtained by the continuation of the correspondence x — x* over Dg, we have
] '=_SJS. The mapping T— STS (T€R’) establishes a conjugate linear
isomorphism between R’ and R?. An element a of Hg is called left bounded,
if there exists .an operator U, defined on g such that U,x= V.a for every
x¢R. Then U.€R’. If a is left bounded and T€R’, then Ta is left bounded
too, and UTa—TU U(,— U, (w1th b left bounded) if and only if a€D/

. and then b—S§/ 'a.

If J—[M’'M"], where MyR" is positive, self-adjoint, non-singular, and
M’ =SMS, then R’ is semi-finite. This follows from the fact, that the ele-

ments A=— Z U., Us. (a;, b; left bounded and € D) form a strongly dense

I‘—‘l
two-sided ideal mE R’, and ¢ (A)= > (Ma;, Mb,) defines a (not necessarily
=1

maximal) trace on m. This is the canonical trace for R’. The operator M is
not determined uniquely by the condition J—[M’M ']. If CyR’nR" is posi-
tive, self-adjoint and non-singular, then [CM] possesses this property too,
and conversely, if /=[M{M'], then there exists an operator CyR’nR" of
the same kind such that M,=[CM]. Therefore, the canonical trace is also
not uniquely determined. Denote by P the set of operators € R’ which
commute with /, and by Q° the set of operators € R’ which commute with
P'. Then from J—[MM™] it follows that Q'S P’; and conversely, if R’ is
semi-finite and Q"< P’, then J=[M'M™].

3. Theorem 1. Let R be a quasi-unitary algebra for which R’ is
semi-finite. Then |=[M ’M’l], where M')}R" is self-adjoint, positive, non-
singular, and M" = SMS.

From the proof of Theorem 3 in [2] we shall. use the following facts.
Let ¢ be a trace defined on the (strongly dense) two-sided ideal m of R’. Then
there exists a positive, self-adjoint, non-singular operator MnR? such that

a) if we denote by A the set of those left bounded elements ¢ Hyx for
1

which U, e¢m? %), then M is the minimal closed extension of its restriction to A4;

. 3) If m is a two-sided ideal in an operator-ring N, then W denotes the two-sided
ideal formed by the elemeénts TEN for which 7*T¢€m.
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b) if a,b¢c A then (Ma, Mb)=o(U.U;);

¢) if / commutes with M, then. puttmg M’ = SMS we have J==[M'M""]
(cf. [2] lemma 23).

Therefore in the following it suffices to show that in consequence of
a) and b) | commutes with M.%)

Before passing to.the. proof of this statement we -need some lemmas.

Lemma 1. For x¢ R there exists an operator T, such that T MEMV..
Proof: We note first that if a € A then V.a E A too, because V.a= U,x,
: :

and so Uy=Uy,= U.U, € m*. We define TiMa=MV.a for a€ A; T.is
densely defined. Since || T.Ma|! = ||MV.a|}=@U.U.UU) = Ke(U.U3) =
= K||Ma|]> where K depends only on x, T, can be extended by continuity
‘to a bounded operator T,. Finally, if a € Dy, then there exists a sequence
a, €A (n=1,2,...) such that lima,=a, lim V.a,= V .a, lim Ma,=Ma;

B @ H-—> O . H~>

hence from T.Ma,=MV.a. (n= 1 2,...) it follows “that V.a € Dy and
T.Ma=MV.a. '
1

We introduce for X, Y€m? the scalar product (X, Y)—~(p(XY‘) Then
with the involutive antlautomorphlsm X X" and the usual ‘product m?

becomes a unitary algebra, which we denote agam by m?, and its completion
by 9,3 . As it is shown in [6] (The01em 4) or in different form in [10]

(Theorem 18), the left and nght rings of m? can be obtained in the followmg

way. Let T¢R’ and X ¢ m?, then we have p((TX)* (TX)) = (X" T*TX) =
= ||T|| p(X* X), hence. the correspondence X — TX can be extended to a

bounded linear transformation L; defined on D, The totahty of these

operators Ly (T € RY) coincides with the left ring of m2. Similarly, we can
define for 7 ¢ R’ the operator Ry by extending the correspondence X — XT

to a bounded linear transformation on ";’.F‘-" and the totality of these - opera-
1 . .
tors forms the right ring of m?2.

_ Lemma 2. The correspondence Ma— U, (a € A) can be extended to
an isomorphism + between the spaces Dy ‘and 9,4, which carries R’ into the
: 1

left ring; and R* into the right ring of m2.
' X @
oy If H,:J ZdEY and H2=J 2dESY are two operators defined on a Hilbert space
o 0

$, we say that they commute, if Ef” and EY’ commute for 4,4 = 0. In this case [H,H,]
always exists, and is positive, self-adjoint. .
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"Proof: f:Xem? and y€R, Uxy= XU, €m?, hence Xy¢cA. Since
the set of the operators U, (y € R) forms a-strongly dense %-subalgebra of R?,
there exists, by a theorem of KAPLANSKY (cf. [7] Theorem 1), a directed set of
operators {U,_}ecr (¥<€R), which converges strongly and boundedly in norm to /.

¢ is normal, hence the mapping B— ¢ (X" XB) (B ¢R’) is continuous on

bounded sets of R’ in the strong topology (cf. [3] Corollary 8 of the Theo-

- rem 3). So we have lim ¢(X*XU. )=—=¢(X*X). From this it is clear that

the linear set of the operators U, (a € A) is dense in 9,7 Since (Ma, Mb) =

- =g(U.Up) (a, b€ A), the correspondence Ma—» U. can be extended to a
‘unitary mapping v between the spaces Hr and $ . If T€ RY (g, b € A), then

Cl\

(TMa, Mb) = (MTa, Mb):r;)(UTaUJ):q)(TUan). Hence the mapping v
1 .

carries Rv into the left ring of m?2. Since the right ring -is the commutant
of the left ring (Theorem of commutation), we see that ¢ maps at the same
: . 1 -
time R® into the right ring of m?.
We put in the following C= M+ i) M—iDn"; Cis umtary and € R
To prove that o and M commute, it suffices evidently to show this for / and C.

- Lemma 3. If a€ A then Ca€ A and Uco= U,C’, where C’ is a unit-
ary operator ¢ R’, which depends only on C. :

‘Proof: Since C¢R? there exists by ‘lemma 2 a unitary operator

. C'¢ R’ depending  only on . C such that v (CMa)=U.C" for a€A. If

U,,— C’ strongly and such that ||U, | = 1-(Theorem of KAPLANSKY), then

U.U., converges to U C’ in the metric of the space 9,77 Since w(MV,a)=
— U, U, we have lim MV, a=CMa= MCa, hence for y€ R by lemma 1

@«

l1mMVV aihmTMV a—TMCa—MV Ca. LetJidEA be the spectral

representahon of M Forevery 0>0 |(I—Es) V CaM_hm \'(/—Eo) vV, V. al=Kly|,

where K does not depend on J and «, because the operators Uuaw* UnU.,

are -uniformly bounded in norm. Since M is non-singular, we have
|V, Cal| = K||p|| for every y ¢ R. This proves. that Ca is left bounded, and
that UCa _ 1/1(M C(Z) = Ua C/

Lemma 4. For every left bounded a € Or, Ca is left bounded too,

and Ug,— U,C’ where C' is a unitary operator € RY whzch depends only on C.

W If TE e, HUa” =1, Ue— U strongly, and U is unitary, then TUs— TU in the
metrlc of the space EUNE SN | thls case we have namely :
{{)([TU TUa] [TU TU«]*)— .
~¢(TT*) + q;(TUa U*T*—2 Req)(TUa Urr* = 2(<p(TT*)— e(p(TUa U*T*)—0.
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L ,

Proof: If Tem? and a is left bounded, then . Tac¢ A, hence by

lemma 3 Ugre=Ur.C'=TU,C’, where C’ ¢ R’ depends only on C. If
. X

T.€m? and T.—/ strongly, then V,Ca=Ilim V, T.Ca=1im T.U.C'x = U, C'x

for every x ¢ R, which proves that Ca is left bounded and that U, = U, C’.-
Similarly, it can’ be proved that for every left bounded a, C*a is left
bounded too, and that U, = U,C”.

Proof of Theorem 1: We have by lemma 4 for every left bounded
a€Dy1: Us= (Ui C')* = C™ Usyu-1=Ugssya -1, which proves that Ca € Dy-1and
SJ7'Ca=C*SJ 'a. Substituting a by Sx (x € R), and putting C=SCS,C"=C"*, |
we get /Cx==C"Jxforevery xCR. If ais arbitrary € D;, then we can determine a
sequence x,€R such that x, —a and /x,— Ja, since / is the minimal closed
extensmn of its restriction to R. Therefore lim /Cx, — lim C"Jxy= C” Ja, which

proves that if aeD,, then Cae D, too. Replacing C by C* in the above reasoning,
and noting that C*—C", we get that acD, gives CaeD too. Therefore the
domains of -definition of the operators / and C*/C coincide, and since C”
is unitary, we have ||C ]Ca|| w||ja|| for a€D;. But as it is known, this
gives necessarily J=C ]C or J'—=C*J"'C, and so the proof of Theorem 1
is completed. :

Corollary. 1f R is a quasi- umtazy algebta with a semi-finite R, then
Q CP(?

Proof: This is an immediate consequence of our Theoxem 1 and of
Theorem 2 in [2]

‘4. Theorem 2. Given a.semi-finite ring of operators N defmed on a
Hilbert space ©, a positive, self-adjoint, non-singular operator HyN, a trace
@ defined on a two-sided ideal m of N, there exists a quasi-unitary algebra

R with the following properties : R’ is #-isomorphic with N; M’ (cf. Theorem 1) -
and the maximal extension of the canonical trace on R’, and H, ¢, respectively,
correspond to each other under tliis isomorphism.

Proof: Let [).dE;M (Ex €N) be the spectral representation of H. We
» o 0 . . . . .

denote by RS m? the #-subalgebra of N consisting of the operators Xem?,
for which there exists a projection E(A)=E,,—E;,, A= (2,7%), 0 <, < iy,
with X = E(A) X= XE(A). For such an interval 4 we say that it contains
the operator X, and we denote by R. the totality of operators € R contained
by 4. It is evident that for X, Y ¢ R there exists a A4 such that X, YeR.. v
We define an inner product between X, ¥ by (X, ¥)=¢{(XH'(4)) (XH ),
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where H~ W)= [/’ldE, 5) This is obviously independent of 4, provided

that it contains X and Y. It is not hard to venfy that with this definition R
becomes a pre-Hilbert space. To make a quasi- umtary algebra from R we
" define an automorphism of R by X' =H(4)XH'(4), and an involutive
antiautomorphism by X*— H'(A)X*H(A), where X ¢ Ra. To show that the
operation / gives an automorphism of R, we have to prove that (¢ X+ BY) =
=aXi+BYi for arbitrary complex numbers a, b, and that (XY)J—XJ Yi.
Suppose that X,Y¢Ry, then (@X+BY)=H(A)(aX+BY)H'(4)=
—aH(A)XH (A)+BH(A)YH '(4)=aX/4+BYi by the definition of X/
and V7. If X, Y¢R4, then (XYY = H(A) XYH  (d)=H(A) XE(A)YH ' (4) =
= H(A)XH (A H(A) YH ' (A4)= X/ Yi. The proof that X— X" defines an
involutive antiautomorphism of R is quite similar, and we omit it,

Lemma 5. With the above definifions R sm‘tsfzes axioms (1) (iv) of
a quasi-unitary algebra, enumerated in 2.

Proof: Ad (1) If X, Y6R4, then we have X%, Y ¢ R, too, and
(V' XY = o ([H () Y* H(A ™ ()] [H () X* H(A) H ™ (A)]) =
— o(H () V" XH ' (4)) = p([XH (D) VH (D)) =(X, V).
- Ad (ii): If X €Ra then
O, X) = p(H(A) XH ™ (DH (A [XH T (A)]) =

—@(HZ(A) XH () X" H? (1)) = 02)
Ad (iii): .
(XY, Z)=p([XYH (D) [ZH ()=
=¢([YH ' (DX ZH () = (Y, X" 2),
provided that X, Y, Z € R4, because .
: =H(A)[H () X*H(A)]H™ (A) =X".
"Ad (iv):
XY= (X YH (1) Y*X')-
= (YH (DI X" X[YH (D)) = Ko (YH (D] [YH (A)]) = K!IYH
where K depends only on X, and X, YER,.

"% In the following we put H"(A): f A“dE,, kZ0, for an interval A=(4, i),
N ‘/l . .

«©
0< ;<4 and for H= [AdE,.
: v

1

) Note that if A,Ben‘?, then AB€m and ¢(AB)= ¢(BA). Cf. for example [6F
lemme, 12. )
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The proof, that R satisfies also (v), will be given later (cf. lemma 7).

We take now the completion of R and denote it by Hr. Axiom. (iv)
allows to form the left multiplication operator Ux for every- X€ R. By axiom
(iii) Ux= Uxss, which shows, that the totality of these operators is %-invariant.
We denote its weak closure by R’.

Lemma 6. R’ contains the unit operator and is #-isomorphic with N.
Proof: As in lemma 2 we use again 'the unitary algebra formed by

1 .
aid of m?2, and denote its completion by £ ! . As we mentioned it, its left

w2

Y . : _ .
ring (m?) coincides with the totality of the operators of the form L;, T€ N,
and the correspondence 7 — Ly establishes obviously a «-isomorphism between

RAY; . i
N and ( ‘-’) Hence it suffices to show that there exists a unitary mapping

: ) ARY2 .
¢ between the spaces Hr and H 1 which carries RY into (m"). We define

now ' (X)= XH(A) for XER and A containing X. We have evidently
(X, V)= (y'(X), ¥ (V). (We denote by (,), the inner product in §_+ to
avoid the confusion with the inner product in Hgr.) Since R as a linear set
is dense in $r by definition, and; as it is easily seen,- so is in the space
© 1, and since ' (R)=R, ¢ can be extended to a unitary mapping v

m?

between these spaces. If 7, X, Y¢R, »
(UrX, V) =(TX, V)= @(TX), w(V)) = Lrp(X), (V)

oo 1\¢

- and since R as a *-subalgebra is dense in R’ and (11[ ) ,lemma 6 is proved. "’)
We denote by / the minimal closed extension of the correspondence

X—X/ in .s’wR, and by S the involution obtained by the extension of X=X

Lemma T. J=[M"M"), where M’'nR’ corresponds -to H under the
*-isomorphism between R’ and N, and M =SM'S. :

Proof: We denote by H’ the_operator in %, corresponding to -H

<mz
g

. 1

under the x-isomorphism between (m—) and N. Let S be the involution ob-
tained by the continuation of X—X* over 9,4, and H=S8SH'S. H and H
are commuting, selfadjoint, non-singular operators, hence [H’H '] exists. The
isomorphism v carries the correspondence X— X7/ (X¢R) in . Hg into the
linear transformation’ defined on RCSw”‘— by j’X:—H(A)XH"l(A) (XeR).
It is clear that /X —H H'X.

We prove now, that the minimal closed extensmn of J is identical with

[H'H™"], or, that the latter operator is the mm1ma1 closed extension of its

10) Observe that becausé of the max1ma]1ty of ¢, _mT is _strongly dense in N. _
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- restriction to RS e . But this is contained in the following statement: Let

X€$uit be in the domain of definition of H’H™', then there exists an element
X, € R such that X, and A'H' X, are arbitrarily near to X and H'H™' X,

: , I S Ly = =
respectively. To see this, we put H'= | AdE;\E, E,(m‘-’) ), and E,=SE;S.
y - N . . N

Then'there exists two intervals, 4, and Ag(,) of the form0 < 4, =/ =/, such that
E(A)E(A,) Xand H' H " E'(4,) E(4;) X are arbitrary near to X and HH'X
respectively, and an element X, € R, such that X, and H'H™' X, are arbitrary near
to E'(4)E(A4)X and A" H E’(/1 YE(A) X, respectively. If M”and M corres-
' pond in the space $r to H and H respectively, then we have obviotisly
J=[M'M"], MqR’, and evei M = SM’S. For this it suffices to observe that
for X¢R and a suitable interval A,

W(SX)=(H" (/I)X*H(A))H"‘(/l) (XH"(/I)) §¢(X),

i.e. S and S'correspond to each other under 4.
' So the proof of lemma 7 is completed.

To show that R satisfies also the ax1om (v) of the quasi-unitary alge-'
bras (cf. 2), we need the folloving

Lemma 8. J is the minimal closed extension of its restriction to the
linear set in Dy formed by the linear combination of the elements of the form
XY (XY¢R).

Proof: Passing by aid of the unitary mapping v to a problem in O 4+

clll 4

- it suffices to prove the following assertion: Given X€ R, there exists a pro-

jection P<E(/1) PEm-, such that PXe¢R is- arbltrary near to X in the
metric of 9 ;. In this case [AHPX= H(/l)PXH '(A) is arbitrary near

to [H’H ]X H(A)XH“(/I) and it was shown in the preceding lemma,
that [A'H™'] is the minimal closed extension of -its restriction-to R But this

follows from the fact, that E() is the .-u. b. of projections in m-’ 9, and
from the remark in the footnote’).

An immediate consequence of this lemma is that R satisfies also axiom
(v) in (2) By lemma 7 namely J is the ‘minimal closed extensmn of the
product of two commuting, positive, self-adjoint operators M~ “and M’, hence
it is itself positive, self-adjoint. So the range of /4 is Hr, which combined
with lemma 8 glves plainly that the elements(/ +j)X Y=(XY)4-(XY) (XYER)
span 9.

Summing up the above results it. can be seen from lemma 5 and from
the preceding remark, that with the definitions at the beginning of the pre—
sent section R becomes a quasi-unitary algebra. Lemma 6 shows that R’
%-isomorphic with N; by lemma 7 we have J==[M'M"'] with MyR", M= SM’S
and M corresponds to A under this isomorphism. To conclude the proof of
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the Theorem 2 it remains only to show, that the maximal extension ¢’ of the
canonical trace in RY corresponds to ¢. If X, Y € R,, then one sees at once,
that X, Y€ Dy, and ¢ (UxUy)=MX, MY)=(XH(A), YH(A))=p(XY").
It suffices therefore to remark that the trace ¢ is uniquely determined by
its values on elements of the - form Xl" (X, Ve R). But if the pro;ectlons

P. ¢ R converges to l strongly, and X € mcm? CN then
(p(X)—]lm @(PeX)=I1im @(Pe X P.P.),

and P.XP.€R, qued

. In the followmg we consider a quasi-unitary algebra R with a semi- -
finite left ring and we denote by ¢ the maximal extension- of the canonical

tracé, and by mc R’ ‘the corresponding two- sxded ‘ideal. We recall that now

J=I M™'] (cf. Theorem 1) and we put M= ’ZdE;. (E:€RY) an_d M= J)dEA,
.EAMSE,SeRJ ' - — ’
1

Lemma 9. Suppose T¢€m? be such that TE'({)=T, Wwhere
E'(d)y=E;,—E;, 0<2,<2,. Then T=U,, where a ist left bounded. '

Proof: By the- theorem of KapLaNsky (cf. [7] Theorem 1) we can
choose a directed set of elements x, € R such that || U, ||=1, and
weak lim U, =1

(74

We need now the following result of DIXMIER (cf. [2] lemme 7.a): If a € D,-t
is left bounded and L ¢ R’ commutes with /, then SL*Sa is left bounded
too, and Usssu — U.L. We put TE(4)X, — a., and prove that these elements.
converge weakly to an element a € 9g. Applying the above lemma to the:
case a=X,, L—=M"'(A), we see that M~ (A)x. is left bounded and

Us1(g)s, = Us, M (A). Hence it follows that M‘I(A)aa TM ™ (A)x. is left

bounded too, and U1 yag =T Us-Y(ya, = T Us M” (4). So we have

lae [P = MM~ (d)ax | = ¢(Us-1ca, Ui Dag) =
— ¢ (TUs, M (U2, TY = || Us, [P M (/l)llfﬁ(TT)<K

where K does not depend on «. We have further 11m (@, xy)= lxm( I, X) =

= (Ty¥,x) for X,y € R, which proves our assertlon since the lmear combin-
ations of the elements xy (x, y€R) are dense in Hg. Finally
Tx = weak lim U, x = weak lim V.a,==V,a
for x ¢ R, from which lemma 9 follows immediately. |

We recall ([2]), VIII) that the quasi-unitary algebra R is a contmuatlon

of R, if R" is a subalgebra of R, the inner product, the automorphism and -
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the involutive antiautomorphism in R’ are the restrictions of the correspond-
ing notions in R, and finally R’ is dense in R. R is said to be maximal,")
-if it has no proper continuation. R is maximal if and only if it possesses the
following property: If for a € Yr J"a exists and is left bounded for every nZ0,
then a € R. Every quasi-unitary algebra is contained in a .(uniquely determi-
ned) maximal algebra.

Theorem 3. Let R, and R, be maximal quasi-unitary algebras, with
semi-finite "left rings R and R3. We put [y =[MiMi'] and J.=[MsM3'] (cf.
Theorem 1). Suppose there exists a %-isomorphism  between R} and R} such
that M{ and M3, the maximal extensions of the canonical traces ¢, and .,
correspond to each other respectively. Then R, and R, are isomorphic, i. e.
‘there exists a one to one mapping between them, which preserves the algebraic
operations, the inner product, the automorphtsm and z‘he mvoluttve antiauto-
morphism.

Proof: Denote by m,-the two-sided ideal belonging to ¢,, which is
strongly dense in R{. We put M; =J./‘.dE§,1’ and E\(A)=EP—EY, Ei(d4) =
— S,E(4)S, for an interval 4= (4, 2), 0< 4 <4 We denote firther by

! %

S, the totality of operators Té€m? for which there exists a 4 such that
ExA)T=TEi(4)=T.
Similarly, we denote by m, the two-sided ideal < RY belonging to ¢.,

and we put Mo= |;dz~: , Ex(d) = ”-E,‘?, Ei(A)==S:E5(A)S;. Let Sz be
1

the totality of' operators Tems, for which Eg(}l)T: TE:(A4)=T with a

suitable . ' '

If T€$S,, then by lemma 9 T==U,, where a is left bounded. The
reasoning of this lemma gives that E/(Ad)a= Ei(A)a=a for a suitable .
‘Since Jy==[M{M;'], we have a€D, for 20, and Jia=M{"(A)M{"(d)a:
This shows that the totality of these elements @ is a subset of Ry, which
we denote by Ri{. We have further for A= U,, B=U, € S;:

AB=U4€S, and «A-+ BB = Usup € S

for arbitrary complex numbers « and 8. This gives that R; is a subalgebra
of R;. Observing that S; is a %-subalgebra of R{, for a ¢ R{ we have
@* ¢ Ri, and since plainly ¢/ ¢ R{ -(n=0), we have a°€ Ri too. We form
also in a similar way the corresponding Réc1 Re.. If T€¢S, then o(T)€ Ss,

because from 7T € m? it followé that o(T) ¢ m?, and since w(E{(A4)) = Es (A),
E{(4)T=TE{ (/1) =T gives E: (/I)w(T) = m(T)Eg’ (4) = w(T). Define

11) In the terminology of Dixmier ,algébre quasi-unitaire achevée®.
A8
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now a correspondence ¢ between Ri and R: by Uuwmy=ow(U.), a€Rj.
Since @ (S))=S» we have w(R{)=R: too, and it is clear that v is one to
one. We have plainly yw(ca+86)=cw(a)+ 5y (b) and w(ab) =y(a)y(b).
To prove that vy defines -an isomorphism between Ri and R it remains to’
show that (i) ¥(a?) =y(a), (i) w(@)=1(a), (iii) (a, b) = (¥ (a), ¥(b)).
Ad (i): For a ¢ Rl we have, applying again the lemma 7a in [2]:
w(U, ;) = (D(UM;(A)M]'I(.A ya) =
= (Mi(A) UM (A)) = M3(A) UpyM5™ (A) = Uy, hencé (a?) = wi(a).

Ad (ii): o(Uw)=o(U2)=a(U)" = Upm=Uyisw, hence yp(a’*)= wf(a)
which combined with (i) shows that w(a®) = w*(a).
- Ad (iii): Since ¢, and ¢, correspond to each other under o we have
for a, b€ R and a suitable A:

(@, b)= (Mi M\ (A)a, My Mi' (A)b) = ¢, (Unr-'aye Usr-1ays) =
= G (UM () [U M ()F) = o UM () [V M~ (A)]) =
= (Ui U ) = (M M3 (A) (@), Mo M () (B)=(w (@), 94B)-

It is evident that R (resp. R¢) is dense in R, (resp. Ry). Since a quasi-
unitary algebra determines uniquely the corresponding maximal algebra, the
above isomorphism can be extended to an isomorphism between R, and R,,
qu. e. d. :

6. In this section we intend to give more precise information about the
structure of the space $ i introduced in 3,and its connection with the quasi-
unitary algebra R. The following lemma is in close connection with the ex-
tended Riesz—Fischer theorem (cf. [10] Theorem 13, for the techmques used
cf. [4], especially 5 and 6).

Lemma 10. Let N be a semi-finite operator-ring on the Hilbert space
9 and ¢ a trace defined on the two-sided ideal mc N. Let TnIN be a closed -

operator on 9 and let T—=VH be its polar representation, where H= . LdE,.
[

'Putting H,= J'i.dEA (n=1,2,...) and T,=VH, we consider the totality of

]

operators TyN, for which T, ¢ m? and hm (p(T,T

and denote

n

it by Q(N). Defining the addition f01 T, S € Q(N) as [T+ S], Q(N) becomes
a linear space, and with the scalar product (S, T) = lim ¢(S,T) even a Hilbert

n—->w

space.

Proof: By a result of R. PALLU DE LA BARRIERE (cf. his Thesis, cited
in [2] p. 293) there exists a family of elements {a.}«cr in », such that for
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‘Béem we have ¢(B) = Zucr(Bae, as). If T¢ Q(N), then for n—=1,2,...
(70 1) = Zuer | Tuae|f = im (T3 T) = [ TIE < + ex,

from which it follows at once that aaEDT («€F) and l|T||)~4,,E; | Taa ].
Obviously the converse is also true: If for T7yN, a. € Dr and Zecr|| Tao||’< 4+ o,
then lim (7T, T,) exists, hence 7¢ Q(N). If B= V]BI is the polar represen-

N> O
1

tation of B € m?, we have

9(BB) =9 (V|BFV)=o(V"V|BF) =¢(|B}) = ¢ (8" B),
from: which it is easily" ‘deduced, ‘that if 7¢ Q(N) then 7*¢ Q(N) too and
IIT|z=]T*|3. To prove that T+ S] exists we observe that the linear set A

of the elements X,crBia., where B; ¢ N and B.==0 only for a finite set of

values of «, is dense in . Otherwise because of the regularity of ¢ there
1

would exist a projection P==0, P 6 m?, such that Pa.=0 (¢€F). Then
¢(P)=0, and so P=0, which yields a contradiction. Since a,. & Dy.s and
4= Dyryse & Dirssyr, therefore T+ S and (7+ S)* are densely defined in £.
So [T+ S] exists, and plainly € Q(N). To prove the validity of the associative
law [R+[S+ TI]=I[[R+ S]-+ T], it suffices to show that 7€ Q(N) is equal
to the minimal closed extension 7; of its restriction to A. For this observe
first that 7, € Q(N) too, and we can suppose T to be positive hermitian. If
B¢ Nand T ¢ Q(N) then hm ¢(T.BB'T}) exists. Hence lim ¢(B" T, T,,B) exists

n—->»

too, which implies that BaaeDy, or that 7B is densely defined. Suppose’
now that the range of /--7; is not dense in §. Then there exists necessarxly
a projection P:i:O P¢N, such that O2P(/+ T;). We have

O=[PU+T' 20+ T)P2U+THP2(1+T)P.

By the former remark there exists an element. f==0, f¢€ 9, such that
Pf=7F and f€ Dy. Hence (I4- T)f=0, which is impossible if 7 is positive
hermitian. So the range of /4 7, is dense in @ which proves that 7, is
hermitian, and so T=17T;. :

It is easily verified that (S, 7) =1lim (S, 77) .possesses the propelties

n->m

of an inner product; to prove lemma 10 we have therefore only to establish

the completeness of this space with respect to the norm || |,.. Let L, be a

sequence € Q(N) such that

_ It is easily seen that by Sf=IlimL.f (f€ A) a (densely defined) linear
transformation S is given. We define sxmxlarly Sf=1lim L} f, fe A.Forf,g €A

we have

2__(.

(S£,8) =lim (L. £, 2) =lim (f, L.g)= (], .S £)
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This gives that S*2 8. Thus the minimal closed extension Sof S exists,
and plainly SyN. In particular Sa. =1lim.T,a. (« € F), from which it follows

H—>» Q@

that X, r||Sa.|?< 4 o and so S€ Q(N). Finally it is clear that lim || T,,—b||§:—¥

‘ —hm ~acF ” (7-n S)a«

n-> o

In the following we call the elements € Q(N) square integrable with
respect to ¢.

Lemma 11. Let R be a quasi-unitary algebra with a semi-finite R"
Suppose that J=[M’'M™'], and let ¢ be the maximal extension of the corres-

ponding canonical trace. Suppose that ¢ is defined on the two-sided ideal
. 1

mc R’ An operator T€w? is of the form U,, with- a left bounded and
a€ Dy, if and only if [TM'] exists and is square integrable -with respect to ¢.

‘Ptroof: (i) Suppose that- 7= U,, where a is left bounded. Let
ﬁjidEA and we put 44,,=(%§/‘<+oo) for n=1,2,.... Since

M (A,Z)ER‘I and it -commutes with /, M~ "(4,)a is left bounded too, and
Usage= UM (4,).1%) So we get

|| MM-] (‘/'l")a HZ - “ (I_El)a Hz : (P(UJ[ e UT’ _](Au)“) =

n

S = (TH T ANTH T ()] = 2 M A) Tl = llal

for n=1,2,..., provided that ¢(A)=>(Aa.,a.;) for Acwm. This gives
- ek )

that @ € Dy-17+, therefore M'"'T* is densely defined. Since (M ' T*y* 2 TM"}
is densely defined too, we see that [M'""' T*] exists. The series yHM’ 1T*ua“

converges, hence [M''T*] is square integrable w1th rescept to ‘¢. By a
remark made in the proof of lemma 10 the same is true for [TM'™'] = [M" ™' T*}*.

(ii) Suppose that [TM"™ l] exists, and is square integrable with respect
to ¢. Putting 4, = (% =i< -+ oo), E'(4))=S8E(4,)S (n=1,2,..)), we

have by lemma 9 TE’'(A.)= U., for each n, where a, is left bounded. We
prove now that the elements a, converge to an.element a.€ Hr. For this we '
observe first that for n=m Urue, = TE’(/I,.)E’(A,,,)— U.."), hence
. E(4,)a,—a,..-So we need only to prove that the sequence |{a.]| is bound-

i2) If TE P? and a is left bounded, then Ta is left bounded too, and Ure = U, ST*S,
also for an a not necessarily € D,—1. (If a€ D,-1, then the problem is settled by lemme
8a in [2]). For this we have to prove that V,Ta=U,ST*Sx for every x¢R. But by
lemme 8b in [2] V,Ta= Vsps.a, and by lemme 24 Vsras,a=U,ST*Sx, qu. e. d.
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ed. But .
el =1MM ™ (4.) @] =

. = (U= (400 Usr=" o) = @ (TM ™ (A)[TM” ‘(/I,I)])_HTM' i
for every n, which proves our assertion. We have further
V.a=lim V,a,= lim U,,x=1lim TE'(A4,)x = Tx

for every x¢ R, which shows that a is left bounded and U, ==T. Finally
we prove that a € D). To see this, observe that

|M () alf= | Ma,|f = g(U.,U%) = o(TT*)

for every n, from which our assertion follows immediately.

Remark. Lemma 11 shows 'immediately, that the canonical trace in
a unitary algebra constructed with M=/ is maximal. On the other side,
combined with Theorem 2 it gives possibility to construct various examples
of quasi-unitary algebras with a semi-finite R’ for which the canonical trace
is not maximal by any choice of M. Indeed, we can proceed as follows.
We choose a semi-finite ring N, a maximal trace ¢ with the corresponding
two-sided ideal m& N, and a positive, self-adjoint, non-singular HnN. For
a positive, ‘self-adjoint, non-singular CypNnN" we put H.=[CH]. Next we

n

consider the two-sided ideal a formed by the operators > A;B!, where
- =l o ’
1

A;, Bicm? are such that the operators [A;H:'),[BiHG] (i=1,2,...,n) are
square integrable with respect to ¢. Let R be the quasi-unitary algebra, which
corresponds by Theorem 2 to N, H and ¢. If a is properly contained in m
for any choice of C, then the canonical trace in R is not maximal. Consider
for example the ring B of all bounded operators in a 1Hilbert space O. It is

known that ¢ is determined up to a constant factor, m? consists of the oper-
ators of the Hilbert—Schmidt class, and, whith the inner product ¢(AB®),
the totality of these operators forms a complete Hilbert space. Suppose

further that H is bounded. Then it can be shown easily that [AH" ]ex1sts

and is square integrable if and only if A=TH, where T¢m?. If there exists

a two-sided ideal n properly contained in m, such that H*¢n, then evidently
1

the operators ZA;H‘-’B?, where A;,B: ¢m?, are in n, hence they do not
fz=1
constitute atl operators of m.

7. It is known (cf. [10] Theorem 19 and Corollary 19.1) that if R is a
unitary algebra and a¢€ g, then the operator defined by U;x= V,a for
x ¢ R has a minimal closed extension U, -and the totality of these operators
coincides with the set of square integrable ©Operators with respect to the
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canonical trace (constructed with M=1/7). Let now R be a.quasi-unitary
algebra with a semi-finite R’. Suppose that /=[M'M"'], and . denote .by ¢
the maximal extension of the canonical trace, and by m the corresponding
two-sided ideal < R’. If, for an element a € Hr, the minimal closed extension
of the operator defined by Uix=V.a for x€ R exists, we denote it by
U. again. We prove now the following

Theorem 4. Define a unitary mapping v of Y on the Hilbert
space L?,, (of the square infegrable operators with respect fo-q) by the con-
_ dition w(Mby= U,, where b is left bounded and ¢ Dy. Denote by T.€ L,
the operator corresponding to a¢ Hr. Then U, exists if and only if [T.M')]
exists, and then U,=[T.M’]. : '

@ 13

Proof: We put M= |4dE,, M, =|2dE: (n=1,2,...). Since £ € P*,
0 0

i. e. it commutes with /, E;x is left bounded and € Dy for any x € R. So
~ihe elements Mb are dense in $Hgr. To show that the same is true for the
. 1 .
operators U, in the space Li,, we observe that if T¢m?® and if U., (x.€R)
converges strongly and boundedly in norm to / (cf. [7] Theorem 1), then

TU,,= Ur., converges to T in the metric of L}z,,’), and the elements Tx.
. 1
are left bounded. Therefore it suffices to remark that if U, €m? and ¢ is left

bounded, then puttmg E,=SE.,S the operators U.E,==Uy,") converge to
U, in the metric of L;,. So there exists a unitary mapping v of g on
L, which satisfies w(Mb)—U,, for every left bounded b€ Dy. We divide
the following in two steps.

(i) We pr0ve that if U, exists, then [T.M’] exists too, and U(,?[T M}

Let U,=V|U.| be the polar decomposmon of U, and |U<,l=.| LdF,
g
|Udui=| 2 dF;, U =V|Ul|. and Mi=SM,S (n=1,2,...). We put F,—
= VF,LI(}* for n= ],2,...,‘then for xée R
UPx=F,U,x—F,V,a=V,F,a,
hence F,a is left bounded, and Uz,==U™. We show next that
U e ==[Fy TuMi)

for n,m=1,2,.... By the reasoning of lemma 10, [AT] and [TA] exist for
AcR’ and T¢ L,,,, and they are in Ly. We see easily that ||[[AT]|,=
=[ANIT]: and [ TAL—JA T = ANIT =] AJ| T}h. From this it

follows at once, that for every A € R’ there exist two bounded operators
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Ly and Ry in Ly, such that L, T=[AT], RaT=TA for T€L,. We have
Tﬁ(M,ﬁ M b) = w(MMm b) - UVmb = UbM1;L - RJ[”“ Ub;
and v
w(Rle) == 'l‘D(MF:nb) — U;‘,,b — El Ub = L 1_1',, Ub .

Since the elements Mb (resp. U,) are dense in Dr (resp. .Li), we have,

for every ¢ € Or, Y(M.c)= Ry, T. and yw(F.c)=Lr,T., hence
w(Mm ﬁla) il ",b (MELElrz a) = UI- SmFna = R?l’,,. L;‘,. 7‘(L = [Fn TuM),n]
(mn=1,2...).

Supposing that c€D1 w, Wwe choose a sequence c,LEhR such that
¢. €Dy, Eico=c, (n=1,2,..), and lim¢,=¢, lim M'¢c, = M’c. Since

it—>» n—>» o
Us, 7= UM E, therefore

(J/Em)cz llm Ulf,m)Cu:“im U)T‘"I-,‘,,,ucn = liln Fm TL[MA’ICH = lim F‘m 7‘(:Mlcn:

nw—r Q H-r —> . =
— Fm 7‘11 M/C- .
Hence lim U ¢= lim F,,T.M’c, - which gives at once c€ Dy, and

m—r0 nm—>

U,c= T, M¢c, consequently U,2[T.M']¥).
~ (ii) We prove now conversely, that if [7.M’] exists, then U, exists

©

too, and [T.M]2U.. We put T.—=V|T.|, |mﬁJ;d0;, 7" =V|Tulu,

G,=VG,V* (n=1,2,..). Similarly, as in (i), we get (G, M.a)= T M;,
(myn=1,2,...). By lemma 11 TUM, = U,, where E,a —da and a -is
left bounded. Since w(Ma')= T.\"M,,, we have necessarily Ma’' = M,, G.a=
— MG, E,.a, which shows that G,E.a is left bounded,  and UG, gpe ==
=TM, (n,m=1,2,...). If x¢ R we have -

lim V, F,,E,,,(l— lim 7'M, x,

n—> @ > @

therefore M, x € Dy, and V,E,a= T, M, x. Since T, M, 2[T.M'| E;,, we have
further

V.a = lim V.E.a= lim [T.LM'] Eyx,

ne— n—

clearly our statement.

Putting together the two parts, if U, exists then by (i) [1 M'] exists
too, and U,2[T.M'], but by (i) [T.M]SU., hence [T.M]=U,., and
conversely.

So the proof of the Theorem 4 is completed

13) Note that T.M’ is densely defined, since .M is dense]y defined forn=1,2,....
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8. In this section we give a new proof for a theorem of DIXMIER con-
cerning quasi-central elements, which leads to somewhat more general result
(cf. [2] Theoréme 4)."*) We recall that if R is a quasi-unitary algebra, an elem-
ent a€Hr is quasi-central, if for every x¢R we have U ja= V.a. One
verifies easily, that the set of these elements is a closed subspace of Hg,
and denoting by 9 the minimal subspace with a projection PE€R’ containing
it, we have PER’nR* too (for these cf. [2] VII).

Theorem 5. R’ is of finite class if and only if Mi= Hr.

Proof. The proof for the sufficiency of this condition is as in DIXMIER’s
paper. If G is quasi-central, then we have for x, y€R:
(U,U,a,0)=(U,a, U,za)=(U,a, V,0)= (U, V,.a,a)=(U,U,a, a).

y oo

- From this it follows by contmulty (STa,a)y=(TSa,a) for S, TER". Since
(Ta,a) (TeR’) is a positive linear form, it- determines a trace defined on
every element of R’. If, for T€R’, (T*Ta, a)=0 for every quasi-central a,
then by M = Hr we have necessarily 7=0. Therefore R’ has a complete
system of traces, so that ([5] lemme 12) R’ is of finite class.

Conversely, suppose that R’ is of finite class, and 9i==$Hr. Suppose
that J—[M'M™"], MyR’, M’=SMS (cf. Theorem 1). By central decomposi-
tion ([2] 1II) we can reduce the problem to the case, when 9 =0 and the
canonical trace ¢ is everywhere defined on R”. Since now /¢L5, there exists
an element a€Pg such that 7, =1/, hence by Theorem 4 U, ex1sts and~
: lja M. We put
= [/: dE{ and M;=[idE;  (n=1,2,..).

: 0 G . .
Then Ug' «= M, hence Sj'lE,fazE,ia for n==1,2,..., and so Sj‘laza.

Observe now, that if c€D; then for x€¢ R we have j‘ll/mjjc= V.c. To
prove this, we choose a sequence y,€R (n=1,2,...) such that limy,—¢c

n-—>Q

and lim Jy, —jc In this case

Hn—>om

V,C:llm V‘y,,:limj‘l 'rijyny

n—r @ n-—»>om

which shows that V ;/c€D,_, and ™' V7jC—VC
_ We have. now for x¢ R:

Va=Mx=M] " Jx=] " "Mjx=J"V ,a=V ] a

u) QIS P! is proved in our Theorem 1, and the axiom A’-5, loc. cit.,, will not be
used in the sequel.
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hence /'a=a, and so Sa=a. We have also
Via=M] x=Mx=8SMx"=8V,SSa=U,a.

This shows that a is quasi-central, and since obviou'sl'y a==0, we have a
contradiction, and therefore our theorem is proved.
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