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On the theory of quasi-unitary algebras. 
By L. PUKÁNSZKY in Szeged. 

To Professor L. Kahnár on his 50th birthday. 

1 . Introduction. J . DIXMIER has recently introduced the concept of 
the quasi-unitary algebra, and developed various theorems clarifying its 
structure, cf. [2]. This notion contains as special cases the unitary algebras 
([6], [9]), and the group algebras of (not necessarily unimodular) locally 
compact groups. Also the examples of factors given by J . VON NEUMANN 

in [8] can be interpreted from this point of view. It can be shown in virtue 
of this circumstance, that while many properties of the unitary algebras can 
be extended to the quasi-unitary case, the latter notion is more general also 
in the respect that the corresponding left ring Ry need not be semi-finite1), 
i. e. it can possess a nontrivial purely infinite component: This makes a 
difficulty, in view of the role of the left rings in the investigation of the quasi-
unitary algebras. Thus it is of interest to obtain criteria for those quasi-unitary 
algebras R for which R^ is a semi-finite ring, and to clarify their structure. 

The present paper is devoted to this problem, and in part continues 
the investigations of DIXMIER. Firstly, by continuation of his method we prove 
that if R!/ is semi-finite, then J = [ATAT1]2), where M is positive, self-adjoint, 
non-singular, ?;R''3), and M' = SMS (cf. Theorem 1, for the definitions and 
notations cf. below 2 ) . This result combined with DIXMIER'S Theorem 2 shows 
that the representability of J in the form [ATAT1] is a necessary and suffi-
cient condition for the semi-finiteness of R", and then Q^gP1'. In other 

A ring of operators N is called semi-finite, if every projection contains a 
finite projection. We say that the projection P is finite if there exists no partial isometry 
VÇ N with V* V= P, V V" = Q < P. 

2) Given two (in general unbounded) closed operators S, T defined on a Hilbert 
space £>, we note by [ S T ] the minimal closed extension of the product ST (provided it 
exists). 

:i) If T is a closed operator, we denote by Ty N that T commutes with every oper-
ator of the commutant N' of N. 
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words, Theorem 1 gives a solution for D IXMIER 'S hypothesis 1 (cf. [2] p. 
283) in the semi-finite case. 

In Theorem 2 we prove, generalizing the corresponding results for 
unitary algebras (cf. [6] Theorem 4 and [10] Theorem 18), that if R9 is semi-
finite, then R(/, M' and the maximal extension of the canonical trace can be 
prescribed. More explicitly, given a semi-finite operator ring N on a Hilbert space, 
a positive, self-adjoint, non-singular operator and a maximal normal 
trace cp defined on a two-sided ideal m ^ N / 1 ) there exists a quasi-unitary 
algebra R such that R" is *-isomorphic with N and, under this isomorphism, 
AT and the maximal extension of the canonical trace correspond to H and 
cp, respectively. If R is a maximal, then we show that it is determined up 
to an isomorphism by this choice (Theorem 3). 

Next we investigate some properties of the quasi-unitary algebras with 
a semi-finite R9. We show beside others that contrary to the unitary case 
the canonical trace need not be maximal (cf. lemma 10 and the remark which 
follows). Finally we give a proof for a theorem of DIXMIER about the quasi-
central elements, which leads to somewhat more general result (Theorem 5, 
cf. Theorem 4 in [2]). 

2. Def ini t ions and preliminary results. For the following cf. [2], 
in particular chapters I, II, V—VII. A quasi-unitary algebra R is an algebra 
over the complex numbers, on which an involutive antiautomorphism x.—• xs, 
an automorphism x x>, and an inner product (x, y) are defined, such that 
R becomes a pre-Hilbert space satisfying the following axioms: 

(i) (.r, x") - (x, x), 
(ii) (x, X') s 0, 

(iii) (xy, z) = (y, xisz), 
(iv) the mapping x->-yx with fixed y is continuous, 
(v) the linear combinations of the elements of the form xy-{-(xyy 

are dense in R (x, y, z arbitrary in R). 
A unitary algebra is a quasi-unitary algebra with xj = x. 
Let £>R be the Hilbert space, which is obtained by completion of R. . 

By axiom (iv), for every x £ R there exists a bounded operator Ux (resp. Vr) 
on £>r satisfying Uxy= xy (resp. V?,y = yx) for every The weak (or 

4) We recall that a trace <p defined on a two-sided ideal m of an operator-ring ¡V 
is a positive linear form such th'at <p(AB) = <p(BA) for A £ ni and B £ N. <p is regular, if 
<p(T) = 0 for 7 £ m , 7 ¡ > 0 implies 7 = 0 . A trace <p is normal, if it has the following prop-
erty: let Ta be an increasing directed set of positive operators £ m with a 1. u. b. 7 £ m , 
then we have = 1. u. b. <p(Ta). it is maximal, if it has no proper normal extension. 

« . 

If we say in the following simply a trace, we suppose that it is normal and maximal. In 
the case of semi-finite rings this means, that it is also regular. Every (not necessarily 
maximal) trace <p has a maximal extension, which is uniquely determined, if N is semi- . 
finite and m is strongly dense in it. For a theory of traces cf. [1]. 



Quasi-unitary algebras. 105» 

strong) closure of the operators Ux (resp. Vr) is a ring of operators R 9 

<resp. R'7) on with unit operator. R!/ (resp. R'1) is called the left (right) 
ring of R. The set of boundéd operators on .£>R which commute with every 
•element of R;/, coincides with R'7; in other words, R'' is the commutant of 
R" : R!/' = R' ! (Theorem of commutation). The minimal closed extension J of 
ihe correspondence x—*x' is positive, self-adjoint, non-singular, and it is. 
equal to the minimal closed extension of its restriction to the linear combi-
nations of the elements xy (x, y £ R ) . Denoting by 5 the involution of 
obtained by the continuation of the correspondence x->-xs over we have 
J~l = SJS. The mapping T —*STS (T^R' ' ) establishes a conjugate linear 
isomorphism between R!/ and R'7. An element a of £>R is called left bounded, 
if there exists an operator Ua defined on such that U„x=V~a for every 
jc£R. Then t/„£R". If a is left bounded and 7£R'", then To is left bounded 
loo, and UTa = TUtt. Ul = Ub (with b left bounded) if and only if aZDj-i, 
and then 6 = 

If J = [M'M~% where MqR'7 is positive, self-adjoint, non-singular, and 
M' = SMS, then R" is semi-finite. This follows from the fact, that the ele-

v 
ments A = 2u„i(Jbi (a;,b¡ left bounded and £ DM) form a strongly dense 

n 
two-sided ideal m ^ R " , and cp(A) = 2(Ma;, Mb) defines a (not necessarily 

i=i 
maximal) trace on in. This is the canonical trace for R9. The operator M is 
not determined uniquely by the condition J=[M' M1]. If C//R' 'nR r f is posi-
tive, self-adjoint and non-singular, then [CM] possesses this property too, 
and conversely, if J =[M[M\X], then there exists an operator C?/R' 'nR' ' of 
the same kind such that MX = [CM]. Therefore, the canonical trace is also 
not uniquely determined. Denote by P1* the set of operators £ R!/ which 
commute with J, and by Qd the set of operators £ R!/ which commute with 
F ' . Then from J = [MMX] it follows that Q " S P " ; and conversely, if R" is 
semi-finite and Q ' c p " , then J=[M'M~1]. 

3. T h e o r e m 1. Let R be a quasi-unitary algebra for which R" is 
semi-finite. Then J=[M'M '], where Mr¡R<' is self-adjoint, positive, non-
singular, and M' = SMS. 

From the proof of Theorem 3 in [2] we shall use the following facts. 
Let cp be a trace defined on the (strongly dense) two-sided ideal m of R!/. Then 
there exists a positive, self-adjoint, non-singular operator MqW such that 

а) if we denote by A the set of those left bounded elements £ £>K for 
i 

which Uu f i n 2 "), then M is the minimal closed extension of its restriction to A; 

б) If in is a two-sided ideal in an operator-ring N, then m~ denotes the two-sided 
ideal formed by the elements N for which T*T£m. 
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b) if a,b£A then (Ma, Mb) = (p(UaU;); 
c) if J commutes with M, then.putting M'— SMS we have J=[M'M~X] 

(cf. [2] lemma 23). 
Therefore in the following it suffices to show that in consequence of 

a) and b) J commutes with M.'1) 
Before passing to.the. proof of this statement we need some lemmas. 

Lemma 1. For x £ R there exists an operator Tx such that TXMS^M Vx. 

P r o o f : We note first that if a £ A then Vxa £ .4 too, because Vxa = Uax, 
i 

and so Uvra=UuaX= UaUx £ m-. We define T'xMa=--MVxa for a^A\ T': is 
densely defined. Since || T'xMaf = \\MVxa\f = q>(UaUxU;Ul) s Ktp(UaU„*) = 
= K\\Ma\f where K depends only on x, Tx can be extended by continuity 
to a bounded operator Tx. Finally, if a£DM, then there exists a sequence 
aH £ A (/z = l , 2 , . . . ) such that l i m o , ^ « , lim V3 .a„= Vxa, lim Matl = Ma; 

) l —>- CD a CD H - > - C 0 

hence from TxMan = MVxaH (n —1,2,...) it follows that Vxa£D .1/ and 
T,Ma M V, a. 

i 
We introduce for X, the scalar product (X, Y) = <p(XY*). Then 

i 
with the involutive antiautomorphism X—*X* and the usual product m2 

, i 
becomes a unitary algebra, which we denote again by in2, and its completion 
by .§mi . As it is shown in [6] (Theorem 4) or in different form in [10] 

J_ • 

(Theorem 18), the left and right rings of in- can be obtained in the following 
i 

way. Let a n d X O n T , then we have <p((TX)* (TX)) = <p(X* T* TX) 
^ || T\fcp(X*X), hence, the correspondence X—• TX can be extended to a 
bounded linear transformation LT defined on The totality of these 

i 
operators LT ( T £ R S ) coincides with the left ring of in2. Similarly, we can 
define for T ^ R " the operator Rr by extending the correspondence X-+XT 
to a bounded linear transformation on and the totality of these opera-

i • 
tors forms the right ring of m2 . 

L e m m a 2. The correspondence Ma—>Ua (a£A) can be extended to 
an isomorphism ib between the spaces and , which carries R7 into the 

left ring, and R'1 into the right ring of m2. 

«) if # i = J '¿dEp and Mo = J ¿dE'i' are two operators defined on a Hilbert space 

o . o 
we say that they commute, if and commute for .i, In this case [H 1H i ] 

always exists, and is positive, self-adjoint. 
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_L -L 
P r o o f : If X ^ m ^ and y £ R, Uxu^XUv £ m2 , hence Xy£A. Since 

the set of the operators Uu {y € R) forms a strongly dense *-subalgebra of R^ 
there exists, by a theorem of KAPLANSKY (cf. [7] Theorem 1) , a directed set of 
operators {Utla}aev (y«£R), which converges strongly and boundedly in norm to /. 
cp is normal, hence the mapping B-+cp(X* XB) (B £-R") is continuous on 
bounded sets of R9 in the strong topology (cf. [3] Corollary 8 of the Theo-
rem 3). So we have lim <p(X* XUXa) = <p(X* X). From this it is clear that 

« 

the linear set of the operators Ua (a £ A) is dense in .§mT. Since (Ma, Mb) = 
==<f(UaU*) (a,b£A), the correspondence Ma->-Ua can be extended to a 
unitary mapping ip between the spaces |>r and £>mT. If Rf (a,b£A), then 
(TMa, Mb) = (MTa, Mb) = y(UTa Ut) = <p(TUaUt). Hence the mapping V 

carries Ry into the left ring of nt2. Since the right ring is the commutant 
of the left ring (Theorem of commutation), we see that ip maps at the same 

i 
time R'7 into the right ring of nt2. 

We put in the following C = (M + iI)(M—z7)._1; C is unitary and £R ' \ 
To prove that J and M commute, it suffices evidently to show this for J and C. 

L e m m a 3. If a £ A then Ca^A and Uca== UaC', where C is a unit-
ary operator £ R", which depends only on C. 

P r o o f r Since C £ R'7, there exists by lemma 2 a unitary operator 
C ' ( B S depending only on C such that i p ( C M a ) = UaC' for a £ A. If 
UXa->C strongly and such that ]j UXJ\ ^ 1 (Theorem of KAPLANSKY), then 

UaUra converges to UaC' in the metric of the space Since ip(MVxa) = 
= UaUx, we have lim M VXna = CMa = MCa, hence for y £ R by lemma 1 

a 
CD 

lim MVy VXaa = lim TyMVXaa=TuMCa = MVyCa. Let! ldEk be the spectral 

representation of M. For every d > 0 \{I-E6) V^CaHlimlK/—E&) VuVraa\^K\y\, ce 
where K does not depend on ó and a, because the operators UYrr « = Ua.Ux,r xa a _ 
are uniformly bounded in norm. Since M is non-singular, we have 
\VlJCa\\^ K\\y\\ for every y £ R. This proves that Ca is left bounded, and 
that Uca = y(MCd)=UaC'. 

L e m m a 4. For every left bounded a £ £>R, Ca is left bounded too, 
and Uca = UaC where C' is a unitary operator £ K which depends only on C. 

') If m i , || Ua\\ á 1, Ua—*U strongly, and U is unitary, then TUa —• TU in the 
metric of the space § i n i . In this case we have namely 

<p([TU—TUa\ [TU— TUa]*) = 
= <p(TT*) + (p(TUuU*T*)—2Re<p(TUaU*T*)¿!2(<p(TT*)—Re<p(TUaU*T*))->-0. 
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P r o o f : If m'2 and a is left bounded, then Ta £ A, hence by 
lemma 3 UCT« = UTaC' = TUaC', where C ' £ R" depends only on C. If 

i 
Ta £ m2 and Ta-*l strongly, then VxCa = \\m VxTaCa = \\m TaUaC'x= UaC'x 

ce a 
for every x £ R, which proves that Ca is left bounded and that UCu = UUC'. 

Similarly, it can be proved that for every left bounded a, C*a is left 
bounded too, and that Uc*a = UaC". 

P r o o f of T h e o r e m 1: We have by lemma 4 for every left bounded 
a <E Dj-i: U*,, = (U„ CJ = C'* USJa -i = Uc*Sja -h which proves_that Ca C D,T-i and 
SJ~l Ca = C*SJ~la. Substituting a by Sx (x £ R), and putting C=SCS, C " = C", 
we get JCx=C"Jx for every x ^ R . If a is arbitrary £DJt then we can determine a 
sequence x n £ R such that xn—>a and /x„—»/a , since J is the minimal closed 
extension of its restriction to R. Therefore l im /Cx„ = lim C"Jx„ = C"Ja, which 

ti ->- a) ii-> en 

proves that if a £ Eh_, theji Ca £ D.r too. Replacing C by C* in the above reasoning, 
and noting that C* = C*, we get that a£D,T gives Ca^Dj too. Therefore'the 
domains of definition of the operators J and C*JC coincide, and since C " 
is unitary, we have | |CVCa| | 2== | |/a| |2 for a£D,T. But as it is known, this 
gives necessarily J=C*JC or J'1 = C*J~X C, and so the proof of Theorem 1 
is completed. 

Corollary. If R is a quasi-unitary algebra with a semi-finite R'', then 

P r o o f : This is an immediate consequence of our Theorem 1 and of 
Theorem 2 in [2]. 

4 . T h e o r e m 2. Given a semi-finite ring of operators N defined on a 
Hilbert space .0, a positive, self-adjoint, non-singular operator Hi]N, a trace 
<p defined on a two-sided ideal m of N, there exists a quasi-unitary algebra 
R with the following properties: R' is *-isomorphic with N ; M' (cf. Theorem 1) 
and the maximal extension of the canonical trace on R!/, and H, cp, respectively, 
correspond to each other under this isomorphism: 

CO 
P r o o f : Let j ldE% be the spectral representation of H. We 

ó 
. 1 _i 

denote by R ^ m 2 the -»-subalgebra of N ' consisting of the operators 
for which there exists a projection E(A)=E,„,—Ex,, A = (l1,L), 0 < Á </.,, 
with X = E(A)X=XE(A). For such an interval A we say that it contains 
the operator X,. and we denote by R.,t the totality of operators £ R contained 
by Y1. It is evident that for X, R there exists a A such that X, K £ R , t . 
We define an inner product between X, Kby (X, Y)=cP({XH~\A)) (XH'X/L))*), 
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where H X(A)=\ l 1 dE-,..s) This is obviously independent of A, provided 
A 

that it contains X and Y. It is not hard to verify that with this definition R 
becomes a pre-Hilbert space. To make a quasi-unitary algebra from R we 
define an automorphism of R by Xs = H(A)XH~\/l), and an involutive 
antiautomorphism by Xs = H~1(A)X*H(A), where To show that the 
operation ' gives an automorphism of R, we have to prove that (aX-\- BY)j = 
— aXi -f- BYj for arbitrary complex numbers a, b, and that (XY)-> = XJ YL 
Suppose that F £ R ^ , then (aX+BYy = H(A)(aX+BY)H~\A) = 
= aH(A)XH i(A) + BH(A)YH-\A) = aXj + BYi by the definition of X* 
and YK If X, Y£ R.4, then (X Yy = H(A)XYHl(A) = H(A)XE(A) YH'1 (A) = 
= H(A)XH1(A)H(A)YH~l(A) = XjYJ. The proof that X — X s defines an 
involutive antiautomorphism of R is quite similar, and we omit it. 

L e m m a 5. With the above definitions R satisfies axioms (i) —(iv) of 
a quasi-unitary algebra, enumerated in 2. 

P r o o f : Ad (i): If X,Y£RA, then we have r , T ( R A too, and 

{y,X') = <p([H:\A) Y*H(A)H ] (A)} [H ] (A) X* H(A)H 1 (//)]*) = 
= <p(H-\A) YtXH~1(A)) = cp([XH~1(A)][YH \A)Y) = (X, Y). 

Ad (ii): If X € R,i then 

X ) = <p (\H(A) XH ' (A)H (//)] [XH1 (A)X) = 

= <p{H- (yi) XH •\A)X*HI (A)) • 0.") 

Ad (iii): 
(XY, Z) = q{[XYH-\J)] [ZH \A)X) = 

= <p([YH-l(A)][X*ZH-\A)]) = (Y,Xj°Z), 
provided that X, Y,Z£ R / t , because • 

Xis = H(A)[H-\A)X*H(A)]H-1(A) = X*. 
Ad (iv): 

Y\f = (P(XYH-2(A) Y*X') =. 
= cp([YH-\A)YX*X[YH~\A)])^K<p{YH\A)\[YH-\A)Y)==K\\Y\?t 

where K depends only on X, and X, y^R.i. 

8) In the following we put Hk(A) = ^ k d E } , k > 0, for an interval A =- ( / , , / 2 ) , 
A 

CO 

0 <c Aj < A2 and for H=§XdE} . 
0 

£ 
'•>) Note that if A,B£m2, then AB £m and <p(AB) = <p(BA). Cf. for example [6J 

lemme.12. 
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The proof, that R satisfies also (v), will be given later (cf. lemma 7). 
We take now the completion of R and denote it by £>R- Axiom (iv) 

allows to form the left multiplication operator Ux for every R. By axiom 
(iii) U x = Uxj", which shows, that the totality of these operators is ^-invariant. 
We denote its weak closure by R s . 

L e m m a 6. R" contains the unit operator and is *-isomorphic with N. 

P r o o f : As in lemma 2 we use again the unitary algebra formed by 

aid of m2 , and denote its completion by As we mentioned it, its left 

ring (m-) coincides with the totality of the operators of the form LT, N, 
and the correspondence T—-LT establishes obviously a *-isomorphism between 

f -1" N and . Hence it suffices to show that there exists a unitary mapping -

ip between the spaces £>K and £>mY which carries R!/ into (m2) . We define 
now ip'(X) = XH~\A) for and A containing X. We have evidently 
(X, Y) = (ip'(X), ifj'(Y))i. (We denote by ( ,X the inner product in to 
avoid the confusion with the inner product in £>R.) Since R as a linear set. 
is dense in fen by definition, and> as it is easily seen, so is in the space 
§ I , and since i / /(R) = R, ip' can be extended to a unitary mapping i/> 

m 2 

between these spaces. If T, X, 7 £ R , 

{UTX, Y) = (TX, Y) = H>(TX), W(Y)\ = (LT;p(X), >p(Y)), 

f 1;1" 
and since R as a »-subalgebra is dense in R!/ and (itt 2 ' , lemma 6 is proved.10) 

We denote by J the minimal closed extension of the correspondence 
X-*X> in and by S the involution obtained by the extension of X—>XS. 

L e m m a 7. J = [M'M l], where M'i]W corresponds to H under the 
*-isomorphism between R!' and N, and M = SM'S. 

P r o o f : We denote by H' the operator in £>mj, corresponding to H 

under the «-isomorphism between (tit2) and N. Let 5 be the involution ob-
tained by the continuation of X-+X* over and H = SH'S. H' and H 
are commuting, selfadjoint, non-singular operators, hence [H'H l] exists. The 
isomorphism 

ip carries the correspondence X—>-X-> (^T^R) in §R into the 
linear transformation defined on RSS&J- by J'X= H(A)XH'i(A) (^eR.4). 
It is; clear that J'X = H'H~1X. 

_ _We prove now, that the minimal closed extension of J ' is identical with 
[H'H~l], or, that the latter operator is the minimal closed extension of its 

10) Observe that because of the maximality of <p, m 2 is strongly dense in N. 
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restriction to R £ £ r a i . But this is contained in the following statement: Let 
^"££>,„1 be in the domain of definition of H'H'\ then there exists an element 
^ R such that X, and H'H'lX, are arbitrarily near to' X and H'H~l X, 

_ . f -,(-, { . _ 
respectively. To see this, we put H'=\ME>\Exi{ m-J J, and E}. = SE'xS. 

ó • ' 
Then there exists two intervals, /U and A2, of the form 0 < ^ I ^ L such that 
E'(A,)E(AS)Xand H'H'1 E'(Al)E(A2)X are arbitrary jiear to X and H'H'lX 
respectively, and an element Xx £ R, such that X, and H'H'1 X, are arbitrary near 
to E'iA^ EiAJX and H' FT1 E' (A,)E(A2)X, respectively. If M' and M corres-
pond in the space §R to H' and H respectively, then we . have obviously 

J = [ATM~l], M''t]W, and even M = SM'S. For this it suffices to observe that 
for X £ R and a suitable interval A, 

y(SX) = (H-\A)X*H(A))H-1(A) = (XH-\A)y = Si>(X), 

i. e. 5 and 5 correspond to each other under 1p. 
So the proof of lemma 7 is completed. 
To show that R satisfies also the axiom (v) of the quasi-unitary alge-

bras (cf. 2), we need the folloving 

L e m m a 8. J is the minimal closed extension of its restriction to the 
linear set in ,SJK formed by the linear combination of the elements of the form 
XY (XYi R). 

P r o o f : Passing by aid of the unitary mapping ip to a problem in 
it suffices to prove the following assertion: Given X(i RA , there exists a pro-

jection P^kE(A), P O n 2 , such that is arbitrary near to X in the 
metric of §J.'ln this case [H'H1] PX= H(A)PXH'1(A) is arbitrary near 
to [H'M~1]X=H(A)XH~i(A), and it was shown in the preceding lemma, 
that [H'H1] is the minimal closed extension of its restriction to R. But this 

i 
follows from the fact, that E(A) is the 1. u. b. of projections in m2 10), and 
from the remark in the footnote7). 

An immediate consequence of this lemma is that R satisfies also axiom 
(v) in (2). By lemma 7 namely J is the minimal closed extension of the 
product of two commuting, positive, self-adjoint operators M"1 and M', hence 
it is itself positive, self-adjoint. So the range of / + / is £>R, which combined 
with lemma 8 gives plainly that the elements(/+ J)XY={XY) + (XYy ( J K ( R ) 
span £>R-

Summing up the above results, it can be seen from lemma 5 and from 
the preceding remark, that with the definitions at the beginning of the pre-
sent section R becomes a quasi-unitary algebra. Lemma 6 shows that R" is 
•»-isomorphic with N; by lemma 7 we have J=[M'M~l] with Af/jR0, M=SM'S, 
and M' corresponds to H under this isomorphism. To conclude the proof of 
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the Theorem 2 it remains only to show, that the maximal extension cp' of the 
canonical trace in R" corresponds to (p. If X, K ( R ( , then one sees at once, 
that X, Dm, and y'(UxUl-) = (MX, MY) = (XH(A), Y H (A)) = <p(X Y*). 
It suffices therefore to remark that the trace (p is uniquely determined by-
its values on elements of the form XY* (X, V ^ R ) . But if the projections 

i 

Pa £ R converges to / strongly, and X ( i i i c m 2 c N , then 

fp(X) = lim (P(PaX) = lim <p(PaXPaPa), a a 

and PaXPa £ R, qu. e. d. 

5 . In the following we consider a quasi-unitary algebra R with a semi-
finite left ring and we denote by (p the maximal extension of the canonical 

tracé, and by m c R ® the corresponding two-sided ideal. We recall that now 
m co 

J = [ATM"1] (cf. Theorem 1) and we put M= J MEk (ExtR") and M'= J IdEi, 
„ . 0 0 

E',. SEiSC R • i 
L e m m a 9. Suppose m2 be such that TE'(A)=T, where 

E'(A)- E[,—£;.,, 0 < / , < / , . Then T=Ua, where a ist left bounded. 

P r o o f : By the theorem of KAPLANSKY (cf. [7] Theorem 1) we can 
choose a directed set of elements xa £ R such that || U,-n || ^ 1, and 

weak lim UXa = I. 
a 

We need now the following result of DIXMIER (cf. [2] lemme 7.a) : If a £ A/-1 ' 
is left bounded and L £ Rtf commutes with J, then SL'Sa is left bounded 
too, and UsL*sa = UaL. We put TE(A)x„ = aa, and prove that these elements 
converge weakly to an element Applying the above lemma to the: 
case a = xa, L = M~l(A), we see that M~1(A)xa is left bounded, and 
UM-iU)Xa=UXaM'~1(A). Hence it follows that M^(A)aa=TM'l(A)xa is left 
bounded too, and Uu-\A)aa=TUM-\A)Xa=TUXaM'~l(sl). So we have 

\\aa\f = \\MM-l(A)aaf = (p(Uu-UA)aaUtM-iuua)= -

= 9(TUXaM'-2(A)U:aT*)^\\UXaf\\M'-2(A)\\<p(Tn^K. 

where A'does not depend on a. We have further lim (aa, xy) = lim ( (Ja a y s j , x) — 
a a 

= (Tysj,x) for X j j ^ R , which proves our assertion since the linear combin-
ations of the elements xy (x, y Ç R ) are dense in Finally 

Tx = weak lim UUax = weak lim Vxaa = Vxa 
a a 

for X £ R , from which lemma 9 follows immediately. 
We recall ([2]), VIII) that the quasi-unitary algebra R is a continuation 

of R', if R ' is a subalgebra of .R, the inner product, the automorphism and 
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the involutive antiautomorphism in R ' are the restrictions of the correspond-
ing notions in R, and finally R ' is dense in R. R is said to be maximal,") 
if it has no proper continuation. R is maximal if and only if it possesses the 
following property: If for a £ «'¿R J"a exists and is left bounded for every « < 0, 
then a £ R. Every quasi-unitary algebra is contained in a (uniquely determi-
ned) maximal algebra. 

T h e o r e m 3. Let Ri and R2 be maximal quasi-unitary algebras, with 
semi-finite left rings R i and R[i. We put y, = [M[M\l] andy2 = [^iWo 1] (cf. 
Theorem 1). Suppose there exists a *-isomorphism <» between R i and R? such 
that Ml and Mi, the maximal extensions of the canonical traces <px and (p., 
correspond to each other respectively. Then R, and R2 are isomorphic, i. e. 
there exists a one to one mapping between them, which preserves the algebraic 
operations, the inner product, the automorphism, and the involutive antiauto-
morphism. 

P r o o f : Denote by n^ the two-sided ideal belonging to (plt which is 
CO 

strongly dense in Ri. We put Af, =j/.dE<>1) and E1(J) = Ei£— E[{A) = 
0 

= SlE,(A)S1 for an interval A = (/>u?>,), 0<il<L>. We denote further by 
i 

S, the totality of operators T^m'f for which there exists a A such that 
E\(A)T=TE[(A)=T. 

Similarly, we denote by nu the two-sided ideal c R ° belonging to cP->, 
a) 

and we put M2= \ldE?\ E*(A) = E^—Elf, ES(A) = S2E2(A)S2. Let S - b e 
o 1 

the totality of operators T £ i n | , for which Ei(A)T=TE1(A) = T with a 
suitable A. 

If Si, then by lemma 9 T=Ua, where a is left bounded. The 
reasoning of this lemma gives that Ei(A)a = Ei(A)a = a for a suitable 'A. 
Since Ji==[M{Mi\ we have a£Dj» for n> 0, and J?a = Ml"(A)Mpl(A)a: 
This shows that the totality of these elements a is a subset of Ri , which 
we denote by R i . We have further for A = Ua, B = Ub £ Si: 

AB=Ua„Z Si and ctA + ¡SB = Uaa+^ <E Si 
for arbitrary complex numbers cc and ¡3. This gives that Ri is a subalgebra 
of Ri . Observing that Si is a *-subalgebra of R i , for a £ Ri we have 
a-'- ^ R i , and since plainly ( n > 0 ) , we have as £ Ri too. We form 
also in a similar way the corresponding R i c R 2 . If T"£Si then w ( T ) € S-j, 

because from T£ mi2 it follows that w ( 7 ) £ nto2, and since OJ(E{(A)) = Ei(A), 
Ei{A) T = TEl{A) = T gives El (A)<»(T) - <»(T)E-i (A) = m(T). Define 

n ) In the terminology of DIXMIER „algèbre quasi-unitaire achevée". 
A 8 
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now a correspondence w between Rí and Ró by í/,•,(„> = ra(í/„), a Ç R í . 
Since w(Si) = S;! we have ip(R[) = Rí too, and it is clear that ip is one to 
one. We have plainly -»/>(«a + ftb) = ccy(a) + i3ip(b) and ip(ab) = %p(a)y(b). 
To prove that xp defines an isomorphism between Rí and Ró it remains to 
show that (i) ip(flj) = ^{a), (ii) n>(a") = ^(a), (iii) (a, b) = (ip(a), w(b)). 

Ad (i): For Ö (R Í we have, applying again the lemma 7a in [2]: 

<°(Uuj) = « ( £ ¿ " / 0 1 ) V ( A ) « ) = 

=m(M[(A)UaM'C1 (//)) = M2(A)U,h„)M^[(A) = U,PHa], hencé ->p(a>) = ^(a). 

Ad (ii): w(í /„yv)=w(í / í r )=®(a,)* = í/; (n ) = í / ^ („ ) , hence ip(a^)=ws(a), 
which combined with (i) shows that cu(«s) = ojs(ö). 

Ad (iii): Since <fx and q>.2 correspond to each other under co we have 
for a, b £ R i and a suitable A: 

(a, b)= (MlM{\A)a, MlM\\A)b) = <p,(<USr\AylUtrHA)i) = 

= <p1(U«M'-\A) [UhM' \A)Y) = <p,(U,H<l)M^(A) [Uv>(h)M:.-1 (A)Y) = 

= <p*XUir.rhAm«) UlrfhAmvy) = (MoM^(A)-w(a), Ai, M~2 (A) <p(b)) = (<Ka), ip(b). 

It is evident that Rí (resp. Ró) is dense in R, (resp. R,). Since a quasi-
unitary algebra determines uniquely the corresponding maximal algebra, the 
above isomorphism can be extended to an isomorphism between Ri and R2 , 
qu. e. d. 

6. In this section we intend to give more precise information about the 
structure of the space § m i introduced in 3 , and its connection with the quasi-
unitary algebra R. The following lemma is in close connection with the ex-
tended Riesz—Fischer theorem (cf. [10] Theorem 13, for the techniques used 
cf. [4], especially 5 and 6). 

L e m m a 10. Let N be a semi-finite operator-ring on the Hilbert space 
§ and <p a trace defined on the two-sided ideal mczN. Let Ti)N be a closed 

<x> 

operator on § and let T= VH be its polar representation, where H= | /dE>.. 
ó 

n 

Putting H„ = I IdE-,. ( / 7 = 1 , 2 , . . . ) and Tn = V H„ we consider the totality of 
o i 

operators 77/IV, for which Tu d m- and lim <p(T*T„) = |j T\\l exists, and denote 

it by Q(N). Defining the addition for 7,S£Q(N) as [7+5], Q(N) becomes 
a linear space, and with the scalar product (S, T) — lim cp(SnT*) even a Hilbert 

space. 

P r o o f : By a result of R. PALLU DE LA BARRIÈRE (cf. his Thesis, cited 
in [2] p. 293) there exists a family of elements {off}«er in £), such that for 
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•B£m we have tp(B) = Sa^{Ba„,a„). If T£Q(N), then for n = 1 , 2 , . . . 

cp(T:, 7„) = || Tnaa\f =1 limr/>(7*7„) = || 7 | | | < + 
11 ••> CD 

from which it follows at once that aa£DT (cc£F) and || 7 | | ; = I„eF || Ta„ ||2. 
Obviously the converse is also true: If for Ti]N, a„ £ DT and 7 a 0 | p < + oo, 
then lim rp(T*T„) exists, hence 7<E Q(N). If B=V\B\ is the polar represen-

1 lation of B £ nt'2, we have 

<p(BB')=<p(V\B\i\r) = <p(VV\B\*) = <p(\B\*) = <p(BtB), 

from wJiich it is easily; deduced, that if 7 £ Q(N) then 7*€Q(N) too and 
]| 7| |! = || T* ||1. To prove that [ 7 + S ] exists we observe that the linear set A 
of the elements ^ „ g p ^ a « , where B<;cN' and fire=}=0 only for a finite set of 
values of a, is dense in Otherwise because of the regularity of (p there 

would exist a projection P=j= 0, P £ m2 , such that Pa„ = 0 (« £ F). Then 
<p(P) = 0, and so P = 0, which yields a contradiction. Since aa£DT+s and 
fl«££>i*+s'£Am)«, therefore 7 + 5 and ( 7 + 5 ) * are densely defined in £•>. 
So [ 7 + 5 ] exists, and plainly £ Q(N). To prove the validity of the associative 
law [# + [ 5 + 7 ] ] = [[/? + 5 ] + 7 ] , it suffices to show that 7 £ Q ( N ) is equal 
to the minimal closed extension 7, of its restriction to A. For this observe 
first that 7 £ Q(N) too, and we can suppose 7 to be positive hermitian. If 
B £ N and 7 £ Q(N) then lim (p(TnBB*T*) exists. Hence lim cp(B* T* T„B) exists 

«->0D «-> CD 
too, which implies that Baa d DT, or that TB is densely defined. Suppose 
now that the range of / + 7 i is not dense in Then there exists necessarily 
a projection P=}=0, P £ N, such that 0 2 P ( / + 7 ) . We have 

0 = [P(I+ 7 , ) ] * ^ ( / + 7 , ) * P 2 ( / + 7 f ) P 3 ( l + 7 ) P. 

By the former remark there exists an element /=(=0, such that 
Pf=f and f^Dr- Hence ( / + 7 ) / = 0 , which is impossible if 7 is positive 
hermitian. So the range of I+Tx is dense in £>, which proves that 7, is 
hermitian, and so 7 = 7 ] . 

It is easily verified that (5, 7) = lim <jp(5„ 7*) possesses the properties 
«->a> 

of an inner product; to prove lemma 10 we have therefore only to establish 
the completeness of this space with respect to the norm || ||2. Let L„ be a 
sequence £ Q(N) §uch that 

lim || L„ — Lm\\l= lim || L * — | | o = 0. 
in, Ji-J- 03 ii-VCO 

It is easily seen that by 5 / = l i m L „ / ( f d A ) a (densely defined) linear 
transformation 5 is given. We define similarly S ' / = lim L*,f, / € A. For f,g £ A 
we have 

(5/, g) = lim (L„f, g) = lim (/, L*ng) = ( / , S'g) 
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This gives that 5 * 2 5 ' . Thus the minimal closed extension 5 of 5 exists, 
and plainly 5??N. In particular San = lim Tnaa (cc£F), from which it follows 

H->- CO 

that J? a e f | |5a„| |2< + °° and so 5 £ Q(N). Finally it is clear that lim || T,— 5¡ | ¡= : 

Jl-> 00 
= lim 2"„ei-|| (r„— S)a„ ||- = 0. So the. proof of lemma 10 is completed. 

U-> CD' 

In the following we call the elements £ Q(N) square integrable with 
respect to <p. 

L e m m a 11. Let R be a quasi-unitary algebra with a semi-finite R;/-
Suppose that J =[M'AT1], and let (p be the maximal extension of the corres-
ponding canonical trace. Suppose that <P is defined on the two-sided ideal 

i 
m c R ' . An operator T£\\\- is of the form U„, with a left bounded and 
a i Dm, if and only if [ T A T - 1 ] exists and is square integrable with respect to (p. 

P r o o f : (i) Suppose that T= Ua, where a is left bounded. Let 

M = ' j IdE>. and we put A„ = — ^ /. < + °o j for n= 1 , 2 , . . . . Since 
ó . 

and it commutes with J, M~1(A„)a is left bounded too, and 
-'(,.„),.= UaM'" (A„).V1) So we get 

\\MM'1 (A„)a\\2 = ||(/—Ei)a \f = <p(U3r-\A¿aU*3i-\Au)a) = 
n 

•' =<-p(TM'~\Al)[TM'~\A,W)=f'E\\M'~\A,)T*aaf ^ | | a | | 2 6 

agí" 

for 11 = 1 ,2 , . . . , provided that cp(A) = a«) for .4 6 m. This gives 
agí' 

that aa £ DM-'T*, therefore A r ^ r * is densely defined. Since (AT1 T*)*P_ TM'~l 

is densely defined too, we see that [M'~l T*] exists. The series Z \\M'~l T*aa\f 
converges, hence [AT"17*] is square integrable with rescept to (p. By a 
remark made in the proof of lemma 10 the same is true for [TAT-1] = [M'~lT*]*. 

(ii) Suppose that [TAT"1] exists, and is square integrable with respect 

to (P. Putting AH = si I < + ~ j , E'(An) = SE(An)S (n = 1 , 2 , . . . ) , we 

have by lemma 9 TE'(An)= Ua„ for each n, where an is left bounded. We 
prove now that the elements an converge to an element R. For this we 
observe first that for n ^ m UK(Ain)n,, = TE'{A,)E'(Am) = (Jam '-)> hence 
E(Am)an = am.^So we need only to prove that the sequehce ||fl„'|| is bound-

If T^P3 and a is left bounded, then Ta is left bounded too, and UTa = U„ST*S, 
also for an a not necessarily £ Dj-i. (If a^Dj-1, then the problem is settled by lemme 
8a in [2]). For this we have to prove that VxTa= UaST*Sx for every But by 
lemme 8b in [2] VITa= VST-s,a, and by lemme 24 VST*Sj:a = U„ST*Sx, qu. e. d. 
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ed. But 
\\cin\f = \\MM~\A.,) a„\f = 

= y(i/.u-'(.4„)n„ = <p{T M'~\A,)[T (A„)f) ^ || TAT1 ||i 

for every n, which proves our assertion. We have further 

14« = lim V*a„= lim t/„„x = lim TE'(A„)x=Tx 
n - > CO )f -> - CD 1) - > CO 

for every which shows that a is left bounded and U„ = T. Finally 
we prove that q £ D M . To see thjs,. observe that 

||M(A„)a\f = \\Man\f = cp(U„nU:,) == y ( 7 T ' ) 

for every /;, from which our assertion follows immediately. 

R e m a r k . Lemma 11 shows immediately, that the canonical trace in 
a unitary algebra constructed with M = I is maximal. On the other side, 
combined with Theorem 2 it gives possibility to construct various examples 
Of quasi-unitary algebras with a semi-finite R;/ for which the canonical .trace 
is not maximal by any choice of M. Indeed, we can proceed as follows. 
We choose a semi-finite ring N, a maximal trace rp with the corresponding 
two-sided ideal m S N , and a positive, self-adjoint, non-singular Hi]IV. For 
a positive, self-adjoint, non-singular C/ jN nN' we put //o = [C//]. Next we 

u 
consider the two-sided ideal a formed by the operators 2-A¡B*, where 

- ! = 1 1 
A;, Bi £ in11 are such that the operators [A¡H7?], [B;Hll] ( / = 1 , 2 , . . . , / / ) are 
square integrable with respect to (p. Let R be the quasi-unitary algebra, which 
corresponds by Theorem 2 to N, H and (p. If a is properly contained in nt 
for any choice of C, then the canonical trace in R is not maximal. Consider 
for example the ring B of all bounded operators in a Hilbert space £>. It is 

i 
known that cp is determined up to a constant factor, m- consists of the oper-
ators of the Hilbert—Schmidt class, and, whith the inner product <p(AB*), 
the totality of these operators forms a complete Hilbert space. Suppose 
further that H is bounded. Then it can be shown easily that [AH1] exists 

i 
and is square integrable if and only 'ú A = TH, where in - . If there exists 
a two-sided ideal n properly contained in nt, such that H- £ n, then evidently 

« i 
the operators ^ A , H - B * , where a r e "> hence they do not 

constitute all operators of in. 

7 . It is known (cf. [10] Theorem 19 and Corollary 19.1) that if R is a 
unitary algebra and a £ then the operator defined by (Jáx=V:. a for 
x £ R. has a minimal closed extension Uu, and the totality of these operators 
coincides with the set of square integrable 'operators with respect to the 
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canonical trace (constructed with M = l). Let now R be a. quasi-unitary 
algebra with a semi-finite R9. Suppose that J = [M' AT1], and denote by r/> 
the maximal extension of the canonical trace, and by m the corresponding: 
two-sided ideal c R ' . If, for an element the minimal closed extension 
of the operator defined by Uáx= Vxa for x £ R exists, we denote it by 
Ua again. We prove now the following 

T h e o r em 4. Define a unitary mapping W of £>R on the Hilbert 
space L% (of the square integrable operators with respect to (p) by the con-
dition tp(Mb) = U/,, where b is left bounded and £ DM. Denote by Ta £ L<p. 
the operator corresponding to a^ioR. Then Ua exists if and only if [TaM\ 
exists, and then Ua = [TuM']. 

CD It 

P r o o f : We put M = j I dEu Mn = j I dEk (n = 1, 2, . . . ) . Since E,. £ P\ 
0 u 

i. e. .it commutes with J, E}.x is left bounded and £ DM for any x £ R. So 
the elements Mb are dense in To show that the same is true for the 

i 
operators Ub in the space L^, we observe that if T£m- and if UXa(xa£ R ) 
converges strongly and boundedly in norm to / (cf. [7] Theorem 1), then 
TUr.a= UTxa converges to T in the metric of L%n), and the elements Tx« 

are left bounded. Therefore it suffices to remark that if i/,; £ m2 and c is left 
bounded, then putting E'll = SEnS the operators UcE'n= UK„cr2) converge to 
Ue in the metric of Up. So there exists a unitary mapping i[> of on 

which satisfies ip(Mb)= Ui, for every left bounded b£DM. We divide 
the following in two steps. 

(i) We prove that if Ua exists, then [T a M ' ] exists too, and UaP[TaM']. 
CO 

Let Ua — V\Ua\ be the polar decomposition of Ua and | Ua\ = | ¿ dF>., 
ó 

u 

\UaU = j¿dñ., Uiu)=V\Ua\u and M'lt = SMnS (// = 1 ,2 , . . . ) . We put Fn = 
o 

= VFnV* for « = 1 , 2 , . . . , then for x £ R 

Ua^x = FuUax = Fn Vxa= V,F„a, 

hence Fna is left bounded, and £//?„„ = 

We show next that 

CTF„Ema — [Z7» TnMm] 

for n, m = 1, 2 , . . . . By the reasoning of lemma 10, [AT] and [TA] exist for 
A 6 R" and T£L%, and they are in L%. We see easily that ||[A7]||., ^ 
= IMIIII ^1!-' and || 7A||2 = | |[AT*]||2¿i ||A|| || r*||2 = || AH || T||2. From this jt 
follows at once, that for every A £ R" there exist two bounded operators 
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La and R a in L%, such that LA T= [A T], RA T= TA for T £ L % . We have 

ip(MmMb) = ip(M Mmb) = U.vmb= UbM'n = R3r'mUb, 
and 

ip(FnMb) = >h(MFn b) = UFuh = F„ Ub = L j-„ Uh. 

Since the elements Mb (resp. U<) are dense in § R (resp. L2
V), we have, 

for every w(Mmc) = Rjr,,, T,: and >0(Fuc) = LF„ T,:, hence 

y(MmFna)= W(MFllEma)=UEll,F„a = R.irmLr„ Ta = [FnTaM'm] 
(m, / 2 = 1 , 2 , . . . ) . 

Supposing that cdDTa3r, we choose a sequence cH £ such that 
Cn € DTa3i'„, EuCn = cH ( / 2 = 1 , 2 , . . . ) , and lim c„ = c, lim M'cH=,M'c. Since 

LL-Y CO CO 

UK^-U^E:, tlierefore 

U!,m)c= lim Uim)ca= lim Ufn^,cH = lim FmTaM'„cn = lim FmTuM'cn = 
It ->- CO /1 ->• CD It-*- CD 72 —>- CO 

= FmTuM'c. 

Hence lim Ua")c= lim Fm T,tM'c, which gives at once c£DUa and 
m ->-co m - > CD 

Unc=TaM'c, consequently U„^[TaM'Y"). 
(ii) We prove now conversely, that if [THM'] exists, then Ua exists 

CD 

too, and [T„M']^Ua. We put Ta= V\ Tu\, \ Ta\ = \ldG>., 7 f } = V\Ta\n, 
0 

GH=VGnV ( / / = 1 , 2 , . . . ) . Similarly, as in (i), we get %fj{G„Mma)=TiX) M'm 

(/7/, /7 = 1 , 2 , . . . ) . By lemma 11 Ta)M'm=Ua-, where Ema' = a' and a ' is 
left bounded. Since tp(Ma')= T!'0M'm, we have necessarily Ma' = M„,Gna= 
= MGllEma„ which shows that GHEma is left bounded, and Ui;„E,„a = 
= r/r'Ai;« (/2, /77 = 1, 2 , . . . ) . ' If x £ R we have 

lim VxF„Ema = lim Tin)M'mx, 
N-*- CO 71—>- CO 

therefore Af,'„x $ and VxEma=TaM'mx. Since T„ M'„, 72 [ T„ M'} E'„, we have 
further 

Vxa= lim VxEma= lim [TaM')E'mx, 
111-*- CD 111 — > CO 

from which it follows that x £ D\raw\, and that Vxa^-\TaM']x. But this gives 
clearly our statement. 

Putting together the two parts, if V.t exists then by (i) [TaM'] exists 
too, and Ua^[TaM'], but by (ii) [TaM']^Ua, hence [TuM'] = Un, and 
conversely. 

So the proof of the Theorem 4 is completed. 

,3) Note that TaW is densely defined, since T„M'n is densely defined for n = 1 , 2 , — 
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8 . In this section we give a new proof for a theorem of DIXMIER con-
cerning quasi-central elements, which leads to somewhat more general result 
(ef. [2] Theoreme 4).14) We recall that if R is a quasi-unitary algebra, an elem-
ent a££>R is quasi-central, if for every x £ R we have U j a = V x a . One 
verifies easily, that the set of these elements is a closed subspace of £>R, 
and denoting by 9Tc the minimal subspace with a projection P £ R ' ' containing 
it, we have P£R" nB? too (for these cf. [2] VII). 

T h e o r e m 5. R!/ is of finite class if and only if SU = §R. 

P r o o f . The proof for the sufficiency of this condition is as in DIXMIER'S 

paper. If G is quasi-central, then we have for x, j>£R: 

(i/ Ua, a) = (U, a, U:rfa) = (Ut a, V,a) = (£/„ VAha, a) = (i/ Ua, a). 

From this it follows by continuity (STa, a) = ( 7 5 o , a) for S, Since 
(Ta,a) ( r $ R " j is a positive linear form, it determines a trace defined on 
every element of R!/. If, for T^R", (T*Ta,a) = 0 for every quasi-central a, 
then by = w e h a v e necessarily T= 0. Therefore R;/ has a complete 
system of traces, so that ([5] lemme 12) R" is of finite class. 

Conversely, suppose that R" is of finite class, and 50c 4= §R. Suppose 
that J = [M'M'1], Mi]Bl\M' = SMS (cf. Theorem 1). By central^ decomposi-
tion ([2] III) we can reduce the problem to the case, when 5 U = 0 and the 
canonical trace tp is everywhere defined on R". Since now there exists 
an element a£ |>R such that T„ = I, hence by Theorem 4 U„ exists, and-
Ud = M'. We put 

CO n 

M'=\ldEZ and Mi = \kdEi (« = 1 , 2 , . . . ) . 
ci 0 • 

Then UE'na = Mn, hence SJ~lE,'la = E!,a for « = 1 , 2 , . . . , and so SJ'xa = a. 
Observe now, that if c€D,r then for x £ R we have J~lVriJc=Vxc.To 

prove this, we choose a sequence y „ 6 R ( « = 1 , 2 , . . . ) such that limy„ = c 
n ->Q3 

and lim Jyn=Jc. In this case 
i i —>• CD ' 1 

Vxc = lim V.xyn = l im/ - 1 Vxijy„, 
It -»-CD n~*-CD 

which shows that VjJcZ.D,^ a n d J ' 1 VrjJc= Vrc. 
We have, now for x £ R : 

Va = M'x = M'J~lJx = f l M J x = y 1 VrJ a = VJ~xa, 

u ) Q ^ P ' ' is proved in our Theorem 1, and the axiom A'-5, loc. cit., will not be 
used in the sequel. 
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hence J la = a, and so Sa = a. We have also 

Vxj 1a = M'J'1x = Mx = SM'x =SVrXSSa= Uxa. 

This shows that a is quasi-central, and since obviously a =j= 0, we have a 
contradiction, and therefore our theorem is proved. 
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