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Métrische -Pualitiit 'der allgemeinen Riume. -
Von ARTHUR MOOR in Debrecen.

' Einleitpng; .

In der neueren Entwicklung"der Geometrié, sowie in der Physik haben
Variationsprobleme von der Form

oy om,\ )dt—0

eine grundlegende Bedeu'tun0 ").. Diese Vanatlonsprobleme kann man sowohi
vom Standpunkt der Funktionentheorie, wie vom Standpunkt der Geometrie

~ untersuchen. ,
- A. L. UNDERHILL bes’ummte zuerst die Invarianten des Vanatlonsproblems
'(0 1) in seiner Arbeit®) {15] mit .analytischen Methoden. Die geometrische
Charakterisiering ‘des Variationsproblems (0. 1), die- zuerst - systematisch von
P. FINSLER durchgefiihrt wurde, ist zum Ausgangspunkt der Theorie der all-
gemeinen differentialgeometrischen Rdume geworden. (Vgl. [8] und [4].) Diese
. Theorie. wurde in vielen Abhandiungen behandelt, und neben dem Varia-
tionsproblem (0.1) hat man bald auch Variationsprobleme mit mehreren -
Veranderlichen ,geometrisiert“. In erster ‘Reihe kommen hier die Variations-. -
probleme von der Form '

©.2) S J EO5U) gyt g1 —0
- . (” 1) n .
in Betracht, wo die u; die Bestimmungszahlen der Hyperﬂachenelemente
bedeuten. Die funktionentheoretische Untersuchung des Variationsproblems
(0. 2) hat zuerst L. KOSCHMIEDER durchgefiihrt und die zu (O 2) gebundenen
Invarianten bestimmt. ”)
Die Entwicklung der geometrischen Theorie des Variationsproblems'

(0.2) haben E. Cartan und L. BERWALD in den _.Abhandlungen [1] und [3]

1) Wenn es nicht anders gesetzt wird, bedeutet x immer die n Koordmaten
xt,x2, ..., x» einesPunktes imin-dimensionalen:Raum.: Entsprechendglst X==X1,%2, .. ., xn
) Dxe Zahlen in ecklgﬁn Klammern deuten auf das Schrlftenverzelchms am Ende
unserer Arbeit.
' 3) Vgl. fur die. Untersuchunoen L Koscmumgm das Schnﬂenverzexchms von [6].
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“durchgefiihrt. Diese Geometrien lassen sich.dadurch kennzeichnen, da8 ihr
Grundelement das Hyperflichenelement (x, u). ist, und dab durch eine Funda-
mentalfunktion F(x,u) die Oberfliche in diesen Réaumen fiir Hyperflichen
definiert ist. Von F(x, u) ausgehend kann man einen metrischen Fundamen-
taltensor g definieren, und dann mit Hilfe von gx die Lange der. Vektoren,
und alle charakteristische Grofen des Raumes bestimmen. Diese Réume nennt

-man- Cartansche Réaume, wihrend die durch (0. 1) bestimmten Riume die
Finslerschen Riume sind. Die letzteren sind dadurch gekennzeichnet, daB
ihr Grundelement das Linienelement (x, x) ist, und da8 die metrische Funda-
mentalfunktion F(x,x) die Linge der Kurven :

X == x(1), ce=t=p
zwischen den Grenzen ¢, 8 bestimmt. Der metrische Fundamentaltensor und
die weiteren grundlegenden GroBen des Raumes sind — wie im Cartanschen

‘Raum — auch aus F(x, X) ableitbar. In diesen Rdumen spiélt ein kontrava-
rianter Vektor bzw. eine kovariante Vektordichte eine fundamentale Rolle.

. Bei der neueren Entwicklung der Geometrie der allgemeinen R&ume hat
man einen einheitlichen Gesichtspunkt dadurch erzielt, da8 ‘man'f_iir ‘das .
Grundelement eine Vektordichte vom Gewicht p gewihlt hat. In dieser Ver-
‘allgemeinerung sind dann sowohl die Finslerschen, wie die Cartanschen
Riume enthalten. In den Arbeiten [14], [6] und [5] wurden die Fundamental-
tensoren, und. mit Hilfe des invarianten Differentials die- Parallelubertragung
in diesen-aligemeinen- metrischen Raumen bestimmt.

Das Ziel unseres Artikels ist die Untersuchung der metrischen Dualitit
der allgemeinen Rdume. lhre ‘genaue Definition ist in § 2 angegeben. Wir
~ erwdhnen hier einleitend nur so viel, daB es sich um eine umkehrbar ein-
deutige Zuordnung der Grundelemente beider Raume handelt, fiir die die
metrischen Fundamentaltensoren in entsprechenden Elementen {ibereinstimmen.

Falls die Grundelemente der dualen Riume Kkontravariante bzw. kovariante
Vektordichten sind, behandeln wir das Duahtatsproblem mit Hilfe des osku-
lierenden Riemannschen Raumes.

Die Konstruktion des oskulierenden Rlemannschen Raumes 1st -an sich
eine interessante und wichtige Methode, da mit- Hilfe des oskulierenden Rie-
- mannschen Raumes die Struktur des allgemeinen Raumes lings einer Folge
der Grundelemente einfacher wird, als im allgemeinen Fall. (Vgl. [16], [11],
- [12] und [13].) Als wichtigstes Ergebnis bekommen wir," daf man durch die
Dualisierung die Fundamentaltensoren . des einen Raumes aus denen des
. anderen gewinnen kann. Demnach existiert zwischen dem kontravarianten und
- kovarianten Fall kein prmzzpzeller Unterschzed Diese Ergebnisse haben wir

- in .Satz V.bzw. VI formuliert.
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§ 1. FundamentalgréBen der allgemeinen metrischen Riume.

In diesem -Pragraphen werden wir die Fundamentalbegriffe und die Fun-
damentalgroBen der Geometrie der allgemeinen metrischen Rdume zusammen-
stellen. Die vollstindige Entw1cklung dieser Theorie befmdet sich m den.
Arbeiten [5], [6] und [14].

"Ein allgemeiner metrischer Raum %, ist eine Manmgfaltlgkent von Kova-
rianten oder Kkontravarianten Vektordichten vom Gewicht —p . bzw. +g¢q
— sie sind die Grundelemente des Raumes — fiir die eine Grundfunktion L(x; ¢)-
“existiert. Die Grundfunktion L(x,f), — wo # bzw. # die Komponenten der
Vektordichte - bedeuten — soll in den f positiv homogen von erster Dimen-
sion sein und aufierdem nach ihren- Argumenten mindestens viermal stetig
differenzierbar sein. 4
, Im folgenden bezeichnen wir die Grundelemente des Raumes 3N, falls sie
~ kovariante Vektordichten vom Gewicht —p sind, mit u;, und falls sie kontravariante
Vektordichten vom Gewicht -I- g sind, mit +“. Bei einer Koordinatentransformation
o Xi=X(x), _

_die umkehrbar und eindeufig sein soll, transformieren sich also die Grund-
elemente nach den Transformationsgesetzen : =

(1a)  a=a7 Xy, @by m=—at 0%
‘ ax" : axk

wo x“
d=Det|—= 0

die Substitutiohsdeterminante der Koordxnatentransformétion bedeutet.
Aus der metrischen Grundfunktion kann man den metrischen Grund-
tensor g;. aus den Gleichungen (np=3=1, ng==1) '

. 2(% LZ) . ’ . ‘ : . 32 (% L.’)
) P np np-1 7 : L memt __N< S
(] 2) gh=a du; o ’ (1. 20) gr=0a vt ok
bestimmen, wo~a in ‘den beiden Fallen o _
1 e _ 1 L

(@) a=Detl|a¥|, a¥=

' (b) Q= Detla.,;f[, a;jf

2 qwou;’ 2 0vigvs

bedeutet*). Durch die Forme]n

i gy V1, wenn i=#k,
BB 0= )O wenn ==k,

4) Wir definieren a im kovarianten Fall anders, als E. T. Davigs in '|6] die entspre-
chende GroBe definiert hat. Setzt man im kovarianten Fall a=a-1, dann erhilt man die
. Bezeichnung von E. T. DAVIES Dies kommt auch in der Formel (1.2a) im Vergleich zur Gleichung .
(1.4) von [6] zum Vorschein. Unseére Bezeictinung wird auch von L. Berwarp in seiner
Arbeit [1] fiir den Fall p==1 beniitzt. : : :



174 . A. Moor

kann man in beiden Fillen die rein Kontravarianten bzw. die rein kovarianten .
" Komponenten des metrischen Grundtensors  bestimmen. Mit Hilfe des metri-
~ schen Grundtensors kann man die Tensoren in gewohnlicher Weisé mit kova-
rianten oder kontravarianten Komponenten darstellen.

Bilden wir die Determinante

g = Det|ga|,

so haben wir eine wichtige GrundgroBe des Raumes i, erhaiten. Aus der
Transformationsformel der g, folgt namlich, dab Vg eine Skalarendichte vom
Gewicht --1 ‘ist, ihre Transformationsformel lautet also:

(‘)X‘

(1.3) ir 4= Det| 75

Diese Gleichung zeigt, daf das infialtsmaf’ in 9%, mit Hilfe von Jg definiert
werden kann, allerdings nur in bezug auf eine ausgezeichnete Folge oder
ein Feld der Grundelemente. Ist /g nur vom Orte abhingig, dann existiert
im Raum ein Inhaltsmafi im gewdhnlichen Sinne (vgl. [2], § 1 und [11],
S. 358).

Die Grundfunktion konnen wir mit Hllfe des - metnschen Grundtensors
in der Form:

(1.49)  LP(x,1)=grgiuiy, (1. 4b) L:-’(x,7,~)='0‘flgr1~,-v;"'v-/

darstellen. Aus den Formeln (1.2) kann man sofort feststellen, daff die g.
und somit auch g in den u;, bzw. +* homogen von nullter Dimension sind.
Wir bemerken jetzt, dal mit Ausnahme der Grundfunktion alle tibrigen den
Raum charakterisierenden Grofien. in den u; bzw. +* homogen von nullter
Dimension sind.

Die Komponenten des Emheltsvektors der die Rlchtuno seines Grund-
elementes hat, sind in den beiden Fillen:

- , Vg .1 oL

.92 e X
, i — gL

1.5b : . J — Vg1 S

( 5) [ Ll@_b’ [ Vgl v -

. Wir fiihren die Bezeichnung

L of

@ feolk=gZg

©  fewl=Ltlgd

efn, wo f eine homogene Funktion bedeutet. Offenbar ist die Operation |*
bzw.. || eine tensorielle Operation, die auch.den Homogenititsgrad der Funkti- -
onen nicht dndert. Mit Hilfe dieser Operation 146t sich der Torsionstensor
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durch die Formel

" . . . . 1
(1. 6a) Al = — % gulr, (1.6b) . Ap= "Q’gij”/;
festlegen. Durch Verjiingung erhdlt man aus (1.6) den Torsionsyektor
(1.72) A'=A,"= (log Vo, (1.7b) - A= A" = (log Vg)|:
bzw. ' .
(1.8a) A", = .1—(n~1)p}A (1.8b) "Au" ={1—~(n—1)q} A

Der Torsionstensor ist in seinen ersten beiden Indizes symmetrisch; aus (1.72)
folgt aber, dah er nur im Falle p=0, bzw. ¢=0, oder falls a nur von x'
abhingt, in allen Indizes symmetrisch ist. Bezeichnen wir die Kontraktion mit’
dem Einheitsvektor [, wie gewdhnlich, mit ,0“, so wird

(1.9a) A=A =pl'A, (1.9b) A=Ay = q1 Ay
und nach. (1.6) ‘
(1. 10) A" =0, A"=0

. in-beéideir. Fallen. Ddbei 1st es:offenbdr: alelchgulhg, ob die- lnd;zes oben-oder
unten stehen. o
Die Ubertragungsparameten der Parallelversclnebung sind :

(].lla) . ].1 ]_4 1A+bJ)I[A m[((j]"'_l lh)dm_*_
: + Ku:(ll.- .:)LL_AI.'mn)(l +pAs)]] + [l: /',k] } 71(: .

bzw. ,
(1.11b) 1=y g A (=L ) gt
+ K2 (5 On— A Y 8o+ g0, A) + 16, 1, K]} 7,
- wo |
e\ )
is. Wir setzen voraus, daf der Tensor
(1.12) L HI=0+ALA

vom Range i ist -und daher der zu 1hm reziproke Tensor K. existiert, fiir
‘den also

(1.13) ‘ HiKi=HiK) =0, .

besteht. Das Symbol [i, r, k] driickt aus, dab in (1.1 lAa) und. (1. 11b) noch zwei
weitere Glieder auftreten, wo aber i,r, k zyklisch vertauscht sind und im

letzten Glied noch das Vorzeichen geandert wird. (Vgl. [5] Gleichung (1.7).)
In (1.11) kann man nach der Gleichung (1. 9a) bzw. (1.9b)

(1. 14a) pA"=A.., bzw. - (1.14b) gA,=Au,.
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setzen. Die Hauptkrimmungstensoren siﬁd:

: ~ . oIy . .

(] ]53) Rm,jk =0axk’ B m 1” rrok 'T‘Im jFr I.—[jlkly v
- ’ T - ¢ 0]":,’ ~* *)p

(] 15b) ijk :)th —I ” Fo I.+ mJ r I_Ulk]

wo das Symbol '[jlk] den ganzen vorigen Ausdruck .mit vertauschten Indizes
J und k& bedeutet.

§ 2. Zuordnung der Grundelemente der dualen Riume. .

Es seien %, und %, zwei allgemeine metrische Réiume') mit den Grund-
elementen (x, z) und (x, 2*), wobei (x,2) und (x, z*) entweder eine kovarlante
oder eine kontravariante Vektordichte bedeutet.

Definition. . und R, werden als duale Riume bezeichnet, falls
~eine ein-eindeutige Zuordnung S

2 1 fxiExi’ a¢,’ . 0
( . ) . 1 2 = gpi(x, 2%), 52% | T
" der Grundelemente existiert, fiir die

(2.2) S ga(x, 2) = gi (x, 2°)

besteht, wo g bzw. g,z die entsprechenden Grundtensoren der Raume R, bzw.
ﬁ; bedeuten. Dabei werden die Funktionen «i(x,2*).entsprechend den drei
mdglichen Fillen spezzelle Formen haben, die wir im folgenden angeben
werden.

Der Fall A). Wir nehmen an, daf die Grundelemente von X, kovari--
ante Vektordichten vom Gewicht —p, die von R} hingegen kovariante Vek-
tordichten vom Gewicht ——q sind. Bezeichnen wir die Grundelemente von
R, bzw. R mit uL bzw ui, dann sollen u; und u} durch die Relationen

(2 3) “‘(" (x7 ) P+<1u” == Det lglll

zusammenhangen Wenn noch (2.2) besteht, dann sind %, und ‘)t,l duale.
Raume. Die Re]atlonen (2. 3) sind invariant in bezug auf eine Koordinaten-
transformation, wie das nach (1.1a) und (1. 3) sofort bestatlgt werden kann.
Aus (2. 2) folgt noch sofort, daB

(2.4) g(x, u)=g"(x, u")
besteht. - ' :

5) Die GroBen von My werden wir immer mit einem Stern kennzeichnen.
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* Der Fall B). Die Grundelemente von %, bzw. N seien jetzt kontrava-
riante Vektordichten vom Gewncht g bzw. s. Die Zuordnung (2.1) soll jetzt. -
von der Form: _ :

(2.5) - e (Vgr?(x, ) |
sein. Die Relation (2. 5) ist nach (1. 1b) und (1. 3) wieder koordinateninvariant..
Der Fall C). Das Grundelement u; von %, sei eine kovariante Vektor— .

dichte vom Gewicht —p, das von %} aber eine kontravariante Vektordichte
+*%) vom Gewicht +g¢. Die Relation (2.1) ist in diesem Fall von der Form:.

(2.6) | =g 7)) g (x, vl
Die Umkehrung der Relationen (2.1) ist in diesem Falle durch
@n - r=(EE D) e au

_ angegeben, da nach (2.2) offenbar auch g"‘(x u) =g"*(x, v) folgt. Offen-
- sichtlich sind die Gleichungen (2.6), (2.7) invariant in bezug auf eine Koor-.
dinatentransformation. Das folgt sofort auf Grund der Gleichungen (1. 1)
und (1. 3). :

Die Ubereinstimmung der - Grundelemente und der Grundtensoren be-
stlmmen die Dualitdt; im nachsten § werden wir aber zeigen, daB diese .
Zuordnung nur dann moglich ‘ist, wenn entweder der Torsionsvektor ver-
schwindet, oder die Gewichte der Grundelemente in den Féllen A) und B)
einander gleich sind, wihrend im Falle C) die Gewichte von u; und +* ent-
gegengesetzt gleich sind. In den Fillen A) und B) bedeutet aber die Iden-
_ titit der Gewichte nach (2.2) und (2.3) bzw. nach (2.2) und (2. 5) die Iden-

.. titdt von R, und N;. Nur im Falle C) gibt das eme neue  Moglichkeit.

Bemerkung. Aus (2.2) folgt, daB wenn ein “Tensor. von N, in kova- _
rianten Komponenten mit einem Tensor von 9N, uberemstlmmt diese dann.
auch_ in kontravananten Komponenten iibereinstimmen.

§ 3. Ubereinstimmung der Grundtensoren.

Im vorigen. §-en haben wir die Dualitat der :allgeméinen metrischen
Raume definiert, jetzt wollen wir dle Identitdt von weiteren charaktenstlschen
Grofien bewelsen :

 Der Fall A). Aus (1 4a) folgt nach den Gleichungen «(2.2) und (2 3)
- (3.1) o L(x, u)——L‘(x u)

wo L und L* die entsprechenden Grundfunktlonen der Raume bedeuten Nach

© %) Da kein MiBverstindnis vorhanden sein kann, schreiben wir statt +* nur vi.
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-der zweiten Gleichung von (1. 5a) wird wegen (3.' 1):
‘ I/gl' au; ou;

Aus (2.3) und (2 4) hat man aber .
_a_”a__ . —\o-19 Iog V§ A Py
== V" —="= ;4 (Vg)" ;.

Diese Gleichung kann man nach (1.5a) und (1.7a) in der Form:

=) "(p—q)A L+ ;]

schreiben ; es wird also aus (3. 2), wenn wir die zweite Glelchung von (1 5a)
beachten (in diesem Falle aber fiir die GroBen von R)):

3.4) C T=(p— A1
Aus - den¢ Gleichungen (2. 3), (2. 4) und (3. 1):folgt-aber-aif Grind von (1. :)a)
unmittelbar, daf
~(3. 5) U u)y=1"(x, a*)
besteht. Somit wird nach (3.4) entweder p—g, oder A'=0.

Die Gleichung (3. 3) bekommt also die Form:

3.3) g ”J

| 0 i

(3.6) - G —(/e)""d.

Aus den Gleuchungen (2.2) und (3.6) erhalten wir nach (1. 6a)
Aijk:—’-!-‘ L* Og‘uai':A*“ﬂ,

2Vg"r ou ou

Wie am Schlub des zweiten § bemerkt wurde, ist auber deh trivialen
Fall p=gq eine Dualijtit zwischen Rdume von kovarianten Vektordichten nur
«dann moglich, wenn die Torsionsvektoren verschwinden.

Der Fall B). In diesem Falle konnen wir ganz ahnlich verfahren wie
im Fall A). Nach (2.5) und (1.4b) bekommen wir sofort

3.7 : L(x,v)=L*(x,v")
und aus (2.5) und (1.5b) wird wieder:
3.8) A E(x,v)="I"(x, 1,)

Mit der vorigen Methode erhdlt man auf Grund der zweiten Gleichung
von (1.5b) daB- entweder. ¢ =s, oder A*=0 besteht. Aus (2.2) kann man
auch jetzt unmittelbar -

3.9 A (x, v) = Ajw(X, v ),

@.10) B e 2
herleiten. ‘



.Metrische Dualitdt der:allgemeinen Riume. ) 179

Der Fall C). Beachten wir in diesem Falle noch die Glelchung

(%, g™ (x, )=},
die nach (2. 2) offenbar besteht, so bekommt man aus (2. 7) nach der Iden-
titat (1. 4b) unmittelbar die. Relation:

@E.11) L u)=L'(x,v)
und somit wird aus (2. 6)
(3.12) . L(x, u)==1[(x, v).

, ‘Die Herleitung der Formel fiir —Z—ZT’ ist eiwas léinger.-' Aus der Glei-
chung (2. 6) bekommt man nach (1.5b), (1.6b) und (1.7b):
L — (T8Y™" " [—(p+ ) AL+ 2400+ g1
Nach (1. 9b) bekommt man aus-dieser- Glelchung
@13 S eyria—p A gl

Differenzieren wir .]etzt (3.11) nach %, so wird nach der zweiten Gleichung
“von (1.5b): ", ' '

.y 0L du
n=Vgr TR

 Setzen wir in diese Glelchung den Wert Z—J aus (3.13) ein, sO muﬁwegen

{(2.2) und (3. 12) entweder p=ygq, oder Ai;=0 bestehen. Aus (3 13) wird
jetzt: ' .
- 0u, -y
3.14) | %@;—(V )™ ‘bu A
Nach (2 2) und (3.14) bekommen wir fur die Torsxonstensoren der

Raume
. A= A'a'jl::
es ist namlich:

2 gu“ g»’ ul

Unsere blshencren Resultate konnen wir im folgenden Satz zusammen-
fassen: :

Satz 1. Fiir die Dualitit der allgemeinen metrischen Rdume 3, und
Ry ist notwendig, daff entweder das Gewicht -der Grundelemente bis auf das
Vorzeichen einander gleich sei, oder daf der Torsionsvektor A* verschwinde.
Im Falle A) und B) stimmt das Vorzeichen der Gewichte iiberein,. im Falle C)
ist es aber nach (1. 1) verschieden.

Wir werden im folgenden sehen, dab diese Bedmgungen schon hin-
reichend sind, wenn noch die metrischen Grundtensoren in. entsprechenden
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Grundelementen- iibereinstimmen ; vgl. d'a_zu den Satz V. der eben diese Tat-
sache beweist. Offensichtlich folgt aus dem Satz I, nach (1.7) der

“'Satz L. In den dualisierbaren Rdumen mit p=t=q existiert zmmer ein
Inhaltsmaf im gewdhnlichen Smne

(Im_Falle A) und B) sind die Gew1chte, wie schon. bemerkt wurde,
immer verschieden.)

Die Finslerschen Riume, fiir die A;=0 und L(x,X)>0 besteht smd
_aber nach einem Satze von. A. DE(CKE (vg] [7]) mif den Riemanuschen
" 'Raumen identisch Ist ein allgemeiner Raum mit p=:0 zu einem Finslerraum
dual, dann ist nach Satz I fiir beide Raume A;=0. Somit hat in diesen
Riumen. der metrische Grundtensor die' Form:

G135 . , == Lu(%).

. Dxese Riume sind also im wesentlichen auch Riemannsche Riume: Laﬁt man
~ die Bedingung L(x, u) >0 oder L(x,v) >0 fallen, will man also nur solche

Raume beriicksichtigen, deren Metrik nicht positiv definit ist, wie sie z. B. in~ ~

der Relativitatstheorie benutzt-werden (vgl. etwa [10]), so folgt aus A;=0
nicht, da der Tensor gi. die Form (3.15) hat. Ein Belspxel fiir einen solchen
‘Raum befindet sich in L. BERwWALDs Arbeit [2], Fufinote 39 .auf Seite. 161.-
Vom geometrischen Standpunkt aus ist es zweckmidBig in diesen Ridumen
unsere Betrachtungen auf solche Teilbereiche der Grundelemente beschrinken,
in denen L >0 besteht. Offenbar kann man in diesen Riumen, ebenso wie
in der Relativititstheorie, den ,,Nullkegel“ konstruieren. (Vgl. [10] S. 252—254.)
Die Konstruktion wollen wir aber ]elzt nicht durchfiihfen, da dlese in erster
Reihe ein physikalisches Interesse®hat. v

Das zitierte Beispiel von L. BERWALD kann man leicht auf allgememe
Raume iibertragen. Das beruht auf der Tatsache, daB falls F(x,2,...,2")
eine Funktion bedeutet, die ebenso]che Eigenschaften hat, wie die Grundfunk—'
- tion L(x 11) dann -
' &= Det|fx]| —F"”F

mit N )
C PF 19F
1 PF 1 . |aziazFigzr
fm*—z“ 0292’ Fl——”FDet OFO
gzt b

-ist. Es.sei jetzt F(x,2)=L(x,u), so wird, wenn wir 2= u; setzen (da es
jetzt um eine rein formale Rechnung handelt, kommt die Stellung der Indnzes

- nicht in Betracht):

0°L 'aLl :
V ' ] QU Iu-
(3. 16a) L,f—FDet “‘(j-l:m_iu_m'" .
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Entsprechend ist im kontrévaria_nteh Fall:

: Lo eL el
SN R 60‘61}'0@
@16b) L g Det|EERSLST,
, - 0|
- Es ist also in beiden Fillen G
. ' a=L"1L,
und nach’
@ g=ami, (). g=a
wird '
o akl 1 _ : ) nt1 1.
@B.172) . g=LwIL,  @.1Tb) . g==LTWL,

Ebenso wie in der Cartanschen Geometne ergeben die Grundfunktionen

’ 1 : 1
(@) . L(x u):(u1u7 o )", ) L(x, U):(c‘v' L) .
solche Raume, fiir die A;=0 besteht .wenn nur n ungerade ist. In beiden
Féllen w1rd L, die Form .

| lew(n)L"”"
haben. Man kann im allgemeinen einen Raum 9, mit A‘=0 dadurch charak-
terisieren, -daf_seine Grundfunktion die L()sung der partlellen leferentlal-
gleichung ‘ o
@18 - Ll_cp(x)L‘"‘l'

ist, wo L, durch (3. 16a) bzw. im kontravarlanten Fall durch (3. 16b) ange-
geben ‘ist.

Zum Schiuf dieses Paragraphen bemerken wir, daﬁ in den Fallen A)
und B) aus

fxuy=Fou), fx0)=F& v)
nach (3 6) und- (3. 10) die Idenhtaten ‘
@19 flF=rf B9y Fle=F"lh

folgen, wenn fund f* 2wei GrofBen der- Raume R, und RN, sind. Im Falle C)
“folgt nach 3. 14)

(3 20) - : . . | . f* “I; :ggil.?f”r;
wenn ' ‘ , : :
- Fxv)=fkxu

- besteht... . o
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§ 4. Identitit der Ubertragungsparameter
und der Kriimmungstensoren.

Die Fille A) und B). Aus den Definitionsgleichungen (2.2) der
dualen Riume kann nach einer leichten Rechnung gefolgert werden, daf die
Ubertragungsparameter und die Krimmungstensoren der dualen Rédume in
einander entsprechenden Grundelementen -identisch sind. Aus (2.3) bzw.
(2. 5) folgt namlich:.

4.1a) 1% _(q—p) 2818 og |2, @) 2 2 — (g gy ilogle”

9 x* axt Y ax .
Sind nun f(x, #) und f*(x, u*) zwei Grofien, fiir die die Relation '

| - fo )= (x, ")
besteht, und betrachten wir x, u} als unabhéngige Verdnderlichen, 50 “folgt,
wenn f in den u; bzw. f* in den u} homogen von nullter Dimension ist, daf

4.2) 5 - o of

, ax ax:
besteht. Nach (4. .1a) besteht' ndmlich’ auf Grund der Eulerschen Relation
itber homogene Funktionen :

of oui _
Tou; gx¢

In enisprechender Weise -folgt die Gleichung (4.2) auch im Fall der kontra-
varianten Vektordichte als Grundelement.

Aus den Gleichungen (4.1) und (3.19) folgt nun die Identitit der
.Ubertragungsparameter und der Krummungstensoren :

In dem Falle C), wo es sich also um die Dualitit eines Raumes mif
kovarianter Vektordichte zu einem ‘mit kontravarianter Vektordichte handelt,
werden wir die Identitit der Grundgréfen mit Hilfe der ,oskulierenden
Raume*“ durchfiihren kénnen. In den ndchsten Paragraphen konstruieren wir
deshalb den oskulierenden Raum; wir werden aber keine Einschrankungen iiber
den Torsionsvektor A° machen. Im folgenden werden wir schon die Bedingung -
Ai==0 fallen lassen und somit wieder den allgemeinsten Fall -untersuchen.

. § 5. Der oskulierende Riemannsche Raum.

(a) Riume mit kovarianter Vektordichte als Grundelement. Bevor wir den
oskulierenden .Riemannschen &Raum eines  allgemeinen metrischen Raumes R.
mit kovarianter Vektordichte -als Grundelement konstruieren, werden wir die
Formel des Ubertragungsparameters also (1.11a) etwas umformen. Uber-
schieben wir (1. 1Ta) mit Z;, beachten wir “die Gleichungen (1 9a), (1.12)
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und (1. 14a), so erhalten wir fiir die Ubertragungspara'meter die Formel:

ai n

(5 1) ryk_‘ ik "L'Aumrmol +Aj’ F:zm Ay -r'n*zol)
‘die man noch in der Form

(5 2) P:]l = "ijl~+ Aijm nok + Ajl'm]-jmoé “_Ail.:m Fmaj

schreiben kann, wo fiir F o die’ Relation

I- iok = I ol : AOLMI’moI = l ol pl Amrmol

besteht. (5.2) stimmt dann mit der Glelchung (3.9) (a) von [6], S 246
iiberein.

Nach diesen Vorbereltungen gehen wir zur Konstruktion des oskuherenden.
Riemannschen Raumes iiber’). Es sei eine Folge der Grundelemente

(5.3%) xt=x(t),
(5.3 _ u; == u(f),
die wir Grundfolge nennen wollen, angegeben, wo die auftretenden Funk-
tionen im folgenden immer hinreichend oft stetig differenzierbar seien. Durch
jedes Element von (5.3) legen wir nun_eine Hyperfliche hindurch in der
Weise, daB diese Schar von Hyperflachen einen n-dimensionalen Teilbereich
3 um (5. 3) schlicht bedecke. Dabei betrachten wir -die Hyperflache als den
Ort ihrer Grundelemente. (Vgl. [6] S. 252.)
_ Ist namlich einexHyperfldche in.parametrischer.;Eorm. durch :

xt=x¥(0", 0% ..., 0"
aﬁgegeben, so kann man in jedem ihrer Punkte die Grofen
(’r:_l,...,{—fl,i+1,...,lz)
’ k=1,2,...,n—1 :

bestimmen. Die p;(0) bilden eine kovariante Vektordichte vom Gewicht: —1..
Diejenigen (xi, u;), fiir die das Verhéltnis der «; mit dem der p; iibereinstimmt,
werden wir als das dem (x;, p;) zugeordnete Grundelement bézeichnen. Somit
erhalten wir unsere Hyperfliche in der Form:

pi(0) = (—1)* DEt

x"—‘x"'(o' o’ .., 0", w=o(X)u(o’, 0‘“’ ., 67,

Nach_ unserer vorigen Konstruktion haben wir erreicht, . daf .in 3 zu
]edem Punkt x* eindeutig ein Grundelement u;(x). zugeordnet ist, nimlich .
dasjenige Grundelement, das von der durch den Punkt x' hindurchgehende
Hyperfliche unserer Schar bestimmt wird. In den Punkten der Kurve (5.3%)
sind diese Grundelemente nach der Konstruktion offenbar ‘eben die durch
(5. 3**) angegebenen u;. Offenbar gilt” fiir 'die in den Punkten der Kurve

. 7) Die oskuherenden Riemannschen Riume sind in Speznalfallen in den Arbeiten [13}
und {16] untersucht worden. In [13] ist p =1 bzw. in [16] ¢ =0.
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(5- 3% aeﬁnierten (5. 3*%)
ut) =ui(x(®)).

" Fiihren wir jetzt die ut(x) in den metrlschen Grundtensor ein,” so be-’
kommen wir- einen eindeutig bestimmten. Tensor

(5.4 7 (X) =g (X, p(x)) = gan(x, u(x)),
der allein von den x' abhdngig ist, also -einen Riemannschen Raum darstellt.
Diesen Raum’ wollen wir den oskullerenden Rlemannschen Raum in B
- bezeichnen.
- Wir wollen jetzt eine Annahme iiber unsere Schar von Hyperﬂachen
machen. Wir wihlen einen Punkt X' aus 9B, und einen Punkt x(f) aus (5.3%
-so, daB

(5.5) L ¥—x()<s (& fesh)

bestehe wo ¢ eine beheblg vorgegebene GroBe ist. Der Einheitsvektor, der
die Richtung von u;(x) hat, ist /;(x). Unsere Annahme lautet nun:

F). Der Vektor I(x) soll im oskulierenden Riemannschen Raum in den
beiden Punkten X' und x'(t) parallel sein, wenn Groﬁen hoherer als erster
Ordnung in ¢ vernachldssigt werden. -

Die anschauliche Bedeutung dieser Annahme betreffs des Vektors 7;(x)
ist die folgende: liegen die Mittelpunkte x* der Grundelemente u;(x) in einer
schmalen Umgebung von (5.3*), so sind die zu diesen Grundelementen.
gehorigen Einheitsvektoren im oskuliereniden- Riemannschen Raum in erster

* Anniherung parallel.

Wir geben jetzt die analytlsche Formulierung unsérer Annahme. Wnr

legen durch die Punkte X' und x‘(¢#) die Kurve

: x‘—x‘(t)—l—o(xl—xl(t))
(5. 6) _ 0=o=1. (t fest)
Offenbar besteht fiir die Punkte von (5.6) die Unglelchung (5.5). Nach
unserer Bedmgung soll /; langs (5.6) .in dem durch (5. 4) bestlmmten Rie-
" mannschen Raum parallel sein. Das ergibt die Glelchung

fali @ dx:
(’(W FL’\ ” "d“‘_‘o_ —0,

@ : ' .
wo I7%(x) die aus ‘den v, gebildeten Chnstoffelklammem bedeuten. In Hm—

sicht auf (5. 6) bekommt man

ax*

© E ) ’ ' o,
(,? _, I sollen in (5.7) alle langs der Kurve (5. 6) gebil-

BT " | (013._(0?;",,"1";)(:?’-‘..—&"(1‘)):0.

Die Grofien [,
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det werden Verwenden wir jetzt den Mlttelwertsatz der Dxfferentialrechnungﬂ)
(o)
auf die Grofien Im, oax und 77, und vernachlas51gen wir die Glieder in ¢

: hoherer Ordnung, so bekommen wir eine Gleichung von der -Form (5.7), in
der. aber die genannten GroBen lings x(t) (¢ fest) zu - bilden sind. Wegen
der Willkiirlichkeit des Punktes X’ bekommt man aus. (5 7) '

. 0[ (o)
ax, Frml 1/71 - O
Diese Glelchung besteht -also nach unserer Forderung lings - (5. 3*) Die

Glelchung (5.8) konnen wir noch nach der Relatlon (1.5a) in der Form

0 u@ " L ‘ (O) l/gl)

(5 9) ‘ : W:@ Loor fllle,~. (l (')XI lOg

G.8)

L)

angeben Das Glled frus wird im folgenden keine Bedeutung haben da der.

Ausdruck , immer in Relatlonen von der Form
' T au,
Tou, 0x"

auftreten wird, -wo T(x ‘u) in den i; homogen von nullter Dlmensxon ist.
Nach der Eulerschen Relahon iiber homogene Funkhonen ist aber . '

Bllden wir Jetzt die Chrlstoffelklammer aus dem Tensor (5. 4). Es w1rd

o © P ¢ 0l T . U
G.10) . Ta—ryn+-o Vg ( T -+ A o A oxf)
- WO - :

» LY p— (Og” _{___ Ogjl . agﬂ-‘) --
SR = ‘ 2 63("‘ ('?X‘ _0xf

dist.- Dabei haben wir die aus (1. 6a) folgende' Formel

' : N ‘ A17 = 2 g'JH ‘
benutzt Nach (1 9a) ‘und (5 10) wird : .

( ) ) ’I r ) d ¥ ’I r y .
'(5 11) } Fsol ﬁ/eok"*‘ ] (pl A Ou _I_ dl;s _Asl. . g;l] l]) .

8) Aus l,,,(x(o)) wird z. B.:
l,= I,,.(x(t)) 4 G(XI——XI b
wo die Argumente von % sind: ‘ o
x-<t)*n9a(x—v(t)) Co<e<y
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Nach (5 9) und (5. 11) wird:

ou, b - L
o g
Aus der aus (1. 12) folgenden Relation -

A'Ah.ﬂl e ‘:l—- (H:l _()\:{l)
p

/:oo+ _—_U ‘—foll,

(5.12) oY

folgt wegen (5.9), (5.11) und (5. 12) nach 'Uberschiebung mit A™:
. n Ou”l L . m mn ) .
(6.13) AL pl =T [Ai Vior— (H.- ~dr>ymooJ-

Wir bemerken jetzt, dafi man im Falle p=0 (5 12) unmittelbar in d1e
‘Glelchung (5. 11) einsetzen kann, was ‘wegen (5. 2) :

. (0)
- (5 14) . . Fsol — L :ul;

. ergibt. : '
Diese Gleichung werden wir aber auch im allgememen Fall, also fur,
14 #O herlelten Uberschleben wir die Gleichung (5, 13) mit
. Ks (()z_l_plLA ),

so wird man nach (1.13) und nach der Relation
(5. 15) - ’ K =1,

~ (vgl. etwa [5] S. 296; nach (1.12) und (1:13) kann man aber die - Relatlon
(5. 15) sofort verlflzxeren) die Gleichung .

1 .
A /L)l . m )m moo l
o =0 011

n aum _
_OXL Vgl)
erhalten, wo [---] solche Glieder bedeutet, die im folgenden ausfallen werden.’

" Nach (5.9) und (5. 11) wird die Gleichung.

s Ol

S AL L r Oul - r Ollr. ¢
14.1‘/ Oxk _Alj (V? /eol +pl)A xS Asl (’)xt [)

-(5.16')’-, A ;K

bestehen. Setzen wir in diese. Gleichung die Werte aus (5. 12) und (5. 16)
-ein, so erhalten wir nach einigen leichten Umformungen

A‘*a”;; Loaire.

o 0 x* Vg? ‘

Setzen wir diese Werte in (5 10) ein, so erhalten wir unmlttelbar dxe wich- .
tige Relation :

G.17) - ' f,,-,;(x) = It (x, u),
die ldngs der Grundelementfolge (5. 3) besteht. :
Wir konnen diese Resultate im folgenden- Satz zusammenfassen :
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Satz Ill. Ldngs der Folge von Grundelementen stimmen die Uber-
tragungsparameter des oskulierenden . Riemannschen Raumes und die des allge-
~meinen Raumes Jt, iiberein. '

: Bemerkung. Aus (5.17) folgt. sofort die Gleichung (5. 14); aber es
gilt auch, daB aus (5.14) nach (5.9) und (5. 10) die - Relation (5. 17) folgt.

Nach (5.17) konnen wir die Glelchung (5.9) in der Form
_ du,
‘(o. 18) 3 V = — i
schreiben. Mit Hilfe dieser Glelchung konnen wir sofort den folgenden Satz
beweisen : :

Satz IV. 'Ldngs der Folge von Grzmdelemenie’n stimmt .das invariante
Differential eines Vektors & im oskulierenden Raum mit dem des Vektors & im
allgemeinen Raum X, uberem

Beweis. Das invariante leferentlal von & im oskulxerenden R1emann-

schen_ Raum lautet : . -
. ) (O (O N

(5.19) , DE —d& + Il Eax".
Langs (5. 3) ist nun ‘

' : ous
Fra
. somit wird nach (5 10) und (5. 18)

. @ -

(5. 20) o Thdx = Cldu - Tdy
wo . , :

a’x’ =du,,

Pt g i i Js V Js
. A[VL'k:Iji IJ_AL' -I-jsqk:-lybk_Ai Fsul, C g A

“bedeuten. Setzen wir nun (5.20) in (5. 19) ein, so bekommen wir eben den

- Satz IV. (Vgl. etwa [6] S. 246.)

: Wir wollen noch darauf hinweisen, daf man mit Hilfe des oskulieren-
den Riemannschen Raumes das invariante Differential in diesen allgemeinen
Raumen ebenso einfiihren konnte, wie im Finslerschen, Raum das von Herrn
- 0. VARGA  durchgefiihrt wurde (vgl [16] F[ir den Cartanschen Raum vgl.
[13D). . 3 -

(b) Riume mit kontravarianter Vektordichte als Grundelement. In diesen
Raumen konnen wir bei der Konstruktion des oskulierenden Riemannschen
Raumes in ungefihr analoger Weise verfahren wie vorhér, doch werden wir

~der Vollstandigkeit halber die Konstruktion auch jetzt durchfiihren; wir wol- -
len aber in_erster Linie diejenigen Uberlegungen - ausfiihren, die -von dem -
vorigen Fall abweichen. o
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(1. 11b) konnen wir in die Form:

(5 21) : F,'j}; = ‘}’111 A,Jm['om;. ——‘A',Am I’,,,,,, —l— A,;,m om} ~ A
“umwandeln.
Es sei nun eine stetige Folge
(5. 22%) : xi = xi(t),
(6.22* , v =1i(f)

der Grindelemente, die Grundfolge angegeben. Durch jedes Element von
(5. 22) legen wir eine Kurve hindurch, und wir betten die Kurven in eine
Kurvenschar ein, so dafi diese Kurvenschar einen - n-dimensionalen Punkt-
bereich B um (5. 22%) schlicht bedecke. ' :
Gegeniiber der vorigen Konstruktion beniitzen wir hier statt der Hyper--
ﬂachenschar Kurvenscharen, da zu den Punkten emer Kutve-
Xt=xi(s) -
ein kontravarianter Vektor in naturllcher Weise zugeordnet lst namlich der
»‘Tangentenvektor B
i dxl
, - ds’
_ Der Tangentenvektor in einem Punkt bestlmmt aber emdeutlg im Raum N,
'4 ein Grundelement o .

=y (s)
wo das Verhaltms der v mit dem- der x'* tibereinstimmt. Somit erhalten wir '.
fiir eine Kurve unserer Kurvenschar die Darstellung

xt=xi(s), = U=1/(s)

" Zu jedem Punkt x' in 9 ist also eine kontravariante Vektordlchte vi(x) |
zugeordnet, niamlich dasjenige Grundelement, das durch diejenige Kurve
bestimmt wird, die eben durch x* passiert. Lings (5. 22%) gilt natiirlich

H(O) =i (x(®)). |
Fiihren wir jetzt die z,’(x) in den metrischen Grundtensor em S0 erhalten
wir den Tensor :

(5. 23) - ym(x)Egm(x v(x)),
der den metrischen Grundtensor des oskulierenden Riemannschen Raumes
darstellt.

Wir stellen auch in diesem Falle iiber den Einheitsvektor li(x), der die
Richtung seines Stiitzelementes hat, die folgende Forderung: .
' F’) Wenn %' aus B und xi(t) aus (5.22*%) gewdhlte Punkte sind, fiir die

| X —xi(t)| < & (¢ fest) , :

* besteht, dann soll li(x) im oskulierenden Raum in den beiden Punkien X' und
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xXi(t) parallel” sein, wenn Gripen hoherer als erster Ordnung in & vernach-
lassigt werden Damit haben wir die konstruierte Kurvenschar spezialisiert.

, Aus dieser Bedingung konnen wir leicht die der Gleichung (5. 8) ent-
sprechende Relation . ableiten. (Vgl. [16] ‘insb. die Herleitung der Glelchung
T (2, 18) auf Seite 172.) Es wird:

- - : ’ . 01 ((:)S lll-_._‘
G24) . =0,

das man-nach (1.5b) auch in der Form:

. . ’ v.s ® .
(5 25) g;k :'—Lngrm/l +ﬁ (1

‘- schreiben kann. -
Die Chr:stoffelklammer geblldet aus dem. Tensor (5 23) ist:.

9 9v°
L V——- ( iJs Ox, +A_;l.a _'Ail.'s g ) .

(o)
(5.26) - | 1,,;,— it e X KES

) Aus den Glelchungen (5. 25) und (5 26) erhalten wir in Hm51cht auf (1. 9b)

(Oi+2ql A, )— V~"/oo+qA gf“rfov*

6,\1 :
Uberschleben wir diese Glelchung mit

: - ,(o_,.—zqz‘As),

.80 wird N
2t

. Zbk 1-.V_’"_ngq/oo+qA (7X] gf‘—{—l‘[ ]—{—fobt

Aus (5 25) und (5 26) bekommt man noch wegen

(5. 27)

AsAk r : e (Hln gkr), Hor = lr
nach Vefwendun_g vbn (1. 13)4 o

. YU ] S » ,
(57 28) A»z’((),]—-bx_t'z_LV—_qm [A /ul _(gk'r_Hkr)}’oo:I+lt["']-
Bemerkung. In unseren Betrachtungen konnen .wir immer q:}:O
“bedingen, da der Fall ¢ =0 in [16] schon vollstindig entwickelt ist.
‘Wir konnen jetzt die in (5.26) auftretenden Grofien
‘ v
) AfjsW

‘berechnen. Nach (5.25), (5.27) und (5.28) wird .

G.29) | Aijs%;—LVTA,,logh
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- (Bei der Herleitung von (5.29) haben wir.noch zur Vergleichung
(5. 30) | A" Lo |

aus (1.11b) berechnet) Nach (5.26) und (5. 29) folgt in Hinsicht auf (5. 2])
daf} langs der Grundelementfolge (5.22)

(5 3]) V ) ) i : lwijk (X) == IWI;I:(X:‘ 1")
.besteht. Damit haben wir die Giiltigkeit des Satzes [Il auch im Fall de'r,

kontravarianten Vektordichte bewiesen.
Beniitzen wir nun die langs (5. 22%) giiltige Relation

0 = ¥,

"so kann man auch in diesem Falle den Satz IV beweisen. Aus (5 19) und
(5. 26) bekommt man. namlich

. (9
(5.32) 0 Dhdxr = qud@ 4 dxt,
WO . . )

. ’ I “IWt] +AII¢I‘:<-) Clic_“ IQ

ik i : LV-—
bedeuten. Setzen wir (5.32) in (5.19) ein, so bekommen wir eben den Satz
IV im kontravarianten Fall. (Vgl. [6] S. 246.)

".Bemerkung. Offenbar ist . '
Lo=L gl AL,
und wegen Al,=0 konnen wir noch fiir 17, die Relation
Y= Ih— Al

aufschreiben, dié¢ mit der von E T DavigEs angegebenen Formel vollstandw
iibereinstimmt. (Vgl [6] Gleichung (3.9b).)

*
* *

Geometrische Bedeutung der Annahme beziiglich 1'(x). Die Annahme, - -
die wir fiir den Einheitsvektor /'(x) in beiden Fillen vorausgesetzt haben, ist
analytisch durch (5.8) bzw. (5.24) angegeben. Uberschieben wir diese
Gleichungen mit dx*, so folgt, dafl ldngs der Grundfolgen das invariante
Differential des Vektors (x) im oskulierénden Riemannschen Raum ver-
schwindet. Nach dem Satz IV verschwindet aber dann das invariante Diffe-
rential von l(x, u) langs der Grundfolge der Grundelemente auch im allge-
meinen metrischen Raum 9N,. : 3

Das bedeutet aber, dafi die einzelnen Hyperfidchen bzw die einzelnen
Kurven der Scharen, mit denen wir den oskulierenden Riemannschen Raum
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konstruiert haben, mindestens langs der Grundfolgen yautoparallel“ sein
 sollen. :
Autoparaliele Hyperflachen, oder Hyperebenen existieren nicht in jedem
~ ... Fiir die Existenz solcher Gebilde hatL BERWALD im, Cartanschen Raum
{p=1) die Bedingung :

(5. 33) * Ru=0

abgeleitet (vgl. [1] S 235— 236) Autoparallele Kurven ex1st1eren dagegen
. immer in den Raumen N, und sind-im-Falle :

Awi =0

mit den Extremalkurven 1dentxsch (vgl. [6] S..257—258 und [9] S. 77)

_ Wir betonen aber, dafl die einzelnen Elemente der Scharen nicht in
allen ihren Punkten geoditisch zu sein brauchen. Vgl. noch dazu die FuB-
note™) in [16] auf Seite 170.-Nach dieser Bemerkung geniigt also zur Mog-
‘lichkeit der Konstruktion, daf. die Flichen- bzw. Kurvenschar lings der
Grundfolge eine Schar der autoparallelen Flachen bzw. Kurven oskuliere, d. h.
dall ‘unsere Konstruktxon auch in Rdumen giiltig ist, fiir d1e (5 33) mcht
_ besteht :

§ 6. I1dentitiit der Ubertragungsparameter und Krummungstensbren
~der dualen Riume mit kontravarianter bzw. kovarianter
Vektordlchten als Grundelement

Bedeute jetzt wieder i), einen allgememen metrischen .Raum mit kontra-
varianter Vektordichte, 9, einen solchen mit kovarianter. Vektordichte als
Grundelement. Nach den Resultaten von § 3 muf. also fiir die Dualisier-

barkeit von N, und N, entweder der Torsionsvektor A verschwinden, oder

= 'q sein. Die Grundelemente von N, und. . sind einander -durch (2. 6)
und (2.7) zugeordnet.. . :
Es sei eine Grundfolge

_ X' =xi(f), v =it _
in N} angegeben, zu der wir mit der im vorigen Paragraphen angegebenen
Methode den oskulierenden ‘Riemannschen Raum konstruieren. In emem Teil-
bereich 3 von ?)I.I ist dann

(6.1 ) : . S vt=v(X) '
und nach (2.6) wird auch S
6.1) o ;= ui(x)

~ bestehen. Aus (2.2) hat man noch die Identitat:
6.2) gi(x, u(x))—g,,(x v(x)) = (),
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wo 7;(x) den metrischen Fundamentaltensor des oskulierenden Riemannschen
Raumes _bezeichnet; (6.2) bedeutet nach (6. 1), daB zu dem oskulierenden
Raum von R,; automatisch ein Riemannscher Raum zugeordnet ist, von- dem
wir sogleich nachweisen, dafl er ein oskulierender . Riemannscher Raum von
N, ist. Dazu miiflen wir nun zeigen, daf die Forderung F), die sich analy-
tisch durch (5. 8). ausdriickt, fiir 3%, giiltig ist.

Zufolge der Gleichungen (2.6), (3.12), (6.1%) und (5 24) wird aber der
“zu (6.1) gehorige Einheitsvektor /;(x) die Gleichungen (5.8) ldngs der
- Grundfolge befriedigen. Daraus folgt nun, daB der zuvor erwahnte Riemann-
sche Raum ein oskulierender Raum ist.

Die Gleichungen (5.8) und) (5.24) sind iibrigens tensorielle Relationen,:
und sie driicken aus, dafl das kovariante Differential des Vektors '/* im osku-
lierenden Riemannschen Raum-lings der Grundfolge verschwindet.

Nach Satz Ill ist aber lings der Grundfolge

" (6.3) - Pn(x) = T, v(x»—zuk(x u(x)),

wo wir mit. Y, den Ubertragungsparameter von R, bezenchnet haben Zu
jedem dualen Elementenpaar

(x, z:), (x,u) -

der Rdume M} und 9. kann man aber einen gemeinsamen oskulierenden -
Riemannschen Raum konstruieren. Dann folgt aus (6. 3)

6.4) S il v =Lux, u);

diese Gleichung driickt aus, daf die Ubertragungsparamétér ‘der dualen W,
und ‘R, iibereinstimmen.
Aus (6 2) und (6. 4) folgt selbstverstandhch auch

(6. 5) - F(x, o) = L7, ). ,
Wir bewelsen jetzt die ldentitdt der Kriimmungstensoren (1. 15a). und. (1 15b).
Nach (3. 20) und (6.5) folgt:

ol i.jk

. ad [vi‘jk ol i'jk aque

axm + Out 0 Xx™

(6. 6) i*jk“,-ru‘rm: gr'f T‘] “ Fo my
‘dabei haben wir xi, v als unabhingige Verinderlichen betrachtet, wihrend
u; von x,v* gemaB (2. 6) abhangt Die Glexchung (2 6) schreiben w1r nun in

der Form:

6.7 . w=(/g* )_M g,‘,(x, u) v’
Wegen (3 12) und :

ij' S =2(02) AT —2p(lf )"*“IA



Metrische Dualitit der allgemeinen Riume. ' 103

bekommt man aus (6. 7) _
- au l Og)t r

= U m X Ll L r— )
0x1n 4 ( 7)+ Vgll o x™
" wo (X, u, o) eine Funktion der Argumente x, u, v -bedeutet, dne man aus.
(6.7) leicht explizit bestimmen konnte, die aber fiir die folgenden unwesent-

lich ist. Setzen wir (6 8) in (6. 6) ein, so wird wegen der Homogemtat null-
ter Dimension der 11 . in den wu, die Relatlon ' - :

oI oy F (ag,t o )
. ! [ m ro m
(6 9) . 0 xﬂl N H l a x?)l “ xﬂt ) ] t

bestehen Nach (5. 1) wird wegen der Identxtat (1 9a)

' (6.8)

Oi:,t l _l otm Ftom 2p1tA me

Setzen wir das in (6.9) em S0 w1rd in Hinsicht auf die Homogemtat von -
nuliter Dimension der 157 in den Uyt
OFI k Ril *, _ _0-[1:].1. .
. (6 10) axm X l i kHrro m = axm
Aus den . Relationen (6. 5) und (6. 10) folgl dze Identitiit der I(rummungstensoren
der dualen Rdume.

_ Aus der Relation (6.5) kann noch eine weltere fundamentale Identltat )
bew1esen werden Wenn fiir ein Vektorpaar &, & die Gleichung '

: Ex, v)==E(x, 1)
.. in den emander entsprechenden Elementen besteht dann folgt
@1y T EE k= gl
Der Bewels kann analog zur Rechnung gefiihrt werden, die aus (6. 5) zur
Gleichung (6. 10) filhrte. Statt I3, steht hier &.

Wir_konnen also unsere Resultate iiber die dualen Raume im folgenden,
Satz zusammenfassen : '

IWT‘}A “é["fin.u . ‘

Satz V. Die- Grundgroﬁen der dualen allgememen Raume stimmen in
‘den einander entsprechenden Grundelementen iiberein. Die. Grundoperationen®). -
ergeben -aus iibereinstimmenden Grifien wieder iibereinstimmende Grifen.
' Sind die Rdume R, und N, dualisierbar, dann ist entweder P=q oder
es verschwindet identisch der Torsionsvektor A:. _

Aus. dem letzten Teil dieses Satzes folgt, daf die Ridume R, mit kovarian-
ter Vektordichte als Grundelement mit den Rédumen R .m'it kontravarianter

9) Die Grundoperationen sind: 1) das invariante Differential, 2) die kovariante Ablei-

tung und 3)-die Operation | bzw. [[;. Die Indentitét der invarianten Differentiale der

. dualen, Ridume folgt unmittelbar aus Satz IV, da die oskulierenden Rdume -von .9, und
N* gemeinsam sind. :
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Vektordichte als Grundelement gleichberechigt sind, falls das Gewicht der
‘Grundelemente die Relation p =g befriedigt.") '

Zum Schluf bemerken wir noch, daB in den Raumen mit A'=0 ein
“Rauminhalt im gewohnlichen Sinne existiert. Nach (1.7) ist ndmlich g von
u; bzw. unabhangxg, somit ist :

(6. 12) o V= [Vgdx dx:...dx

‘ () _

ein Maf} des Rauminhalts. Ist A’==0, so kann man mit Hnlfe der Formel
(6. 12)-den Rauminhalt erst in bezug auf ein Feld

w;=u;(x), bzw. i ==17(x)
‘berechnen.

§ 7. Die Dualisierung eines allgemeinen Raumes.

In vorigem betrachteten wir immer zwei Raume N und M, die wir als
dilale Raume bezeichneten, falls die metrischen Grundtensoren in einander
entsprechenden Grundelementen iibereinstimmtén. Jetzt wollen wir zeigen, dafl
zu einem Raum N, dessen Grundelemente kontravariante Vektordichten sind,
-immer ein dualer Raum- %, konstruiert werden kann, dessen Grundelemente
kovariante Vektordichten sind. _ v

Bedeutet 9 mit der Grundfunktion }L‘(x,.v;) einen allgemeinen Raum,
und ist das Gewicht der Grundelemente p, so gilt der

Satz VI. Besitzt die 'Gleichuag o

(7. 1) a ui=(g*(x, v)) " gli(x, v/ .
mindestens eine,, in.den u von erster Ordnung homogene Losuna ok == gt (x u),
“so kann zu N ein dualer N, konstruiert werden™)

‘ Bemerkung. Die Gleichung (7.1) ist- mit (2.6) 1dentxsch falls in
. 6) p =g gesetzt wird.

Beweis des Satzes Vl Bestimmt man + aus (7 1) in der Form
o* = v*(x, u) und substituiert man diese Werte in die Grundfunktion L*(x, %), so -
erhdlt man eine Funktion L(x, u) und es wird :

L*(x, v)=L(x, u).
Aus dieser Glelchung erhalt man nach partieller: Ab]e:tung nach + in Hin-

10) Vgl. auch den Satz VL.

1) Die Forderung, da #(x, u) in den u;von erster Ordnung homogen sei, ist keine
einschriankende Bedingung. Ist nidmlich u; = p;(v) ein Gleichungssystem, wo die ¢; homo-
gen von erster Ordnung sind, und existiert die Losunar vk = @ (u), so ist auch P* wegen

©yk(ou) = (e (v)) = VH (P (o0)) = ovh = oy (1)
eine homogene Funktion erster Ordnung.
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sicht auf (7. 1) : _
- . P Lt-z _—0 L2 ——

(7 2) : 01’, - au, g g-m .

Offensn:hthch kann (7.2) nach (1. 5b) in der Form

.3) , N g’“ _ 2Vg*PL’l*"

geschrieben werden. Nun folgt aus (7.2)

* d_ef_l_ 02['*2 L s g* D o _1__(?_5__&_ L Sy U
a”‘"_ J i g "—a ugsl + 2 au 01/] g gr'l)'

(1. 4) o '.;= g "”g,,qu, |
. mit o ' o
: als_— oﬂLl
2 9wdu,’

Nach der 'Multiplikationsrége] der Determmanten Wirgi: aus (7.4)
(7 5) Lo . . ) q* ___Qg:—‘2np+2
Nach (1. 2b) (7 4) und (7 5) erhidlt man

[I

g:l' == lajsgngsk
"Nach Uberschiebung dieser Glexchung mit g*ig* wird in Hinsicht auf (1 2a)

(1.6) . g (x, 1) =g (x, ).
~ Betrachten wir also L(x, u) fiir die Grundfunkhon eines Raumes .,
«dann drtickt die Relatxon (7 6) aus, dafl ‘)ln und Ny duale Raume sind,
w. z.'b. w.
SchiieBlich bemerken wir noch, . daf der Satz VI umkehrbar ist, d. h.
es laft sich mit der angegebenen Methode auch zu einem N, ein dualer Y,
konstruieren. .
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