## On primitive permutation groups.

By NOBORU ITO in Nagoya (Japan).

1. Let $G$ be a (not necessarily finite) group. Let $U$ be a subgroup of $G$ such that the largest normal subgroup $U$ of $G$ contained in $U$ is equal to the identity subgroup. Then $G$ is faithfully represented as a group of permutations of the left (or right) residue classes by $U$ in $G$. In these circumstances we call a pair $\{G, U\}$ a permutation group.

A permutation group $\{G, U\}$ is called primitive, when $U$ is a maximal subgroup of $G$, and further $\{G, U\}$ is called simply transitive, when there exists no element $g$ of $G$ such that $G=U+U g U$. A permutation group, which is not simply transitive, is called doubly transitive."

A doubly transitive permutation group $\{G, U\}$ is primitive. In fact, let $U$ be not maximal in $G$ and let $T$ be a proper subgroup of $G$ containing $U$ properly. Then $T$ and $T g T$ cannot be disjoint with each other and therefore $T=T g T$. This shows that $T=G$, which is a contradiction.

Let $\{G, U\}$ be doubly transitive: $G=U+U g U$. Put $V=U \cap g U g^{-1}$. Then the pair $\{U, V\}$ is a permutation group. In fact, let $\underline{V}$ be the largest normal subgroup of $U$ contained in $V$. Now any element of $G$ not contained in $U$ has the form $u_{1} g u_{2}$, where $u_{1}$ and $u_{2}$ are elements of $U$. Therefore since $u_{1} g u_{2} U u_{2}^{-1} g^{-1} u_{1}^{-1}=u_{1} g U g^{-1} u_{1}^{-1}$, any conjugate subgroup $\neq U$ of $U$ is of the form $u g U g^{-1} u^{-1}$. Therefore $V$ is contained in any conjugate subgroup of $U$ and consequently $\underline{V} \subseteq \underline{U}==1$.

Let $\{G, U\}$ be a permutation group and let $A$ be a subgroup of $G$ such that $G=U A$. Then we call $A$ a transitive subgroup. If $A$ is abelian, then necessarily $A \cap U=1$. In fact, since $\overparen{G}=U A$, any conjugate subgroup of $U$ is of the form $a U a^{-1}$, where $a$ is an element of $A$. And since $A$ is abelian, $A \cap U$ is contained in the intersection $\underline{U}$ of all the conjugate subgroups of $U$. Therefore $A \cap U \subseteq \underline{U}=1$.

Remark. Let $\{G, U\}$ be a primitive permutation group. Then we omit the case $U=1$ from our considerations. In that case $G$ is of prime order. Now if $A$ is of order 2 , then $U$ is normal in $G$, and therefore $U=\underline{U}=1$.
2. From now on we assume that the order of $G$ is finite. Now the structure of primitive permutation groups is very complicated, because most primitive permutation groups are insoluble and we know less, at present, of
the structure of such groups. Such a complicacy does not diminish even if we restrict our considerations to such primitive permutation groups that contain abelian transitive subgroups. Let $\{G, U\}$ be a primitive permutation group with an abelian transitive subgroup $A$. Now, in 1900, Burnside [1] proved the following celebrated theorem: If $A$ is of prime order, then either $G$ is metacyclic or $\{G, U\}$ is doubly transitive. This result has been generalized by Burnside, Schur and Wielandt. The best is due to Wielandt [1]: If at least one Sylow subgroup $\neq 1$ of $A$ is cyclic and $A$ is not of prime order, then $\{G, U\}$ is doubly transitive. Further Kochendörffer [1] and D. Manning [1] obtained (at about the same time and by quite different methods) the following result: If $A$ is of type ( $p^{a}, p^{b}$ ), where $p$ is a prime and $a$ and $b$ are distinct natural numbers, then $\{G, U\}$ is doubly transitive. Now the results of these authors show: If there exists a primitive permutation group $\{G, U\}$ containing an abelian transitive subgroup $A$ of a suitable type, then such a $\{G, U\}$. must be necessarily doubly transitive. Therefore the following question may be natural: To what type of an abelian group $A^{\prime}$, does there exist a primitive permutation group $\{G, U\}$ containing an abelian transitive subgroup $A$ isomorphic to $A^{\prime}$ ? In this direction Ritt [1] proved the following theorem: If $A^{\prime}$ is cyclic of not prime order and if there exists a soluble primitive permutation group $\{G, U\}$ containing an abelian transitive subgroup $A$ isomorphic: to $A^{\prime}$, then $A^{\prime}$ must be of order 4 . Further in this case actually there exists one and only one permutation group of this kind, that is, the symmetric group $\mathbb{\Xi}_{4}=\{G, U\}$ of degree 4 , where, for instance, $U=\{(123),(12)\}$ and $A=\{(1234)\}$ :

The present paper is a contribution in the same direction. Thereby the result of Ritt is not assumed but proved as a special case of our results. Now in our considerations the solubility of the group $G$ is not assumed. (In fact, if we assume solubility, the contents may be vacant in essential except the result of Ritt.) But to avoid the occurence of incomputably deep difficulties we assume, a priori, the following condition on $G$ :
(S) $G$ contains an abelian normal subgroup $N \neq 1$.

Now since $U$ is maximal in $G$ and since $U=1$, we have $G=U \cdot N$. Therefore, as we remarked above, we have $U \cap N=1$. These two equalities show us that $N$ is the only one abelian normal subgroup $\neq 1$ of $G$. In fact, we have two equalities $G=U M$ and $U \cap M=1$ for every abelian normal subgroup. $M(\neq 1)$ of $G$. Then every abelian normal subgroup $\neq 1$ of $G$ is minimal. To see this, let $M$ and $M^{\prime}$ be two abelian normal subgroups $\neq 1$ of $G$ such that $M$ contains $M^{\prime}$ properly. Then we have from the first equality the following factorization of $M: M=M \cap U \cdot M^{\prime}$. Then since $M \neq M^{\prime}, M \cap U \neq 1$. This contradicts the second equality. Now if there exist two distinct abelian minimal normal subgroups of $G$, then their join, as the direct product of them, is not a minimal
one. This is a contradiction. In particular, $N$ is of type $(p, \ldots, p)$, where $p$ is. a prime. Let $A$ be any abelian transitive subgroup of $\{G, U\}$. Then $G=U A$. and $U \cap A=1$. Therefore the orders of $N$ and $A$ are the same.
3. Let $A^{\prime}$ be an abelian group of order $p^{n}$ and of type $(p, \ldots, p) \neq(2)$. We verify the existence of primitive permutation groups with abelian transitive subgroups isomorphic to $A^{\prime}$. This may be done without much difficulty. In fact, let $U$ be an irreducible matric group with coefficients in the prime field of characteristic $p$ and let $A$ be its representation module. Let $G$ be the splitting extension of $A$ by $U$ in the sense of Schreier. (This can be constructed as a subgroup of the holomorph of $A$.) Then the permutation group $\{G, U\}$ is a required one. In fact, $\underline{U}=1$, because an element of $\underline{U}$ must be commutative with all the elements of $A$ and therefore it must be a unit matrix, and further $U$ is maximal in $G$, because, otherwise, $U$ must be reducible.

Example 1. $U$ may be the general linear group $G L(n, p)$.
Example 2. We can choose $U$ as a soluble group. In fact, $G L(n, p)$. contains an irreducible cyclic subgroup $Z=\{X\}$ of order $p^{n}-1$. To see this let us consider a generator $X$ of the multiplicative group of the finite field of $p^{n}$ elements. Since the finite field of $p^{n}$ elements may be considered as the $n$-dimensional vector space over the prime field, $X$ satisfies an irreducible equation of degree $n$ over the prime field: $X^{n}-c_{1} X^{n-1}-\cdots-c_{n}=0$, where $c^{\prime}$ 's are elements of the prime field. Then the matrix $X=\binom{c_{1}, c_{2}, \ldots, c_{n-1}, c_{n}}{E}$. where $E$ is the unit matrix of degree $n-1$ and 0 is the null matrix of type $(n-1,1)$, is of order $p^{n}-1$ and of degree $n$. Further all the characteristic roots of $X$ are algebraically conjugate, because of the irreducibility of the equation. Now if $Z \doteq\{X\}$ is reducible, then some power of $X \neq 1$ possesses the characteristic value 1 . Therefore $Z=\{X\}$ must be irreducible.
4. Let $A^{\prime}$ be an abelian group which is not of type $(p, \ldots, p)$. Then, as it can be understood from the result of RITT cited above, we have not always a primitive permutation group satisfying the condition (S) with an abelian transitive subgroup isomorphic to $A^{\prime}$.

Now let $\{G, U\}$ be a primitive permutation group with an abelian transitive subgroup $A$ isomorphic to $A^{\prime}$. Then $G$ admits the following factorization: $G=U A$ and $U \cap A=1$. Further by the assumption (S) $G$ also admits the following factorization: $G=U N$ and $U \cap N=1$, where $N$ is the only one abelian normal subgroup of $G$. Put $P=A N$. Then $P$ admits the factorizations $P=U_{p} A, U_{p} \cap A=1$ where $U_{p}$ is an abelian $p$-subgroup of $U$ and also, since $U \cap N=1$ and $A$ and $N$ are of the same order, $P=U_{1} N$, $U_{p} \cap N=1$. Clearly the centralizers of $A$ and $N$ in. $P$ coincide with $A$ and
$N$ themselves respectively. Now a $p$-group with such a factorization. cannot be too simple in its structure. In fact, we prove the following

Lemma 1. Let $P$ be a p-group and let $P$ admit the following factorizations $: P=N A$ and $P=U A, U \cap A=1$ and $P=U N, U \cap N=1$, where $A$ is abelian, not of type $(p, \ldots, p), N$ is abelian of type $(p, \ldots, p)$, normal and coincides with its own centralizer, and $U$ is abelian. Then we have
(i) $P$ is irregular in the sense of Hall,
(ii) Let $p^{w}$ be the order of the subgroup of $A$ consisting of all the elements of $A$ with order not greater than $p$. Then $w \geqq p-1$.

Remark. Under this condition the centralizer of $A$ necessarily coincides with $A$. In fact, otherwise, since $P=A U$, there exists an element $u_{0}(\neq 1)$ such that $u_{0}$ is commutative with every element of $A$. Now since $N \subseteq A U$, every element of $N$ can be written in the form of a product $a u$, where $a$ and $u$ belong to $A$ and $U$ respectively. Therefore, since $U$ is abelian, $u_{0}$ is commutative with every element of $N$.

Proof. We prove these assertions by an induction argument with respect to the order of $P$ :
(i) Let $Z_{1}$ and $Z_{2}$ be the centre and the second centre of $P$. Put $U_{2}=U \cap Z_{2}$. Let us consider the subgroup $U_{2} Z_{1}$. Naturally $U_{2} Z_{1}$ is normal in $P$. Let us consider the factor group $P / U_{2} Z_{1}$ and its factorizations: $P / U_{2} Z_{1}=U \cdot U_{2} Z_{1} / U_{2} Z_{1} \cdot N \cdot U_{2} Z_{1} / U_{2} Z_{1}$ and $P / U_{2} Z_{1}=U \cdot U_{2} Z_{1} / U_{2} Z_{1} \cdot A U_{2} Z_{1} / U_{2} Z_{1}$. We show that $P / U_{2} Z_{1}$ satisfies the same conditions as $P$ except the fact that $A U_{2} Z_{1} / U_{2} Z_{1}$ is not of type $(p, \ldots, p)$. First it is clear that $U \cdot U_{2} Z_{1}=U Z_{1}$, $N \cdot U_{2} Z_{1}=U_{2} N, A \cdot U_{2} Z_{1}=U_{2} A$ and therefore $U U_{2} Z_{1} \cap N U_{2} Z_{1}=U_{2} Z_{1}$, $A U_{2} Z_{1} \cap U U_{2} Z_{1}=U_{2} Z_{1}$. Secondly if $N \cdot U_{2} Z_{1} / U_{2} Z_{1}$ is distinct from its own centralizer, then there exists an element $x$ of $U-U_{2}$ such that $[x, N] \cong U_{2} Z_{1}$. Since $N$ is normal, $[x, N] \subseteq N$ and therefore $[x, N] \subseteq U_{2} Z_{1} \cap N=Z_{1}$ and further since $U$ is abelian, we see that $x$ belongs to $Z_{2}$. Thus $x$ belongs to $U_{2}$, which is a contradiction.

Now if $A U_{2} Z_{1} / U_{2} Z_{1}$ is not of type $(p, \ldots, p)$, then, by the induction hypothesis, we see that $P / U_{2} Z_{1}$ is irregular in the sense of Hall. Then, a fortiori, by the definition of regularity of Hall, $P$ is irregular in the sense of Hall, too. So we may, assume that $A U_{2} Z_{1} / U_{2} Z_{1}$ is of type ( $p, \ldots, p$ ). Now, since $A \cap U_{2} Z_{1}=Z_{1}$, by the second isomorphism theorem, $A U_{12} Z_{1} / U_{2} Z_{1} \cong A / Z_{1}$. Further, since $A \cap N=Z_{1}, U \cong A / Z_{1}$. Therefore $U$ is of type $(p, \ldots, p)$. Hence $P$ can be generated by elements of order $p$. Therefore if $P$ is regular in the sense of Hall, then, by a theorem of Hall, $P$ must be of exponent $p$, that is; all the elements of $P$ except 1 are of order $p$, which contradicts the assumption on $A$. Thus $P$ must be irregular in the sense of Hall [Hall, 1].
(ii) Let us assume $w<p-1$. Then we want to derive a contradiction from this assumption: Now, let $C$ be a central subgroup of order $p$. We shall de note the subgroup of $P$ which consists of the centre of $P / C$ by $Z_{1}(P \div C)$ and let $Z_{1}(P \div C) / C$ be the centre of $P / C$. Put $U_{1}=U \cap Z_{1}(P \div-C)$. Naturally $U_{1} C$ is normal in $P$. Let us consider the factor group $P / U_{1} C$ and its factorizations: $P / U_{1} C=U C / U_{1} C \cdot N U_{1} / U_{1} C=U C / U_{1} C \cdot A U_{1} / U_{1} C$. We show that $U C \cap N U_{1}=U_{1} C, U C \cap A U_{1}=U_{1} C$ and the centralizer of $N U_{1} / U_{1} C$ coincides with $N U_{1} / U_{1} C$. Since $P=N U=A U, N \cap U=1, A \cap U=1$, the former is evident. If the centralizer of $N U_{1} / U_{1} C$ is distinct from $N U_{1} / U_{1} C$, then since $P=N U, N \cap U=1$, there exists an element $x$ of $U-U_{1}$ such that $[x, N] \subseteq U_{1} C$, which implies, since $N$ is normal, $[x, N] \subseteq U_{1} C \cap N=C$. Since $U$ is abelian, $x$ belongs to $Z_{1}(P \div C)$ and therefore to $Z_{1}(P--C) \cap U=U_{1}$. This is a contradiction. If $A U_{1} / U_{1} C$ is not of type ( $p, \ldots, p$ ), then by induction hypothesis, we see that the order of the subgroup of $A U_{1} / U_{1} C \cong A / C$ consisting of all the elements of order not greater than $p$ is not smaller than $p^{p-1} .-$ Then, a fortiori, by the fundamental theorem of abelian groups, the same holds for $A$ itself, which is a contradiction. So we may assume that in the opposite case $A U_{1} / U_{1} C \simeq A / C$ is of type $(p, \ldots, p)$. Therefore since $U \cong A / A \cap N$ and $A \cap N=Z_{1} \supset C$, we see that $U$ is of type $(p, \ldots, p)$. Further $A$ is of order not greater than $p^{p-1}$ and of type ( $p^{2}, p, \ldots, p$ ). Let $a$ be an element of $A$ with order $p^{2}$. Let us consider the subgroup $\{a\} N$ and put $\{a\} N=V \cdot N$, where $V$ is $\cdot$ a subgroup of $U$. Since $a^{p}$ is contained in $C \subseteq N$, the order of $\{a\} N$ is at most $p^{2}$. Thus, by a theorem of Hall; $\{a\} N$ is regular in the sense of Hall. On the other hand, $V \cdot N$ can be generated by elements of order $p$. Then, by a theorem of Hall, all the elements of $V: N$ are of order at most $p$ (Hall [1]). This contradicts the fact that the order of $a$ is $p^{2}$. Hence the order of the subgroup of $A$ consisting of all the elements of $A$ with order at most $p$ is not smaller than $p^{p-1}$.

Remark. The proof of (i) holds also good, if we replace $Z_{1}$ in that proof by $C$ as in this proof.

Now we can generalize the second part of the preceding lemma as follows.

Lemma 2. In the same notations as in the preceding lemma; if $w<\frac{p^{m}-1}{m}$ then $p^{m+1}$ cannot occur as an invariant number of the abelian group.A. (The case $m=1$ coincides with the second part of the preceding lemma. Therefore, in the following; we assume $m \geqq 2$.)

Proof. (1) Let $P(n, p)$ be a $p$-Sylow subgroup of the $n$-dimensional general linear group over the prime field of characteristic $p$. Further let us assume $n \leqq p^{m}$. Then we show that the order of any element of $P(n, p)$ is not greater than $p^{m}$. In fact, as is well known (SChreier [1]) $P(n, p)$ is isomorphic
to the matric group consisting of all the matrices of degree $n$ and of the form $\left(\begin{array}{ccc}1 & a_{12} & \cdots \\ \ddots & a_{1 n} \\ & \ddots & \vdots \\ & \ddots & a_{n-1 n}\end{array}\right)$ Let $X$ be any matrix of such a form. Put $X=E+Y$, where $E$ is the unit matrix of degree $n$. Then $X^{p^{2}}=E+Y^{p^{\prime \prime}}$ for $e=1,2, \ldots$. Further clearly

$$
Y^{\prime \prime}=\left(\begin{array}{ccc}
\overbrace{0} & \cdots & 0 \\
\ddots & & * \\
& \ddots & \\
& \ddots & 0 \\
& & \ddots \\
0
\end{array}\right)
$$

Therefore if $n \leqq p^{\prime \prime \prime}$, then $Y^{p^{\prime \prime \prime}}=0$. This proves $X^{\prime^{\prime \prime \prime}}=E$.
(2) Let $V_{n}$ be an $n$-dimensional vector space over the prime field of characteristic $p$. We may consider $P(n, p)$ as an automorphism group of $V_{n}$. Let $P_{n}$ be the extension of $V_{n}$ by $P(n, p)$ as a subgroup of the holomorph of $V_{n}$. Assume $n<p^{m}$. Then we show that the order of any element of $P_{n}$ is not greater than $p^{m}$. In fact, let $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ be any vector of $V_{n}$. Then any element of $P_{n}$ can be represented as a product (in $P_{n}$ ) $X x$ for some $X \in P(n, p)$ and some $x \in V_{n}$, where $X x X^{-1}=X \circ x$. (o denotes the ordinary matrix multiplication.) We want to show $(X x)^{p^{m i}}=1$. Now $(X x)^{p^{m}}=$ $=X x X^{-1} \cdot X^{2} x X^{-2} \ldots \dot{X}^{p^{m-1}} x X^{-\left(p^{m}-1\right)} \cdot \dot{X}^{p^{m}} x X^{-p^{m}}$, since $X^{p^{m}}=1$. Therefore to show $(X X)^{p^{\prime / 2}}=1$ we have only to prove that $\left(E+X+\cdots+X^{p^{m-1}}\right) \circ x=0$, where 0 is the null vector. Now $E+X+\cdots+X^{p^{m-1}}=0$, where 0 is the null matrix of degree $n$. In fact, put $X=E+Y$. Then

$$
\left.\left.\left.\begin{array}{c}
E+X+\cdots+X^{p^{\prime \prime \prime}-1}=E+(E+Y)+\cdots+(E+Y)^{r}+\cdots+(E+Y)^{p^{n_{2}-1}=}= \\
=p^{\prime \prime \prime} E+\left\{\binom{1}{1}+\cdots+\binom{r}{1}+\cdots+\left(p^{m}-1\right)(Y+\right. \\
\therefore+\left\{\begin{array}{l}
2 \\
2
\end{array}\right)+\cdots+\binom{r}{2}+\cdots+\left(p^{m}-1\right. \\
2
\end{array}\right)\right\} Y^{2}+\right\}
$$

Here since $m \geq 1\binom{i}{i}+\cdots+\binom{r}{i}+\cdots+\binom{p^{m}-1}{i}=\binom{p^{m}}{i+1} \equiv 0(\bmod p)$ for $i<p^{\prime \prime}-1$. Further by assumption $Y^{p^{n_{-1}}}=0$. This proves $E+X+\cdots$ $\cdots+X^{p^{m}-1}=0$. Therefore $(X x)^{p^{m}}=1$, as we required.
(3) Now we repeat in the same notations the proof (by induction on the order of the group) of the second part of the preceding lemma. We assume that $p^{m+1}$ occurs as an invariant number of the type of $A$. If $p^{m+1}$ occurs also as an invariant number of the type of $A U_{1} / U_{1} C \cong A / C$, then, by induction hypothesis, the order of the subgroup of $A / C$ consisting of all the elements of order not greater than $p$ is not smaller than $\frac{p^{n}-1}{m}$. Then, a fortiori, by the fundamental theorem of abelian groups, the same holds for $A$ itself, which contradicts the assumption $w<\frac{p^{m}-1}{m}$. So we may assume that $p^{m+1}$ does not occur as an invariant number of the type of $A / C$. Then, since $w<\frac{p^{m}-1}{m}, A / C$ is a subgroup of an abelian group of order $p^{m}\left(\frac{p^{m}-1}{m}-1\right)$ and of type $\left(p^{m}, \ldots, p^{m}\right)$ and, therefore, the order of $A$ is at most equal to $p^{m\left(\frac{p^{m-1}}{m}-1\right)+1}=p^{p^{p_{-}-m}}$. The same holds for $N$. Now the group $P$ can be considered as a subgroup of $P_{n}$ for $n \leqq p^{m}-m$. Therefore any element of $P$ possesses the order at most equal to $p^{m}$, as we saw in (2). This contradiction proves our assertion completely.

Remark. The bound $\frac{p^{m}-1}{m}$ may not be the best possible one. But, at any rate, the result of Ritt cited above is a special case of our lemmas.
5. In this section we construct an example of a primitive permutation group $\{G, U\}$ with an abelian transitive subgroup $A$ not of type ( $p, \ldots, p$ ). In fact, we choose the $p$-dimensional general linear group $G L(p, p)$ over the prime field of characteristic $p$ as a $U$, the $p$-dimensional vector space $V_{p}$ over the prime field of characteristic $p$ as an $N$ and the splitting Schreier extension of $N$ by $U$ as a subgroup of the holomorph of $N$ as a $G$. Naturally since $U$ is irreducible for $N$ and clearly $U$ does not contain a normal subgroup $\neq 1$ of $G,\{G, U\}$ actually defines a primitive permutation group. Therefore we have only to verify the existence of an abelian transitive subgroup $A$ not of type $(p, \ldots, p)$. To do this, first put $B r=E+\sum_{i+r-1<j} e_{i j}$ for $r=1,2, \ldots, p-1$, where $E$ is the unit matrix of degree $p$ and $\dot{e}_{i j}$ 's are the matrix units:

$$
e_{i j}=\left(\begin{array}{c}
\stackrel{i}{\vdots} \\
\cdots \\
\cdots \\
\vdots
\end{array}\right) \quad(i, j=1, \ldots, p)
$$

First we prove that $\left\{B_{1}, B_{2}, \ldots, B_{p-1}\right\}$ is abelian of order $p^{p-1}$ and of type $(p, \ldots, p)$. In fact, put $B_{r}=E+W_{r}$. Then $B_{r} B_{s}=E+W_{r}+W_{s}+$
$+W_{r} W_{s}$, where $W_{r} W_{s}=\left(\begin{array}{rll}\begin{array}{r}r+s+1 \\ 1\end{array} & \cdots & \vdots \\ & \ddots & \ddots \\ & & \ddots\end{array}\right)$. Since the matrix $W_{r} W_{s}$ is
symmetric for $r$ and $s$, we have $W_{r} W_{s}=W_{s} W_{r}$. Therefore $B_{r} B_{s}=B_{s} B_{r}$. Further $B_{r}^{p}=E+W_{r}^{p}$. Since.clearly $W_{r}^{p}=0, B_{r}^{p}=E$. Last let us assume $\dot{B}_{1}^{q_{1}} \ldots B_{p-1}^{q_{p-1}}=E$, where $0 \leqq e_{i}<p \quad(i=1, \ldots, p-1)$. Then $\left(E+W_{1}\right)^{\epsilon_{1}} \ldots$ $\ldots\left(E+W_{p-1}\right)^{e^{p-1}}=E$ and therefore, $\left(E+e_{1} W_{1}+\cdots\right) \cdots\left(E+e_{p-1} W_{p-1}+\cdots\right)=E$. Now the coefficient of $e_{12}$ in $\left(E+e_{1} W_{1}+\cdots\right) \cdots\left(E+e_{p-1} W_{p-1}+\cdots\right)$ is equal to $e_{1}$. Therefore $e_{1}=0$. Thus $B_{0}^{0_{2}} \ldots B_{p-1}^{p-1}=E$. Therefore $\left(E+e_{2} W_{2}+\cdots\right) \cdots$ $\cdots\left(E+e_{p-1} W_{p-1}+\cdots\right)=E$. Now the coefficient of $e_{13}$ in $\left(E+e_{2} W_{2}+\cdots\right) \cdots$ $\cdots\left(E+e_{p-1} W_{p-1}+\cdots\right)$ is equal to $e_{2}$. Therefore $e_{2}=0$. Similarly $e_{3}=\cdots=e_{p-1}=0$. Thus $B_{1}, \ldots, B_{p-1}$ are linearly independent:

Secondly put $x_{r}=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right), \quad$ for $r=1,2, \ldots, p$, and put $A_{r}=x_{r} B_{r}$ (this is a product in $G$ !) for $r=1,2, \ldots, p-1$. We prove that $\left\{A_{1}, A_{2}, \ldots, A_{p-1}\right\}$ is abelian of order $p^{p}$ and of type $\left(p^{2}, p, \ldots, p\right)$. Now the equation $A_{y} A_{s}=A_{s} A_{r}$ is equivalent to the equation $x_{r}+B_{r} \circ x_{s}=x_{s}+B_{s} \circ x_{r}$, where o denotes the ordinäry matrix multiplication. Further the equation $x_{r}+B_{r} \circ x_{s}=x_{s}+B_{s} \circ x_{r}$. is equivalent to the equation $W_{r} \circ x_{s}=W_{s} \circ x_{r}$. Therefore we show $W_{r} \circ x_{s}=W_{s} \circ x_{r}$. Now if $s+r>\dot{p}$, then $W_{r} \circ x_{s}=0$. If $s+r+i=p$, where $i$ is a non-negative integer, then $W_{r} \circ x_{s}=e_{1}+\cdots+e_{i+1}$. By symmetry, we have $W_{r} \circ \dot{x}_{s}=W_{s} \circ \dot{x}_{r}$. Now similarly as in the second step of the proof of Lemma 2, we have $A_{2}^{p}=\therefore=A_{p-1}^{p}=E$. Further $A_{1}^{p}=\left(x_{1} B_{1}\right)^{p}=x_{1} B_{1} x_{1} B_{1} \ldots$ $\cdots x_{1} B_{1}=B_{1}^{-p} x_{1} B_{1}^{p} \cdot B_{1}^{-(p-1)} x_{1} \dot{B}_{1}^{p-1} \cdots B_{1}^{-2} x_{1} B_{1}^{2} \cdot B_{1}^{-1} x B_{1}$. Here $\left(B_{1}^{p-1}+\cdots+\right.$ $\left.+B_{1}+E\right) \circ x_{1}=x_{p}$. Therefore $A_{1}^{p}=x_{p}$. Clearly $A_{1}, \ldots, A_{p-1}$ are linearly independent of each other.

Last we prove that $A \cap U=1$. Now since an element belonging to $A \cap U$ must be commutative with $x_{1}, \ldots, x_{p}$, it must be the identity. This proves the assertion.

Thus $A$ is transitive and not of type ( $p, \ldots, p$ ).
Remark. Such a construction may be executed for every $i \geqq p$.
6. Before proceeding further, we refer to Kochendörffer's method of the construction of simply transitive, primitive permutation groups with abelian transitive subgroups, in a little generalized form. (In this section $G$ may be infinite.)

Let $\{G, U\}$ be a primitive permutation group with an abelian transitive subgroup $A$. Let $\left\{G_{i}, U_{i}\right\}$, and $A_{i}(i=1,2, \ldots, r)$ be the $r$ copies of $\{G, U\}$ and $A$, where $r$ is a natural number $>1$. We denote the isomorphism between $G$ and $G_{i}$ by $g \leftrightarrow g_{i}\left(g \in G, g_{i} \in G_{i}\right)$ for each $i(i=1,2, \ldots, r)$. Put ${ }^{-}$ $G^{*}=G_{1} \times \ldots \times G_{r}$ (the direct product of $G_{1}, G_{2}, \ldots, G_{r}$ ). Let $S$ be the auto-morphism of $G^{*}$. such that $g_{i}^{s}=g_{i+1}\left(g_{r+1}=g_{1}\right)$. Let $G^{* *}$. be the splitting Schreier extension of $G^{*}$ by $S$, which can be constructed as a subgroup of the holomorph of $G^{*}$. Put $U^{* *}=\left(U_{1} \times \cdots \times U_{r}\right)\{S\}$ and $A^{* *}=A_{1} \times \cdots \times A_{r}$. Now we prove that the pair $\left\{G^{* *}, U^{* *}\right\}$ is a simply transitive, primitive permutation group with an abelian transitive subgroup. $A^{* *}$.

Clearly $G^{* *}=U^{* *} A^{* *}$ and $U^{* *} \cap A^{* *}=1$. Assume $\underline{U}^{* *} \neq 1$. Transforming an element of $\underline{U}^{* *}$ by an element of $U^{*}=U_{3} \times \ldots \times U_{r}$, we sce $\underline{U}^{* *} \cap U^{*} \neq 1$. Therefore $\underline{U}^{* *} \cap G^{*} \neq 1$. Clearly this is a normal subgroup of $G^{*}$ contained in $U^{*}$. Since $U^{*}=1$, this is a contradiction. Now we prove the maximality of $U^{* *}$ in $G^{* *}$. Since $G^{* *}=U^{* *} A^{* *}$, if $U^{* *}$ is not maximal in $G^{* *}$, there exists an element $a \neq 1$ of $A^{* *}$ such that $\dot{G}^{* *} \neq\left\{U^{* *}, a_{\}}\right.$. Put $a=a_{1} \cdots a_{r}$, , where each $a_{i}$ belongs to $A_{i}(i=1,2, \ldots, r)$. Then there exists at least one $i$, say 1 , such that $a_{i} \neq 1$. Therefore we assume $a_{1} \neq 1$. We consider the elements $u_{1} a u_{1}^{-1}=u_{1} a_{1}, u_{1}^{-1} a_{2} \cdots a_{r}$, where $u_{1}$ runs over all the elements of $U$.. Since $\left\{U_{1}, a_{1}\right\}=G_{1}$, and since $\underline{U}_{1}=1$, there exists an element $\dot{a}_{1}$ such that $n_{1} a_{1} u_{1}^{-1} a_{1}^{-1}$. does not belong to $U_{1}$. Then $\left\{U^{* *}, a\right\}$ contains an element +1 of $A_{1}$. Therefore $\left\{U^{* *}, a\right\}$ contains $G_{1}$ and coincides with $G^{* *}$. This is a contradiction. Next we prove that $\left\{G^{* *}, U^{* *}\right\}$ is simply transitive. Since $G^{* *}=$ $=U^{* *} A^{* *}$, if $\left\{G^{* *}, U^{* *}\right\}$ is doubly transitive, there exists an element $a \neq 1$ of $A^{* *}$ such that $G^{* *}=U^{* *}+U^{* *} a U^{* *}$. Put $a=a_{1} \cdots a_{r}$, where each $a_{i}$ belongs to $A_{i}(i=1, \ldots, r)$. Let $a^{\prime} \neq 1$ be any element of $A^{* *}$. Put $a^{\prime}=a_{1}^{\prime} \cdots a_{r}^{\prime}$, where each $a_{i}^{\prime}$ belongs to $A_{i}(i=1, \ldots, r)$. Let $l\left(a^{\prime}\right)$ be the number of $i$ 's such that $a_{i}^{\prime} \neq 1$ ( $l\left(a^{\prime}\right)$ is a natural number). Now to prove the inconsistency of the equation $G^{* *}=U^{* *}+U^{* *} a U^{* *}$, we have only to show the following : if $U^{* *} a U^{* *}=U^{* *} a^{\prime} U^{* *}$, then $l(a)=l\left(a^{\prime}\right)$. Now $U^{* *} a U^{* *}=U^{* *} a^{\prime} U^{* *}$ implies that there exist two elements $u$ and $u^{\prime}$ of $U^{* *}$ such that $u a=a^{\prime} u^{\prime}$. Put $u^{\prime}=u_{1} \cdots u_{r} S^{\prime \prime}$, where each $u_{i}^{\prime}$ belongs to $U_{i}(i=1, \ldots, r)$, and put $a^{\prime} u_{1}^{\prime} \cdots u_{r}^{\prime}=$ $=u_{1}^{\prime \prime} \cdots u_{r}^{\prime \prime} a^{\prime \prime}$, where each $u_{i}^{\prime \prime}$ belongs to $U_{i}(i=1, \ldots, r)$ and $a^{\prime \prime}$ is an element of $A^{* *}$. Since $M_{i} A_{i}=A_{i} M_{i}$ and $M_{i} \cap A_{i}=1(i=1, \ldots, r)$, we see immediately that $l\left(a^{\prime}\right)=l\left(a^{\prime \prime}\right)$. Put $a^{\prime \prime} S^{c}=S^{\prime \prime} a^{\prime \prime \prime}$, where $a^{\prime \prime \prime}$ is an element of $A^{* *}$. Since $S$ permutes $A_{1}, A_{2}, \ldots, A_{1}$ cyclically, we see immediately that $l\left(a^{\prime \prime}\right)=l\left(a^{\prime \prime \prime}\right)$. Since $U^{* *} \cap A^{* *}=1$, we have $a=a^{\prime \prime \prime}$. This proves the assertion. Here we refer to the following

Coroilary. If there exists a primitive permutation group with an abelian transitive subgroup of type ( $p_{1}^{w_{1 \prime}^{\prime \prime}} ; \ldots, p_{n n_{n}}^{n_{n}}$ ), then there exists a simply transitive, primitive permutation group with an abelian transitive subgroup. of type $\left(p_{1}^{c_{11}} \ldots p_{1}^{c_{11}}, \ldots, p_{n}^{c_{n n^{\prime}}} \ldots p_{n}^{e_{n \prime}}\right)$ for every $s>1$.
7. Now we treat the Kochendörffer-D. Manning case satisfying the condition (S). In consequence of Lemmas 1 and 2 only the following four cases are to be considered as the type of the abelian group $A:(4,2),(8,2)$, $(9,3)$ and $(8,4)$. In this section we take the first three of these types into our consideration.

Existence. For the type $(9,3)$ we have already constructed an example of such primitive permutation groups in $\S 5$. Now for the types $(4,2)$ and $(8,2)$ the same method of construction as in $§ 5$ can be applied. Therefore we have only to tabulate the necessaries with the same notations as in $\S 5$ :

Type (4, 2), $U=G L(3,2), N=V_{s}, G=G L(3,2) V_{:} ;$

$$
A=\left\{A_{1}, A_{2}\right\}, A_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), A_{2}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) ; A_{1}^{2}=A_{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Type (8, 2). $U=G L(4,2), N=V_{4}, G=G L(4,2) \quad V_{4}$

$$
\begin{aligned}
& A=\left\{A_{1}, A_{2}, A_{3}\right\}, \quad A_{1}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
& 1 & 1 & 1 \\
& & 1 & 1 \\
& & & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right), \\
& A_{2}=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
& 1 & 0 & 1 \\
& & 1 & 0 \\
& & & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), A_{3}=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
& 1 & 0 & 0 \\
& & 1 & 0 \\
& & & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) ; \\
& A_{1}^{\underline{Q}}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
& 1 & 0 & 1 \\
& & 1 & 0 \\
& & & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right), A_{1}^{4}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=A_{2}^{2}, \quad A_{2}^{3} A_{3}=A_{1}^{2} .
\end{aligned}
$$

Insolubility. We show that: Let $\{G, U\}$ be a primitive permutation group with an abelian transitive subgroup $A$ of type either $(4,2)$ or $(8,2)$ or $(9,3)$. Then $G$ is insolube. Thereby we do not use the result of KochenDÖRFFER and MANNING.

First we supplement the second part of Lemma 1, and Lemma 2 as follows :

Lemma 3. In the same notations as before, let $p^{v}$ be the order of the subgroup of $U$ consisting of all the elements of $U$ with order not greater than $p$. If $v<\frac{p^{n}-1}{m}$ then $p^{m+1}$ cannot occur as an invariant number of the type of the abelian group $A$.

Proof. We repeat in the same notations the proof (by induction on the order of the group) of the second part of Lemma 1. We assume that
$p^{m+1}$ occurs as an invariant number of the type of $A$. If $p^{m+1}$ occurs as an invariant number of the type of $A U_{1} / U_{1} C \cong A / C$ then, by induction hypothesis, the order of the subgroup of $U C / U_{1} C \cong U / U_{1}$ consisting of all the elements of order not greater than $p$ is not smaller than $\frac{p^{m}-1}{m}$. Then a fortiori, by the fundamental theorem of abelian groups, the same holds for $U$ itself, which contradicts the assumption $v<\frac{p^{m}-1}{m}$. So we may assume that $p^{m+1}$ does not occur as an invariant number of the type of $A / C$. Then $C$ coincides with the subgroup of $A$ generated by all the $p^{m}$-th powers of elements of $A$. If the centre $Z$ of $P$ is distinct from $C$, then, since $Z \leqq N$ is of type $(p, \ldots, p), Z$ contains a central subgroup $C^{\prime}$ of order $p$ different from $C$. Repeat the same argument by $C^{\prime}$ in place of $C$. Then, since $p^{m+1}$ occurs as an invariant number of the type of $A / C^{\prime}$, we can apply the induction hypothesis and obtain the conceived contradiction. Therefore we may assume that $Z=C$. Now since clearly $U \cong A / Z$ and, by assumption $\dot{v}<\frac{p^{m}-1}{m}$, the order of $A$ is at most equal to $p^{m\left(\frac{p^{m}-1}{m}-1\right)_{+1}}=p^{p^{m-m}}$. The same holds for $N$. Now the group $P$ can be considered as a subgroup of $P_{n}$ for $n \leqq p^{m}-m$. Therefore any element of $P$ possesses the order at most equal to $p^{m}$, as we saw in (2) of the proof of Lemma 2. This contradiction proves our assertion.

Proof of insolubility. First some remarks of general character: (1) Let $N$ be of order $p^{n \prime}$. Then we may consider $U$ as a subgroup of $G L(n, p)$. (2) $U$ does not contain a normal $p$-subgroup $\neq 1$. In fact, let $L$ be a normal $p$-subgroup of $U$. Then $L N$ is normal in $G$. Let $N_{i}$ be the centre of $L N$. If $N_{1} \subseteq N$, then $U$ contains a normal subgroup $\neq 1$ of $G$, which contradicts $\underline{U}=1$. Therefore $N_{1} \subseteq N$. Since $N$ is minimal normal in $G, N_{1}=N$. Then $L N=L \times N$, which implies that $L$ is normal in $G$, which contradicts $\underline{U}=1$.

Now we treat each case separately.
Case of type $(4,2)$. Assume the solubility of $U$. Then, as it is well known, since $G L(3,2)$ is simple and not abelian (Dickson [1]), $U \neq G L(3,2)$. We denote the order of $U$ by $(U)$. At any rate, $(U) \mid 2^{3} \cdot 3 \cdot 7=$ the order of $G L(3,2)$. Assume $7 \mid(U)$ and let $U_{7}$ be a 7-Sylow subgroup of $U$. If $U_{7}$ is not normal in $U$ then we see, by Sylow's theorem ${ }^{1}$ ), $(U)=2^{3} .7$. Since $U$ does not contain a normal 2-group, $U_{7}$ must be normal in $U$, which is a contradiction. Therefore $U_{7}$ is normal in $U$. Then since $2 \mid(U)$, we see, by Sylow's theorem, $U_{7}$ must be normal in $G L(3,2)$, which contradicts the simplicity of $G L(3,2)$. Thus $7 \npreceq(U)$, and $(U) \mid 2^{3} \cdot 3$. If $2^{2} \mid(U)$, then $U$ must

[^0]contain a normal 2-group $\neq 1$, which is not the case. Thus $(\dot{U})=2 \cdot 3$. Let $U_{3}$ be the 3-Sylow subgroup of $U$. Since $U$ is irreducible for $V_{3}=N, U_{3}$ is completely reducible (cf. Frobenius [1]). Therefore since the degree of the representation is $3, U_{3}$ must be irreducible. On the other hand, by Sylow's theorem, $U_{3}$ is not maximal in $U_{3} N$. This contradiction proves our assertion.

Case of type $(9,3)$. Assume the solubility of $U$. As above, $U \neq G L(3,3)$. At any rate, $(U) \mid 2^{5} \cdot 3^{3} \cdot 13=$ the order of $G L(3,3)$. By Lemma $3,3^{3} \mid(U)$. Assume $13 \mid(U)$ and let $U_{13}$ be a 13 -Sylow subgroup of $U$. If $U_{13}$ is not normal in $U$, then we see, by Sylow's theorem, $(U)=2^{4} \cdot 3^{2} \cdot 13$ or $=3^{3} \cdot 13$. Since $U$ does not contain a normal 3 -subgroup $\neq 1$, the latter case does not occur. In the former case clearly $U_{13}$ is not maximal in $U$ and this implies that $U_{15}$ is normal in $U$, which is a contradiction. Thus $U_{13}$ must be normal in $U$. Then, we see, by Sylow's theorem, $U_{13}$ must be normal in $G L(3,3)$, because $3^{2} \mid(U)$. Thus $13 \times(U)$, and $(U) \mid 2^{3} \cdot 3^{3}$. Let $R$ be the largest normal nilpotent subgroup of $U$. Then, since $U$ does not contain a normal 3 -subgroup, $R$ is a 2 -group. If $R$ is reducible for $V_{\mathrm{s}}=N$, then, since $R$ is completely reducible and the degree of the representation is $3, R$ is of diagonal form. Then the order of $R$ is at most equal to $2^{3}$. Further the subgroup $R_{+}$ of $R$ consisting of all the matrices with determinant 1 is of order at most equal to $2^{2}$. Since $3^{2} \mid(U)$, this implies that $U$ contains a normal 3 -subgroup $\neq 1$, which is a contradiction. Thus $R$ is irreducible for $V_{3}$. If $R_{+}$is not of type ( $2,2,2,2$ ), then, as above, $U$ contains a normal 3 -subgroup +1 , which is a contradiction. But if $R_{+}$is of type $(2,2,2,2)$, then $R_{+}$cannot be irreducible for $V_{3}$ (cf. Huppert [1]). But if $R_{+}$is reducible for $V_{3}$, then the order of $R_{+}$must be at most equal to $2^{3}$. This contradiction proves our assertion.

Case of type $(8,2)$. Assume the solubility of $U$. As above, $U \neq G L(4,2)$. At any rate, $(U) \mid 2^{6} \cdot 3^{2} \cdot 5 \cdot 7=$ the order of $G L(4,2)$. By Lemma $3,2^{3} \mid(U)$. Assume $7 \mid(U)$ and let $U_{7}$ be a 7 -Sylow subgroup of $U$. If $U_{7}$ is normal in $U$, then $U_{7}$ is completely reducible for $V_{4}=N$, because of the irreducibility of $U$ (cf. Frobenius [1]). Now $U_{7}$ cannot be irreducible, which is easily seen by considering $U \cdot N$ and using Sylow's theorem. Further $U_{\overline{7}}$ cannot be reducible. In fact, otherwise,. since it is completely reducible, $U_{\cdot} \cdot N=U_{\bar{i}} \times N$, which is clearly a contradiction. Thus $U_{\bar{T}}$ is not normal in $U$. Let $R$ be the largest normal nilpotent subgroup of $U$. Then, since $U$ does not contain a normal 2 -subgroup, $R$ is of order prime to 2 . Let us consider $R U_{A}$. Then we see, by Sylow's theorem, that $R U_{\mathrm{i}}=R \times U_{\bar{i}}$, which is clearly a contradiction. Thus $7 \nmid(U)$, and $(U) \mid 2^{6} \cdot 3^{2} \cdot 5$. Assume $5 \mid(U)$ and let $U_{\bar{j}}=\left\{u_{;}\right\}$be a-5-Sylow subgroup of $U$. If $U_{\overline{5}}$ is normal in $U$, then, since $2^{3} \mid(U)$, there exists an element $t$ of order 2 which belongs to the centralizer of $U_{5}$. This is a contradiction. In fact, $t$ admits an invariant vector $x \neq 0$ and since $U_{5}$, is irreducible, $u_{0}^{i} \circ x$ ( $i=0,1,2,3,4$ ) ( $\circ$ denotes the matrix multiplication) generates the whole vector space $V_{4}=N$. Therefore $t$ must be the identity.

Thus $U_{3}$ is not normal in $U$. Let $R$ be the largest normal nilpotent subgroup of $U$. Then, as above, we come to the contradiction that $R U_{5}=R \times U_{5}$. Thus $5 \times(U)$ and $(U) \mid 2^{i} \cdot 3^{2}$. Now let us assume that $U$ contains a normal subgroup of order 3 . Then we can easily see that $U$ contains a normal 2 -subgroup $\neq 1$, which is a contradiction. Let $U_{3}$ be a 3-Sylow subgroup of $U$. Then $U_{3}$ is minimal normal in $U$. Since the order of $G L(2,3)$ is $2^{4} \cdot 3$, if $2^{5}(U)$, then $U$ contains a normal 2-subgroup $\neq 1$. Further a 2-Sylow subgroup of $U$ is isomorphic to a subgroup of a 2-Sylow subgroup of $G L(2,3)$, which is generated by matrices $\left(\begin{array}{rr}-1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right)$ and $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$ with coefficients in the prime field of characteristic 3 (cf. Dickson [1], p. 86). As it is easily seen, this group does not contain an abelian subgroup of type $(4,2)$. On the other hand, a 2 -Sylow subgroup of $U$ contains an abelian subgroup $V$ of type $(4,2)$, where $A \cdot N=V \cdot N$ and $V \cap N=1$. This contradiction proves our assertion.

Remark. The solubility can be formally weakened to the $p$-solubility in the sense of Cunimin [1].

Double transitivity. Now we give an other proof to our case of Kochendörffer-Manning's theorem. ${ }^{2}$ ) As above, we treat each case separately. First we remark the following. Let $n$ be an element of $N$. Let $U n U$ be a double-sided class of $G$ by $U$. Then all the elements of $N$ belonging. to $U n U$ are conjugate to $n$ and conversely.

Case of type $(4,2)$. By Burnside's theorem, if $7 \times(U)$, then $U$ is soluble. Since $U$ is insoluble, $7 \mid(U)$. Then, since the order of $N$ is 8 , by the remark, we see easily that $G=U+U n U$, where $n$ is an element $\neq 1$ of $N$, and $\{G, U\}$ is doubly transitive (Burnside [2]).

Case of type $(9,3)$. By Burnside's theorem, if $13 \not(U)$, then $U$ is: soluble. Since $U$ is insoluble, $13 \mid(U)$. We notice that every element of order 13 does not possess the characteristic value 1. Again by Burnside's theorem, if $2 \ngtr(U)$, then $U$ is soluble. Since $U$ is insoluble, $2 \mid(U)$. We notice that there exists an element of order 2 such that it possesses only one characteristic value 1. In fact, otherwise, by Burnside's theorem, $U$ is soluble. Then, since the order of $N$ is 27 , by the remark, we see easily that $G=U+U n U_{,}$, where $n$ is any element +1 of $N$, and $\{G, U\}$ is doubly transitive.

Case of type $(8,2)$. Assume $5 \mid(U)$. Then, since $U$ clearly does not contain a subgroup of index 5 (in fact, otherwise, $U$ must be of icosahedral type. But $8 \mid(U)$ ), and since the order of $N$ is $\cdot 16$, by the remark, we see easily that $G=U+U n U$, where $n$ is any element 1 of $N$, and $\{G, U\}$

[^1]is doubly transitive. Thus we may assume that $5 \nmid(U)$. Now, by Burnside's theorem, if $7 \nsucc(U)$, then $U$ is soluble. Since $U$ is insoluble, $7 \mid(U)$. Again, by Burnside's theorem, if $3 \Varangle(U)$, then $U$ is soluble. Since $U$ is insoluble, $3 \mid(U)$. If $3^{2} \mid(U)$, then $U$ contains an element of order 3 which does not contain a characteristic value 1 . Then, since the order of $N$ is 16 , by the remark, we see easily that $G=U+U n U$, where $n$ is any element $\neq 1$ of $N$. But this implies $5 \mid(U)$, which is a contradiction. Therefore $3^{2} \nsucc(U)$ and $(U) \mid 2^{6} \cdot 3.7$. Let $U_{7}$ be a 7 -Sylow subgroup of $U$. Since $U$ is insoluble, $U_{7}$ is non-normal in $U$. Using Sylow's theorem, we see either $(U)=2^{6}$.3.7. or $(U)=2^{3} \cdot 3.7$. Now if $\{G, U\}$ is simply transitive, then $U$ contains a subgroup of index 7. Let $V$ be such a subgroup. As it can be easily seen, $V$ does not contain a normal subgroup $\neq 1$ of $U$. Further since $U$ is insoluble, by Burnside's theorem (Burnside, 1) $\{U, V\}$ is doubly transitive. Therefore $V$ contains a subgroup $W$ such that (i) $W$ is of index 6 in $V$ and (ii) $W$ does not contain a normal subgroup $\neq 1$ of $V$. (cf. § 1). First let us consider the case $(U)=2^{6} .3 .7$. Since the order of the symmetric group of degree 6 is $2^{4} .3^{3} .5, W$ must contain a normal subgroup $\neq 1$ of $V$, which is a contradiction. Therefore $(U)=2^{*} .3 .7$. By Lemma 3, a 2-Sylow subgroup $U_{2}$ of $U$ is abelian of type $(4,2)$. As it can be easily seen, $V$ contains a normal subgroup $X$ of order 4. Clearly $W \cap X \neq 1$ is a normal subgroup of $V$, which is a contradiction.
8. Now we treat the remaining case where the type of the abelian group $A$ is $(8,4)$. But the fact is that this case does not occur. The present nonexistence proof is complicated. We hope that it becomes trivially simple by a new method.

(1) We use the same notations as before. Let us consider $P_{5}=P(5,2) V_{5}$. Then we want to show that $P_{5}$ does not contain an abelian subgroup $A$ of type ( 8,4 ) such that $P_{5}=P(5,2) A$. Put $P=A V_{5}=U V_{5}$, where $U$ is a subgroup of $P(5,2)$. Let $A_{1}=\left(\begin{array}{ll}B & C \\ 0 & D\end{array}\right)\binom{b}{c}$ and $A_{2}=\left(\begin{array}{ll}F & G \\ 0 & H\end{array}\right)\binom{f}{g}$ be the basic elements of $A$ with orders 8 and 4 respectively, where the multiplication is that in $P_{5}$, and further

$$
\begin{gathered}
B=\left(\begin{array}{ll}
1 & b_{12} \\
0 & 1
\end{array}\right), \quad C=\left(\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23}
\end{array}\right), \quad D=\left(\begin{array}{ccc}
1 & d_{12} & d_{13} \\
0 & 1 & d_{23} \\
0 & 0 & 1
\end{array}\right), \quad b=\binom{b_{1}}{b_{2}} \\
c=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{21}
\end{array}\right), \quad F=-\left(\begin{array}{ll}
1 & f_{12} \\
0 & 1
\end{array}\right), \quad\left(i=\left(\begin{array}{lll}
g_{11} & g_{12} & g_{13} \\
g_{21} & g_{22} & g_{23}
\end{array}\right), \quad H=\left(\begin{array}{ccc}
1 & h_{12} & h_{13} \\
0 & 1 & h_{23} \\
0 & 0 & 1
\end{array}\right),\right. \\
\\
f=\binom{f_{1}}{f_{2}} \text { and } g=\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{0}
\end{array}\right),
\end{gathered}
$$

and all the coefficients belong to the prime field of characteristic 2 , that is, they are equal to 0 or 1 . Moreover $\left(\begin{array}{cc}B & C \\ 0 & D\end{array}\right)$ and $\left(\begin{array}{ll}F & G \\ 0 & H\end{array}\right)$ belong to $P(5,2)$, and $\binom{b}{c}$ and $\binom{f}{g}$ belong to $V_{5}$.
(2) We shall make use of the following equations, where the multiplication except that of the elements of $P_{5}$ is the ordinary matrix multiplication:
(A. I)

$$
A_{1}^{2}=\left(\begin{array}{cc}
E & B C+C D \\
0 & D^{2}
\end{array}\right)\binom{(B+E) b+C c}{(D+E) c}(E \text { denotes the unit matrix }) .
$$

(A. II)

$$
A_{2}^{2}=\left(\begin{array}{cc}
E & F G+G H \\
0 & H^{2}
\end{array}\right)\binom{(F+E) f+G g}{(H+E) g}
$$

$$
A_{1}^{4}=\left(\begin{array}{cc}
E & (B C+C D)\left(E+D^{i}\right)  \tag{B.I}\\
0 & E
\end{array}\right)\binom{(B C+C D)(D+E) c}{0}
$$

(B. II)

$$
A_{2}^{\prime}=\left(\begin{array}{cc}
E & (F G+G H)\left(E+H^{2}\right) \\
0 & E
\end{array}\right)\binom{(F G+G H)(\dot{E}+H) g}{0} .
$$

(C) The commutability of $\left(\begin{array}{ll}B & C \\ 0 & D\end{array}\right)$ and $\left(\begin{array}{ll}F & G \\ 0 & H\end{array}\right)$ :

$$
B F=F B, D H=H D, B G+C H=F C+G D .
$$

(D) The commutability of $A_{1}$ and $A_{2}$ under the equation (B):

$$
\left(\begin{array}{ll}
F & G \\
0 & H
\end{array}\right)^{-1} \circ\binom{b}{c}+\binom{f}{g}=\left(\begin{array}{ll}
B & C \\
0 & D
\end{array}\right)^{-1} \circ\binom{f}{g}+\binom{b}{c}
$$

(o.denotes the ordinary matrix multiplication).
(3) First we want to show that the order of the centre $Z$ of $P$ is equal to 2 . In fact, if $Z$ is of order greater than 2, we may assume, by choosing a suitable base of $V_{s}$, that $B=F=E$. Assume $D^{2}=E$. Then by (B. 1) $A_{1}^{4}=1$, which is a contradiction. Hence $D^{2} \neq E$ and $D^{4}=E$. Therefore we may assume, if necessary, replacing $A_{1}$ by $A_{i}^{3}$, that $D=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Assume $H=E$. Then, by (C), $G=G D$, whence $G=\left(\begin{array}{lll}0 & 0 & g_{13} \\ 0 & 0 & g_{22}\end{array}\right)$. Since $A_{2}^{2} \neq 1$ is a central element, $A_{2}^{2}=\binom{G g}{0}=\left(\begin{array}{cc}g_{3:} & g_{3} \\ g_{23} & g_{3}\end{array}\right) \neq 0$. In particular, $g_{3}=1$. On the other hand, by ( D ), $g=D^{-1} g$, whence $g_{3}=0$. This contradiction proves $H \neq E$. Since $A_{2}^{2}$ is a central element, $H^{2}=E$ and $G(E+H)=0$. By (C), $D H=H D$, whence $H=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, and therefore, $g_{11}=g_{21}=0$. By (C), $G+C\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=$
$=C+G\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$, whence $g_{12}=c_{11}$ and $g_{22}=c_{11}$. By (D), $\mathrm{H} c+g=D^{-1} g+c$, whence $g_{3}=0, g_{2}=c_{3}=1$. Now $A_{1}^{4}=\left(\begin{array}{c}c_{11} c_{33} \\ c_{21} \\ c_{3} \\ 0 \\ 0 \\ 0\end{array}\right)$ and $A_{2}^{2}=\left(\begin{array}{c}g_{12} \\ g_{22} \\ 0 \\ 0 \\ 0\end{array}\right)$. Hence $A_{1}^{4}=A_{2}^{2}$ and $Z=\left\{A_{1}^{4}=A_{2}^{\frac{2}{2}}\right\}$. Then $Z$ must be of order 2. This is a contradiction. Thus $Z$ is of order 2 .
(4) Now only the two types of $U:(8,2)$ and $(4,4)$ are allowable. First we prove that the type of $U$ must be equal to $(4,4)$. Assume that $U$ is of type $(8,2)$. Since $A_{1}^{4}$ does not belong to $V_{\mathrm{i}},\left(\begin{array}{ll}B & C \\ 0 & D\end{array}\right)$ is of order 8 . Therefore $D$ is of order 4 , and we may assume $D=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Since $A_{i 2}^{2}$ is a central element $+1,\left(\begin{array}{cc}F & G \\ 0 & H\end{array}\right)$ is of order 2. By (C), $D H=H D$. Therefore, if necessary, replacing $A_{2}$ by $A_{1}^{2} A_{2}$, we may assume $H=E$. Assume $F=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then, if necessary, replacing $A_{1}$ by $A_{1} A_{2}$, we may assume $B=E$. Then $\left(\begin{array}{ll}B & C \\ 0 & D\end{array}\right)^{4}=E$. This contradiction proves $F=E$, and $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. By (A. II), $\binom{(F+E) f+G g}{(H+E) g}=$ $=\binom{G g}{0}=\binom{g_{11} g_{1}+g_{11} g_{2}+\dot{g}_{13} g_{3}}{g_{21} g_{1}+g_{22} g_{2}+g_{23} g_{2}}+0$. By (C), $B G=G D$, whence $g_{11}=g_{21}=$ $=g_{22}=0$. By (D), $g=D^{-1} g$, whence $g_{2}=g_{:}=0$. Then $\binom{G g}{0}=0$. This is a contradiction. Thus $U$ is of type $(4,4)$.
(5) At any rate, $\left(\begin{array}{ll}B & C \\ 0 & D\end{array}\right)$ and $\left(\begin{array}{ll}F & G \\ 0 & H\end{array}\right)$ are of order 4, respectively. Put $F=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. If necessary, replacing $A_{1}$ by $A_{1} A_{2}$, we may assume $B=E$. Assume $D^{2}=E$. Then, by (B. l), $0 \neq\binom{ C(D+E)^{2} C}{0}=0$. Hence $D^{2}+E$ and $D=E$. If necessary, replacing $A_{1}$ by $A_{1}^{*}$, we may assume $D=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. If $H$ is of order not greater than 2 , if necessary, replacing $A_{2}$ by $A_{1}^{2} A_{2}$, we may assume $H=E$. Now by (C), $G+C=F C+G D$, whence $c_{21}=g_{21}=g_{22}=0$. By (A. II), since $A_{2}^{2}$ does not belong to $V_{\bar{j}},(F+E) G \neq 0$, whence either $g_{21}$ or $g_{22}$ or $g_{23}=1$. Hence $g_{29}=1$. Now by (D) $g=D^{-1} g$, whence $g_{2}=g_{3}=0$.

Again by (D), $F b+F G c=C D^{-1} g+b$, whence, in particular, $g_{21} c_{1}+g_{22} c_{2}+$ $+g_{23} c_{3}=c_{21} g_{1}+\left(c_{21}+c_{32}\right) g_{2}+\left(c_{22}+c_{23}\right) g_{3}$. Hence $c_{3}=0$. On the other hand, by (B. I), since $A_{1}^{4}$ is a central element $+1,\binom{(B C+C D)(D+E) C}{0}=\left(\begin{array}{cc}c_{11} & c_{3} \\ c_{21} & c_{3} \\ 0 \\ 0 \\ 0\end{array}\right)$, whence $c_{3}=1$. This contradiction proves that $H$ is of order 4. If necessary, replacing $A_{2}$ by $A_{2}^{3}$, we may assume $H=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Now by (C), $G+C\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) C+G\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$, whence $c_{21}=g_{21}=0, c_{22}=g_{23}$, $\dot{c}_{11}=\dot{c}_{22}+g_{11}$. By (B.I), since $A_{1}^{4}$ is a central element $\div 1,\binom{(B C+C D)(D+E) \bar{c}}{0}=$ $=\left(\begin{array}{c}c_{11} \\ c_{3} \\ c_{21} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)+0$, whence $c_{3}=1$ and $c_{11}=1: B y(D),\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right) c+g=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right) g+c$, whence $g_{3}=c_{3}=1$. By (B. II), since $A_{2}^{4}=1,\binom{(F G+G H)(E+H) g}{0}=$ $=\left(\begin{array}{c}g_{21} g_{2}+\left(g_{21}+g_{22}+g_{11}\right) g_{3} \\ g_{21} g_{3} \\ 0 \\ 0 \\ 0\end{array}\right)=0$, whence $g_{11}+g_{22}=0$. Then, $c_{11}=c_{22}+g_{11}=$ $=g_{92}+g_{11}=0$. Thus $c_{11}=1=0^{-}$. This is a contradiction. Thus $F=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. (6) Now assume $B=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$. Since the order of $A_{1}$ is 8 , by (B. II), $D$ is of order 4. If necessary, replacing $A_{1}$ by $A_{1}^{*}$, we may assume $D=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Now if $H$ is of order not greater than 2, then, by (C), since $D H=H D$, we may assume, if necessary, replacing $A_{2}$ by $A_{2} A_{1}^{2}$, that $H=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. By (A. II), $1 \neq A_{2}^{\frac{1}{2}}=\binom{G g}{0}$ belongs to $V_{b}$, which is a contradiction. Thus $H$ must be
of order 4. Therefore, if necessary, replacing $A_{2}$ by $A_{2}^{3}$, we may assume $H=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. By (C), $\quad G+C\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)=C+G\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$, whence $c_{11}=g_{11}$, and $c_{21}=g_{21}$. By (D), $H^{-1} c+g=D^{-1} g+c$, whence $c_{3}=g_{3}$. By (B. I), $0 \neq\left(\begin{array}{c}(B C+C D)(D+E) C \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{cc}c_{11} & c_{3} \\ c_{21} & c_{33} \\ 0 \\ 0 \\ 0\end{array}\right)$, whence $c_{3}=1$ and either $c_{11}$ or $c_{21}=1$. By (В. II$), 0=\binom{(F G+G H)(E+H) g}{0}=\left(\begin{array}{c}g_{11} \\ g_{21} \\ g_{21} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$, whence, since $g_{3}=c_{3}=1$, $g_{11}=g_{91}=0$. Then, since $c_{11}=g_{11}, c_{21}=g_{21}, c_{11}=0$ and $c_{21}=0$. This contradiction proves $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(7) Now let us assume that $D$ is of order 4. Then, if necessary, replacing $A_{1}$ by $A_{1}^{3}$, we may assume that $D=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Now if $H$ is of order not greater than 2 , then, by $(\mathrm{C})$, since $D H=H D$, we may assume if necessary, replacing $A_{2}$ by $A_{2} A_{1}^{2}$, that $H=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. By (A. II), $1+A_{2}^{2}=\binom{G g}{0}$ belongs to $V_{5}$, which is a contradiction. Thus $H$ must be of order 4 . Therefore, if necessary, replacing $A_{2}$ by $A_{2}^{*}$, we may assume $H=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. By (C), $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) G+C\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)=C+G\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$, whence $c_{21}=g_{21}=0, c_{22}=g_{22}$ and $c_{11}=g_{11}+g_{22}$. By (D), $H^{-1} c+g=D^{-1} g+c$, whence $c_{3}=g_{3}$. By (B. I), since $A_{1}^{4}+1$ is a central element, $\binom{(B C+C D)(D+E) c}{0}=\left(\begin{array}{c}\left(c_{11}+c_{22}\right) c_{3} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right) \neq 0$, whence $c_{3}=1$ and $c_{11}+c_{22}=1$. By (B.II), since $A_{2}^{+}=1,\binom{(F G+G H)(E+H) g}{0}=$
$=\left(\begin{array}{c}g_{11} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)=0$, whence, since $g_{3}=c_{3}=1, \quad g_{11}=0$. Then $c_{11}=g_{22}=c_{22}$.
Hence $c_{11}+c_{22}=0$. This is a contradiction. Thus $D$ must be of order not greater than 2. If $D=E$, then, by (B. I), $A_{1}^{4}=1$. This contradiction proves that the order of $D$ is 2 .
(8) Assume that $H$ is of order 4. Then, if necessary, replacing $A_{2}$ by $A_{2}^{33}$, we may assume $H=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. By (C), $D H=H D$. Therefore $D=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. By (B. l), since $A_{1}^{4} \neq 1$ is a central element, $\binom{(B C+C D)(D+E) c}{0} \neq 0$, whence $c_{3}=1$. By (D), $H^{-1} c+g=D g+c$, whence $c_{3}=0$. This is a contradiction. Thus $H$ must be of order not greater than 2. If $H=E$, then, by (A. II), $1 \neq A_{2}^{9}=\binom{G g}{0}$ belongs to the centre, which is a contradiction. Thus. $H$ is of order 2.
(9) Put, for abbreviation,

$$
\begin{gathered}
M_{1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad M_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad M_{3}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
M_{4}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad M_{5}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

Since, by (C), $D H=H D$, the following seventeen pairs of $\{D, H\}$ are only to be considered:

| (i) $\left\{M_{1}, M_{1}\right\}$, | (ii) $\left\{M_{1}, M_{2}\right\}$, | (iii) $\left\{M_{1}, M_{3}\right\}$, | (iv) $\left\{M_{1}, M_{4}\right\}$, |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (v) $\left\{M_{1}, M_{5}\right\} ;$ | (vi) $\left\{M_{2}, M_{1}\right\}$, | (vii) $\left\{M_{2}, M_{2}\right\}$, | (viii) $\left\{M_{2}, M_{4}\right\}$, |  |
| (ix) $\left\{M_{3}, M_{1}\right\}$, | (x) $\left\{M_{3}, M_{3}\right\}$, | (xi) $\left\{M_{3}, M_{5}\right\}$, | (xii) $\left\{M_{4}, M_{1}\right\}$, |  |
| (xiii) $\left\{M_{4}, M_{2}\right\}$, | (xiv) $\left\{M_{4}, M_{4}\right\}$, | (xv) $\left\{M_{51}, M_{1}\right\}$, | (xvi) $\left\{M_{5}, M_{3}\right\}$, |  |
| (xvii) $\left\{M_{5}, M_{5}\right\}$, |  |  |  |  |

Now let us assume $c_{3}=0$. Since $A_{1}^{4}$ is a central element $\neq 1$, by (B. I) $0 \neq\left(\begin{array}{cll}c_{21} & d_{12} & c_{2} \\ 0 \\ 0 \\ 0 & \\ 0\end{array}\right)$, whence $c_{21}=d_{12}=c_{2}=1$. By (C), $c_{21} h_{12}=0$. Hence $h_{12}=0$.
There remain only two cases: (ix) and (xv). In these cases $d_{25}=h_{23}=0$. By (C), $c_{21}=h_{13}+c_{22} h_{23}=g_{22} d_{23}$. Hence $h_{13}=0$. This is a contradiction. Thus $c_{3}=1$.

Now let us assume $d_{23}=0$. By (B. I), $0 \neq\left(\begin{array}{cc}c_{11} & d_{12} c_{2}+c_{21} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$ d, whence $c_{21}=1$. By (C) $c_{21} h_{12}=0$. Hence $h_{12}=0$. There remain the cases (i), (ii). (iv), (ix), .and (xv). Now in the cases (i), (ix), (xv), $h_{23}=0$ : By (C), $c_{21} h_{13}+c_{22} h_{23}=g_{22} d_{23}$. Hence $h_{13}=0$. This is a contradiction: Further in the cases (ii), (iv), $h_{23}=1$. By (D), $h_{23} c_{3}=d_{93} g_{3}$. Hence $d_{23}=1$. This is a contradiction. Thus $d_{23}=1$. There remain the cases (vi), (vii), (viii), (xii), (xiii) and (xiv). In these cases $h_{12}=d_{12}=0$. Therefore, by (D), $h_{13}=d_{13} g_{3}$. Hence if $h_{13}=1$, then $d_{13}=1$. Thus the cases (vi) and (viii) vanish. Again by. (D), $h_{23} c_{3}=d_{23} g_{3}$. Hence $h_{23}=g_{3}$. If $h_{23}=0$, then $g_{3}=0$ and therefore $h_{13}=0$. This is a contradiction. Thus $h_{23}=g_{3}=1$ and $h_{13}=d_{13}$. Thus the cases (xii) and (xiii) vanish. Now let us consider the case (vii). Then $h_{13}=d_{13}=0$. By (B.I), $0 \neq\left(\begin{array}{l}c_{21} d_{13}+c_{22} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right), \quad$ whence $\quad c_{22}=1 . \quad$ By $\quad$ (C),$\quad c_{21} h_{13}+c_{22} h_{23}=g_{22} d_{2 ;} \quad$ and $g_{22}+c_{11} h_{12}=g_{11} d_{12}$. Hence $c_{22}=0$. This is a contradiction. Last let us consider the case (xiv). Then $h_{13}=d_{13}=1$. By (B. I), $0 \neq\left(\begin{array}{l}c_{21} \\ d_{13}+c_{22} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$, whence $c_{31}+c_{22}=1$. By (C), $c_{21} h_{13}+c_{22} h_{23}=g_{22} d_{23}$ and $g_{22}+c_{11} h_{12}=g_{11} d_{12}$. Hence $c_{31}+c_{22}=0$. This is a contradiction.
Q. E. D.

Now, in the long run, if a primitive permutation group $\{G, U\}$ of Kochendörffer-Manning type satisfies the condition (S), then $G$ is insoluble. Further if such a $\{G, U\}$ does not satisfy the condition (S), then primarily $G$ is insoluble. Thus we can say that a primitive permutation group $\{G, U\}$ of Kochendörffer-Manning type is insoluble.
9. Now the following two questions may be natural: (1) With some exceptionals which happen for $p=2$, any primitive permutation group with an abelian transitive subgroup not of type $(p, \ldots, p)$ is insoluble? (2) If a primitive permutation group has an abelian transitive subgroup, at least one invariant of which occurs only once, then is this primitive permutation group doubly transitive?

The second question can be answered negatively. Let us start from the examples $\{G, U\} ; G=U N=U A$, where $U=G L(p, p), H=V_{p}$, and $A$ is of type ( $p^{2}, p, \ldots, p$ ), which are constructed in $\S .5$. Let $\left\{G_{i}, U_{i}\right\} ; N_{i}$ and
$A^{i}$ be the $r$ copies of $\{G, U\} ; N$ and $A$, where $r$ is a natural number $>1$. Then we construct the permutation group $\left\{G^{* *}, U^{* *}\right\}$ by Kochendörffer's method of construction in $\S 6$. Put $A^{* * *}=A_{1} \times N_{2} \times \cdots \times N$.. We have only to show the transitivity of $A^{* * *}$. As in $§ 3$ put $U^{*}=U_{1} \times \cdots \times U_{\text {r }}$ and $G^{*}=G_{1} \times \cdots \times G_{r}$. Then clearly $A^{* * *} U^{*}=G^{*}$, whence $A^{* * *} U^{* *}=G^{* *}$.

For the first problem we have only partial answers. Let $\{G, U\}$; $G=U N=U A$ be a soluble primitive permutation group with an abelian transitive subgroup $A$ not of type $(p, \ldots, p)$. Further let $p^{\prime \prime}$ be the order of $N$ and let $p$ be greater than 2.
(1) (cf. § 7) $U$ may be considered as a subgıoup of $G L(n, p)$.
(2) (cf. § 7) $U$ does not contain a normal $p$-subgroup $\neq 1$.
(3) Put $A N=V \cdot N$, where $V$ is a subgroup of $U$. Then $V$ is an abelian $p$-subgroup of $U$. Now $U$ does not contain a subgroup $L$ such that (i) $L$ is irreducible for $N=V_{n}$ and (ii) the normalizer of $L$ contains $V$ and $L$ is a minimal normal subgroup of $L V$.

In fact, let $U$ contain such a subgroup $L$. Then, by (2), the centralizer of $L$ in $L V$ is coincident with $L$ itself. Therefore we can consider $L$ as a faithful irreducible representation module for $V$. Therefore $V$ is cyclic [cf. Huppert]. Since $p>2$, by Lemma 3, this is a contradiction.

Now let us notice that $n \geqq p>2$. Therefore there exists a prime $q$ such that $p^{\prime \prime} \equiv 1(\bmod q)$ and $p^{m} \equiv 1(\bmod q)$ for any $m<n(Z \operatorname{sigmondy}[1])$. Then the order of $U$ cannot be divisible by such a $q$.

In fact let the order of $U$ be divisible by such a $q$. First we remark that in these circumstances any subgroup of $U$ whose order is divisible by $q$ is irreducible. By Hall's theorem (Hall [2]) there exists a $\{p, q\}$-Sylow subgroup $U_{\{p, q\}}$ (a Hall subgroup) in $U$. Since $U_{\{p, q\}}$ is irreducible for $N$, by (2), $U_{\{p, q\}}$ does not contain a normal $p$-subgroup $\neq 1$. Let $Q$ be a minimal normal $q$-subgroup $\neq 1$ of $U_{\{p, q\}}$ and let us consider the subgroup $Q V$. Again let $Q_{1}$ be a minimal normal $q$-subgroup $\neq 1$ of $Q V$ and let us consider the subgroup $Q_{1} V$. Since $Q_{1} V$ is irreducible for $N$, by (2) $Q_{1} V$ does not contain a normal $p$-subgroup $\neq 1$. Therefore the centralizer of $Q_{1}$ in $Q_{1} V$ is coincident with $Q_{1}$ itself. Therefore we can consider $Q_{1}$ as a faithful, irreducible representation module of $V$. Therefore $V$ is cyclic (cf. Huppert [1]). Since $p>2$, by Lemma 3, this is a contradiction.

As a corollary of the above result we see that $\{G, U\}$ is necessarily simply transitive.

In fact, if $\{G, U\}$ is doubly transitive, then the order of $U$ is divisible by $p^{n}-1$.

Addendum. Recently Mr. Bertram Huppert in Tübingen has independently obtained, by interesting methods, similar results as those of the present paper. See his paper „Primitive, auflösbare Permutationsgruppen", Archiv fïr Math., 6(1955), 303-310.

## Literature.

Burnside, W. [1] On some properties of groups of odd order, Proc. London Math. Soc., 33 (1900), 162-185.
[2] On groups of order $p^{\prime \prime} q^{\beta}$, Proc. London Math. Soc., (2) 1 (1904), 388-392.
Čunımıs, S. [1] O $\Pi$-svoĭstvah konečnyh grupp, Mat. Sbornik, 25 (67) (1949), 321-346.
Dickson, L. E. [1] Linear groups (Leipzig, 1901).
Frobenius, G. [1] Über Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen, Sitzungsberichte Berlin (1898), 501-515.
Hall, P. [1] A contribution to the theory of groups of primepower orders, Proc. London Math. Soc., (2) 36 (1933), 29-95.
[2] A note on soluble groups, Journal London Math. Soc., 3 (1928), 98-105.
Huppert, B. [1] Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Zeitschrift, 60 (1954), 409-434.
Kochendörffer, R. [1] Untersuchung über eine Vermutung von W. Burnside, Schriften Math. Sem. u. Inst. f. angew. Muth. Univ. Berlin, 3 (1937), 155-180.
Manning, D. [1] On simply transitive groups with transitive Abelian subgroups of the same degree, Transactions American Math. Soc., 40 (1936), 324-342.
Ritt, J. F. [1] On algebraic functions which can be expressed in terms of radicals Transactions American Math. Soc., 24 (1922), 27-30.
Schreier, O. [1] Über die Erweiterung von Gruppen. II, Hamburger Abh., 4 (1926), 321-346.
Wielandt, H. [1] Zur Theorie der einfach transitiven Permutationsgruppen, Math: Zeitschrift, 40 (1935), $582-587$.
Zsigmondr, K. [1] Zur Theorie der Potenzreste, Monatshefte für Math. und Phys., 3 (1892), 265-286.


[^0]:    1) The number of $p$-Sylow subgroups is congruent to $1 \bmod p$. Cf. H. Zassenhaus, Lehrbuch der Gruppentheorie I (Berlin-Leipzig, 1937), p. 100.
[^1]:    ${ }^{2}$ ) Here we want to refer to the following interesting problem : Is there a primitive permutation group of MANNing-Kochendörffer type not satisfying the condition (S)?

