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Note on the Theory of M_onotbné Operator Functions.
By A. KORANYI in Szeged. B

The real-valued function f(x) is said ‘to be a monoton_é operator func-

tion in the interval (a, b) if, for any two bounded selfadjoint operators A, B

on Hilbert space §, whose spectrum lies in (a, b), A = B implies f(A) = f(B)-
If we consider only operators on n-dimensional Euclidean space E,, then
these operators may be represented by.matrices of type n xn, and in this.
case a function f(x) with the above property is called a monotone matrix
. function of order n.

The theory of monotone matrix functions has been developed by K.
LOWNER [4]; he gives first some necessary and sufficient . conditions for -a
function to be a monotone matrix function of order n, and then, as a re-
sult of further deep investigations including questions -of interpolation he.
arrives at the following criterion: A real-valued function f(x) defined in (a, b)
is'monotone of arbitrarily high order n if and only if it satisfies the follow- -
ing condition (L): f(x) is analytic in (g, b), can’ be analytically continued
onto the entire upper half-plane, and has there a non-negative imaginary part.

The probiem of monotone - operator functions has recently been consi-
dered by J. BENDAT and S.. SHERMAN [1]') Making use only of the necessity
~ of LOWNER’s conditions for the monotonity of order n they proved that a. -
function f(x) with f(0)=0 is a monotone operator function in the mterval
(—R,R) if and only if it is representable in the 1ntegral form

w
o =g
‘ ' L
TR
‘with a non- decreasmg bounded functlon a(f). (The restrictions f(0)=0 and
(—R, R) do not of course affect the. generality; moreover, ‘it is sufficient to
_consider only the case R=1.) They also proved that the class of monotone
operator functions is- identical with the class of monotone matrix functions.
of arbitrarily high order n and so it is characterized by LOWNER’s criterion.

1) The first results on this domain are due to Heinz [2].
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‘Now, an immediate -proof of the equivalence- of :the conditions (L) and of the
integral representation (1) would make possible to arrive to LOWNER’s crite-
rion on the simpler way taken by BENDAT and SHERMAN. This equivalence
can be proved by making use of a general theorem of R. NEVANLINNA [5]
on asymptotic developments.?) However, the following direct proof may have,
for its simplicity, some interest of its own.

Theorem. Let the functton f(z) be defined, for [zl <1, by the con-
vergent power series with real coefficients

(Z) Z 6z :

. and-suppose that f(z) is analyttc on the whole upper half plane and that
Im f(2) = O for Im z>0. Then f(z) admits of the integral representation

1

0, e | E—mt

-1 -
" with a non-decreasing, bounded function e(t).

Proof. Evidently, f(z) can be continued analytically onto  the lower

half-plane too, thus the function g(z)’=——f(%) will be analytic on the entire |

complex plane, except possibly the interval [—1, 1] of the r'eal: axis. We have
Im g(z) = 0 for Im2>0, and, for |z{>1, we have the development

®
N Cu

g(Z) :A = Z" *

Choose a number N > 1, and denote by K the circle of radius N with
.-centre in the origin. ‘We have '

. 1 'I.-_n'—l - _~_> : .
Cp == T & g(D)dé .. l_(n—~l.2., )

If we denoté” by I" the part of the circle K in the upper half—plane we have
by g(r )=g()
c,,;—v—r'lm c"“g(g)dg.
. ‘ : I . . . .
Now consider the following oriented straight line segments in the complex
plane: A==[N, N+iy], B=[N+iy, —=N+1iy], C=[—N+iy, —N] (y > 0).

‘We may write .
o=t [ [ [)re@az
' i\ B¢

A

2) See also (7], pp. 24—26.
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Since " g(C) 1s continuous at the pomts L=+ N, we have for y—>0.'

== Im | £ )+ 00,
B .
Now, if we make use of the binomial formula for C" 1-«(x+ty)" ', and of
the boundedness for y—+0 of each of the-integrals
e
[x’" Re g(x—f—zy)dx [x’" Im g(x—}-zy)dx - (m=0,1,2,...))

- ) -N ~N
we obtain that
. . N .
2) : Cn ] Jx" !Im g(x+ty)dx+ O(y)
_.1\ .

- With the help of the non- decreasmg function

, () == —-j Im g(x+ zy)dx

‘this may be written in the form
~

o= ] 17 dey () + o)

. . -N
The total variation V(e,) of the function e,(f) is
. coe ~

Ve = M) === L im get-ip)ax,

that is, applying (2) with n—-l

(C) o V(g =a+ O(y)
3) This follows from the boundedness, for y — 0, of each of the integrals
N .
Jn = [x’"a(x—}—zy)dy (m=0,1,...).
—1\ - .
To see this, first observe that the integrals
N . . Ny )
G, = [ x+i"gx+iydx= f "g(Ddz m=0,1...
-N =Nty

are bounded as- y — 0 since the pomts + N are in the domain of regularity of the func-
tions 2" g(z). Now, from the 1dent1tv X" = (z25)" it follows, usmq again the binomial
formula, '

w m

Jn=2 =0 ()G =Gy =iy ‘(,) w0, + 00),

. . ’_1
which proves our assertion.
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So, making y converge to zero through a sequence y,, we may apply the
-well-known theorem of HELLY. Thus there exists a non-decreasing function

of bounded variation «(f) such that
: _ . ¥

o= [ @)  (1=1,2,..)).

-N

As N is an arbltrary number > 1, we see that « () is constant outside [—1 1],
so. we have

@ - - c,,=J't"“da(t) (n=1,2,...)

and, for |z|<1

f(z)—— > cnz"z Zt" ! "dcc(t) J da(t),

thus finishing the proof of the theorem.
Fmally we add some remarks.
. If we suppose that ¢(f) is conveniently normed, e. g. by demanding

a(—l)_O and contmulty from the left, «(f) is determined by (4) uniquely.

2. From the asymptotic equality (3) it follows that V(cz)——cl, with V()
the total variation of «(f). :

3. The converse of the theorem is also true; every function of the form-
(1) has the properties enumerated in the - theorem, as it can be seen by an
elementary calculation.

4, Applymg the substltutlon A ———g in the theorem we obtain for any

function _g(4) which is analytic everywhere except the real interval [—M, M],.
“tends to O for 2— oo, and has a non-negative imaginary part for 2 in the
upper half—plane the mtegral representatlon '

dﬂ(t)

O </>~f

with a non- decreasmg, bounded B(t).

_ These conditions are fulfilled e.g. by the function g(/)—(Rku, u), if
Ry denotes the resolvent of a selfadjoint operator A, M=||A||, and-u is an -
arbitrary element in Hilbert space.) So we have a representation in the form -
(5) with V(8)=|lu|P, as-a consequence of Remark 2. From these the spectral
- theorem for bounded selfadjoint operators follows by standard methods.)

) See e. g. Stone (8]
%) This in essentially but a modern variant of the classncal proof of E HELLmoER- :
For the non-bounded case cf. LencveL [3] and NIEMINEN [6].
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