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Oil the Jordan—Dedekind chain condition. 
By J. JAKUBiK in Kosice (Czechoslovakia). 

Let 5 be a partly ordered set, a, b£S, a < b. R(a,b) (eventually with 
indices) denotes a chain in 5 with the least element a and the greatest elem-
ent b. If R(a, b) is finite and contains n elements, his length is n — 1. A chain 
R{a,b) is maximal, if it is not a proper subset of any chain R4{a,b) in 5 . 
Many important properties of the partly ordered set 5 can be proved under 
the assumption that (i) all bounded chains in 5 are finite and (ii) the follow-
ing Jordan—Dedekind condition holds: 

(JD) If a, b £S,a <b, and Rx(a, b), R2(a, b) are maximal chains, then 
both these chains have the same length. 

In a recent paper [1] G. SZASZ generalizes the concept of the length of 
a chain as follows: if a chain R{a, b) is infinite, his length is the cardinal 
number of the set R(a,b). The condition (JD) can now be considered in the 
generalized sense, without supposing that the lengths of R^a, b), R.2(a, b) are 
finite. 

it is well-known that, every distributive lattice in which all bounded 
chains are finite satisfies the Jordan—Dedekind chain condition. In the paper 
[1] the interesting theorem (theorem 3) is stated: 

There exists a distributive lattice which does not satisfy the (generalized) 
condition ( J D ) 1 ) . 

In the present note we give a generalization of this theorem. 
Let A/ be a non-empty set. Let us denote by S(M) the set of all func-

tions / defined on Af such that, for every Af, /(/) is a rational number, 
/(/) d [0, 1]. S(M) is partly ordered in the usual way: /, if and only if . 
/ j (0=/2(0 . every i(zM. S(M) is a distributive lattice; we shall denote 
the least'and the greatest elements of S(Ai) by f0 and /1; respectively. 

L e m m a 1. If Af is non-empty, then there exists in the lattice S{M) 
a countable maximal chain /?i(/0,/i). 

•) The formulation of the example in the proof of this theorem is not correct ; see 
the „Correction" on p. 270 of this volume. 
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P r o o f . Let Rx be the set of all „constants" of S(M) ( i . e . of the 
f£S(M) with /(/)=/(/) for all i,j<=M); the function f£Ru for which 
/(/)== x (x 6 [0, 1], x rational) identically, we denote by fx. Clearly, R¡ \s a 
countable chain, containing fa and f . Let g £ S(M), Then there exist 
elements i,j£M for which g(i)<g{j)• We choose a rational number z such 
that g{i)<z<g(j). Then we have g(i)<MQ, g(j) >Mj), and the elements 
g,f are incomparable. It follows that the chain R, is maximal. We shall say 
that Rx is the diagonal chain in S(M). 

L e m m a 2. Let M = [ 0,1]. In the lattice S(M) there exists pn uncount-
able maximal chain R2(fo,f)-

P r o o f . For every / £ M let Rl be the set of all f^S(M) with the 
property • 

j i- >/(/) 1. ./>/ >f(j) 0. 
Every Ri is a chain. It is clear that the set-theoretical sum R2 = {JR' is a 
chain containing f0 and /,. The chain R3 is uncountable. 

We will prove that the chain R2 is maximal. Let the element 
be comparable with all f £ R 2 , let f . ^ g ^ f . i) If there exists i £ M such 
that ¿ - ( 0 ^ ( 0 , 1 ) , we choose faJptR1 such that /„(;) <g(i) <ffi{i). Then it 
must be fa(J)=g(j)=h(j)- f o r e v e r Y j £M> t l l u s g^R'aR*. ii) Let us 
suppose that, for every i £ M, g(/) = 0 or g(i) = 1. If there exist i,j£M,i<j 
with g(i) = 0, g(j) = 1, then we consider the function fi £ RJ such that 

//(/') = The elements fJ,g are incomparable, contrary to the hypothesis. 

Hence if g{i) = 0, g{]) = \, it must be j<i. Let Mx be the set of all i£M 
such that 'g(i) = 0, k = miMx. Clearly g£RkczR2, and the chain /?, is. 
maximal. We shall say that R2 is the superficial chain in S(M). 

The proof of the theorem 3 in [1] follows from lemma 1 and 2. 

R e m a r k s . 1) In the proof of lemma 2 the assumption /W = [0,-1] can 
be replaced by the following weaker one \ M is an uncountable complete chain. 

2) If we suppose only that M is an uncountable chain, the chain R2 

constructed in the proof of lemma 2 need not be maximal. 
3) Let M be non-empty. Then the lattice 5(7W) is not complete. We 

shall now suppose the axiom of choice and construct a complete distributive 
lattice which does not satisfy the condition (JD). 

Let M be a non-empty set. We denote by 5°(Af) the lattice of all real 
functions / defined on M such that, for every i^.M, /(/) C[0,1] . Clearly the 
lattice S°(M) is isomorphic with the direct union 1IA; (i£M) where every 
A i is isomorphic with the chain ,4 = [0,1]. The lattice A is complete and 
completely distributive (see [2], p. 146, (22'), and [3]), hence the lattice S°(M> 
is complete and completely distributive. The least (greatest) element of Sa(M} 
will be denoted by/<,(/])• 
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L e m m a 3. Let M be non-empty. In the lattice S"(M) there exists a 
maximal chain /?,(f.,f) the length of which is c {i.e. the power of the 
continuum). 

See the proof of lemma Í. 

L e m m a 4. Let a{M) be the cardinal number of the set M, let c.{M) > c. 
In the. lattice S°{M) there exists a maximal chain (/,,/,), the length of 
which is a{M). 

P r o o f . Suppose the set M is well-ordered. We construct the maximal 
•chain M(/o>/i) as in lemma 2. The cardinal number of every chain R',i^M, 
is c. The chains R',RJ, i =¡=7 have not more than one element in common 
(the set R'nRi contains one element if i covers j or i is covered by j in M). 
It follows that the tardinal number of the chain /?2 = U /?' {i £ M) is 
<c-a{M) = cc{M). 

L e m m a 5. Let S be a lattice, S = AxB, let 0„, \a {0b, U) be the least 
resp. the greatest element of A {B), let Rx{0a, la), R2{0b, U) be a maximal 
chain in the lattice A resp. B. Then the set R of all elements of S which have 
the form 

a) (a,, O;,), 1„) 
•or 

b) . ( l„ ,6 i ) , b i £ R 2 { O b , h ) 

is a maximal chain in S with the least element (0„, 0 b) and with the greatest 
element (la, U). 

P r o o f . Clearly, R is a chain in 5 containing the elements (0„,0 b) , 
'(ln , U). Suppose that the element {a,b)£S is comparable with all elements 
of the chain R. Then the element a resp. b is comparable with all elements 
of the .chain R^Oa, 1«) resp. R2{0b, 16). If 6 = 0;,, then clearly {a,b)£R. If 
b > 0¡,, then the element {a, b) is comparable with the element ( l o , 0 ¡ , ) 6/? ; 
hence a ¡g 1„, o = l n , consequently {a,b)£R. 

L e m m a 6. Let Mu Mo be non-empty, disjoint subsets of the set M with 
M1[)M2 = M. Then the lattice S°{M) is isomorphic with the direct union 
S»{MJ x S°{M,). 

The proof is clear. 
Now we will prove the 

T h e o r e m . Let a be a cardinal number, cc ^ c. There exists a complete 
and completely distributive lattice Sa with the least element f0 and the greatest 
element f1} which has the following property: for any cardinal number p with 
c^jS^a, there exists in Sa a maximal chain Rp{f0,f) the length of which 
is p. 
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P r o o f . Let M be a well-ordered set the cardinal number of which i s 
a. W e show that S„ = 5°(Af) possesses the required property. For ji — c or 
/ ? = « the statement is proved in the lemma 3 resp. 4 . Let c < / ? < « . Then 
there exists a subset A ^ c A i such that the cardinal number of is §.. 
Denote M2 = M — M u A = S ° ( M , ) , 5 = S°(M2). Let 4 , be the superficial chain 
in the lattice A (see lemma 4), let Ba be the diagonal chain in the lattice B 
(see lemma 3). We denote the least and the greatest element in A ( B ) as in 
lemma 5. By lemma 5 the set of all elements of A x B which have the form 
a) or b) is a maximal chain R in AxB. The length of the chain A0(B0) is 
/? (c), hence the length of the chain R is /?+c = /?. Thus by lemma 6 there 
exists a maximal chain Rp(f0,f,) in the lattice S°(M) the length of which is/?. 
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