On the Jordén—De,dekind chain condition.

By J. JAKUBIK in Kosice (Czechoslovakia).

Let S be a partly ordered set, a,6€S, a <b. R(a, b) (eventually with
indices) denotes a chain in S with the least element a and the greatest elem-
ent b. If R(a, b) is finite and contains n elements, his length is n—1. A chain
‘R(a, b) is maximal, if it is not a proper subset of any chain R,(a, b) in S.
Many important properties of the partly ordered set S can be proved under
the assumption that (i) all-bounded chains in S are finite and (ii) the follow-
ing Jordan—Dedekind condition holds:

(JD) lf'a,b€S8,a<b, and R\(a,b), R:(a,b) are max1mal chains, then
both these chains have the same length.

~ In a recent paper [1] G. SzAsz generalizes the concept of the Iength of
a chain as follows: if a chain R(a, b) is infinite, his length is the cardinal
number of the set R(a, b). The condition (JD) can now be considered in the
generalized sense, without supposmfr that the lengths of R,(a,b), R,(a b) are
finite. '

It is well-known -that every distributive lathce in which all bounded -
chains are finite satisfies the Jordan—Dedekind chain condition. In the paper
- [1] the interesting theorem (theorem 3) is stated: :

_ There exists a distributive lattice which does not satzsfy the ( Ueneialzzed)
condition (JD)").

In the present note we give a generalization of this theorem
Let M be a non-empty set. Letus denote by S(M) the set of all func--
tions f defined ‘on M such that, for every i€ M, f(i) is a rational number,
() €[0,1]. S(M) is partly ordered in the usual way: f, =f; if and only if .
£,(0) = £o(i) for every i€ M. S(M) is a distributive lattice; we shall denote
- the least and the greatest elements of S(M) by f, and f,, respectively.

Lemma 1. If M is non-empty, then there exists in the lattice S(M}
a countable maximal chain R.(fy, fi). A :

1) The formulation of the example in the proof of this theorem 15 ot correct; see
“the ,Correction® on p. 270 of thxs volume.
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Proof. Let R, be the set of all ,,codstants“ of S(M) (i..é. of the
feS(M) with f(i)=f(j) for all i,j€M); the function fé€ R, for which
f)=x (x€[0, 1], x rational) identically, we denote by f.. Clearly, R, is a
countable chain, containing f, and f,. Let g € S(M), g R,. Then there exist
elements 7,7 € M for which g(i) <g(j). We.choose a rational number 2z such
that g(i) <z < g(j). Then we have g(i) < f.(i), g(/) > f-(J), and the elements
g, f- are incomparable. It follows that the chain R, is maximal. We shail say
that R, is the diagonal chain in S(M).

Lemma 2. Let M=]0, 1]. In’ the lattice S(M) there exzsls an uncount-
able maximal chain Ry(fs, fy)- .

Proof. For every zeM let R be the set of all fe S(M) with the
'property_
J<i=>fU)=1, j>i=>f()=0. .
Every R is a chain. It is clear that the set-theoretical sum Ru—UR' is a-
chain containing f, and f;. The chain R, is uncountable. '
‘We will prove that the chain R, is maximal. Let the element g ¢ S(M)
be comparable with all f€ R, let fi==g==f,. i) If there exists i¢ M such
that g(i) € (0, 1), we choose f.,fs € R such that f.(i)<g(i) <fs(i). Then it
must be fo(J) = g()) = fo(j) for every j€M, thus g€ R'c R,. ii) Let us
suppose that, for every i € M, g(i)=0 or g({)=1. If there exist i,j ¢ M, i<j
with g(i)=0, g(j)=1, then we consider the function f/¢ R such that

f.i(j):%.-The e]gfnents J/, g are incomparable, contrary to the hypothesis.

‘Hence if g(i)=0, g(j)=1, it must be j<i. Let M, be the set of all i€ M -
such that ‘g(i)=0, k==inf M,. Clearly g¢ R*cR,, and the chain R, is.
maximal. We shall say that R, is the superficial chain: in S(M).

The proof of the theorem 3 in [1] follows from lemma 1 and 2.

Remarks. 1) In the proof of lemma 2 the assumption M = [0; 1] can
“be replaced by the following weaker one:- M is an uncountable complete chain_

2) If we suppose only that M is an uncountable chain, the chain R,
constructed in the proof of lemma 2 need not be maximal.

3) Let M be non-empty. Then the lattice S(M) is not complete. We:
shall now suppose the axiom of choice and construct a complete dls’tnbuhve
lattice which does not satisfy the condition (JD).

Let M be a non-empty set. We denote by S°(M) the lattlua of all real
functions f defined on M such that, for every i€ M, f(i) €[0, 1]. Clearly the
lattice S°(M) is isomorphic with the direct union ITA; (i ¢ M) where every
A; is isomorphic with the chain A=[0,1]. The lattice A is complete and
-completely distributive (see [2], p. 146, (22'), and [3]), hence the lattice S°(M) .
is complete and completely distributive.” The least (greatest) element of S°(M)

~will be denoted by £ (f)). o
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Lemma 3. Let M be non-empty. In the lattice S'(M) there exists a
maximal chain R\, (f,, f,) the Iengtlz of which is ¢ (i.e. the power of. the
continuum).

See the proof of lemma 1.

Lemma 4. Let (M) be t/ze cardmal number of the set M lez‘ (M) >c.
In the lattice S°(M) there exists a maximal chain R’)(ﬁ;, 1), the Iength of
‘which is «¢(M). '

Proof. Suppose the set M is well-ordered. We construct the maximal
chain R.(fy, f,) as in lemma 2. The cardinal number of every chain R/, i€ M,
is ¢. The chains R, RY, i==j have -not more than one element in common
(the set R\n R’ contains one element if / covers j or i is covered by j in M).
" It follows that the tardinal number of the chain R.=UR’ -(i¢ M) is
- cra(M)=ca(M). ' ‘

Lemma 5. Let S be a lattice, S=A x B, let 0., 1, (0y, 13) be the least
- resp. the greatest element of A (B), let R,(0., 1a), R:(0s, 1,) be a maximal
chain in the lattice A tesp B. Then the set R of all elements of S which have
the form

a) (afy OL); a; E Rl(oaz lu)
or '

b) (layb) b ER‘)(OI)) b)

is a maximal chain in S with the least element (0., 0s) and with the greatest
_ element (1., 1,).

Proof. Clearly, R is a 'chain in S containing the elements (0., 0y),
~ (14, 1y). Suppose that the element (a,5) € S is comparable with all elements
of the chain R. Then the element a resp. b is comparable with all elements
of the chain R,(0,, 1s) resp. Ru(0s, 15). If 56=0,, then clearly (a,b) € R. It
b.>0,, then the element (a,b) is comparable with the element (1,,0,)€R;-
hence a = 1., a=1,, consequently (a, b) € R.

: Le m ma 6. Let M;, M, be non-einpty, disjoint subsets of the set 4M with

M, UM,= M. Then the lattice S°(M) is isomorphic wzth the direct union
The proof.ls Clear.

. Now we will prove the

Theorem. Let « be a cardinal number, ¢ = c. There exists a complete
and completely distributive lattice S, with the least element f, and the greatest
element f,, which has the Jollowing property : for any cardinal number £ with
¢ =B = a, there exists in S. a maximal chain R’,s(fo, fl) the length of which

is B.
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Proof. Let M be a well-ordered set the cardinal number of which is _
«. We show that S.=S°(M) possesses the required property. For g==c¢ or
8=« the statement is proved in the lemma 3 resp. 4. Let c< @< «. Then
there exists a subset M, M such that the cardinal number of M, is B.
" Denote My— M—M,, A=S8(M,), B=S°(M,). Let A, be the superficial chain -
in the lattice A (see lemma 4), let B, be the diagonal chain in the lattice B
‘(see lemma 3). We denote the least and the greatest element in A (B) as in.
lemma 5. By-lemma 5 the set of all elements of A X B which have the form
. a) or b) is a maximal- chain R in Ax B. The length of the ‘chain AO(BO) is:
8 (c), hence the length of the chain R is #+c=4g. Thus by lemma 6 there
“exists a maximal chain Rz(f,, f) in the lattice S°(M) the length of which is 6.
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