On the Jordan-Dedekind chain condition.

By J. JAKUBíK in Košice (Czechoslovakia).

Let S be a partly ordered set, $a, b \in S, a<b . R(a, b)$ (eventually with indices) denotes a chain in S with the least element a and the greatest element b. If $R(a, b)$ is finite and contains n elements, his length is $n-1$. A chain $R(a, b)$ is maximal, if it is not a proper subset of any chain $R_{1}(a, b)$ in S. Many important properties of the partly ordered set S can be proved under the assumption that (i) all bounded chains in S are finite and (ii) the following Jordan-Dedekind condition holds:
(JD) If $a, b \in S, a<b$, and $R_{1}(a, b), R_{2}(a, b)$ are maximal chains, then both these chains have the same length.

In a recent paper [1] G. Szász generalizes the concept of the length of a chain as follows: if a chain $R(a, b)$ is infinite, his length is the cardinal number of the set $R(a, b)$. The condition (JD) can now be considered in the generalized sense, without supposing that the lengths of $R_{1}(a, b), R_{2}(a, b)$ are finite.

It is well-known that every distributive lattice in which all bounded chains are finite satisfies the Jordan-Dedekind chain condition. In the paper [1] the interesting theorem (theorem 3) is stated:

There exists a distributive lattice which does not satisfy the (generalized) condition (JD) ${ }^{1}$).

In the present note we give a generalization of this theorem.
Let M be a non-empty set. Let us denote by $S(M)$ the set of all functions f defined on M such that, for every $i \in M, f(i)$ is a rational number, $f(i) \in[0,1] . S(M)$ is partly ordered in the usual way: $f_{1} \leqq f_{2}$ if and only if $f_{1}(i) \leqq f_{2}(i)$ for every $i \in M . S(M)$ is a distributive lattice; we shal! denote the least and the greatest elements of $S(M)$ by f_{0} and f_{1}, respectively.

Lemma 1. If M is non-empty, then there exists in the lattice $S(M)$ a countable maximal chain $R_{1}\left(f_{0}, f_{1}\right)$.

[^0]Proof. Let R_{1} be the set of all "constants" of $S(M)$ (i. e. of the $f \in S(M)$ with $f(i)=f(j)$ for all $i, j \in M)$; the function $f \in R_{1}$, for which $f(i)=x\left(x \in[0,1], x\right.$ rational) identically, we denote by f_{x}. Clearly, R_{1} is a countable chain, containing f_{0} and f_{1}. Let $g \in S(M), g \notin R_{1}$. Then there exist elements $i, j \in M$ for which $g(i)<g(j)$. We choose a rational number z such that $g(i)<z<g(j)$. Then we have $g(i)<f_{z}(i), g(j)>f_{z}(j)$, and the elements g, f_{z} are incomparable. It follows that the chain R_{1} is maximal. We shall say that R_{1} is the diagonal chain in $S(M)$.

Lemma 2. Let $M=[0,1]$. In the lattice $S(M)$ there exists an uncountable maximal chain $R_{2}\left(f_{0}, f_{1}\right)$.

Proof. For every $i \in M$ let R^{i} be the set of all $f \in S(M)$ with the property

$$
j<i \Longrightarrow f(j)=1, \quad j>i \Longrightarrow f(j)=0
$$

Every R^{i} is a chain. It is clear that the set-theoretical sum $R_{2}=U R^{i}$ is a chain containing f_{0} and f_{1}. The chain R_{2} is uncountable.

We will prove that the chain R_{2} is maximal. Let the element $g \in S(M)$ be comparable with all $f \in R_{2}$, let $f_{0} \neq g \neq f_{1}$. i) If there exists $i \in M$ such that $g(i) \in(0,1)$, we choose $f_{a}, f_{\beta} \in R^{i}$ such that $f_{a}(i)<g(i)<f_{\beta}(i)$. Then it must be $f_{\alpha}(j) \leqq g(j) \leqq f_{\beta}(j)$. for every $j \in M$, thus $g \in R^{i} \subset R_{2}$. ii) Let us suppose that, for every $i \in M, \mathbf{g}(i)=0$ or $g(i)=1$. If there exist $i, j \in M, i<j$ with $g(i)=0, g(j)=1$, then we consider the function $f^{j} \in R^{j}$ such that $f^{j}(j)=\frac{1}{2}$. The elements f^{i}, g are incomparable, contrary to the hypothesis.. Hence if $g(i)=0, g(j)=1$, it must be $j<i$. Let M_{1} be the set of all $i \in M$ such that $g(i)=0, k=\inf M_{1}$. Clearly $g \in R^{k} \subset R_{2}$, and the chain R_{2} is. maximal. We shall say that R_{2} is the superficial chain in $S(M)$.

The proof of the theorem 3 in [1] follows from lemma 1 and 2.
Remarks. 1) In the proof of lemma 2 the assumption $M=[0 ; 1]$ can be replaced by the following weaker one: M is an uncountable complete chain.
2) If we suppose only that M is an uncountable chain, the chain R_{2} : constructed in the proof of lemma 2 need not be maximal.
3) Let M be non-empty. Then the lattice $S(M)$ is not complete. We shall now suppose the axiom of choice and construct a complete distributive lattice which does not satisfy the condition (JD).

Let M be a non-empty set. We denote by $S^{0}(M)$ the lattice of all real. functions f defined on M such that, for every $i \in M, f(i) \in[0,1]$. Clearly the lattice $S^{0}(M)$ is isomorphic with the direct union $\Pi A_{i}(i \in M)$ where every A_{i} is isomorphic with the chain $A=[0,1]$. The lattice A is complete and completely distributive (see [2], p. 146, (22'), and [3]), hence the lattice $S^{0}(M)$) is complete and completely distributive. The least (greatest) element of $S^{\circ}(M)$ will be denoted by $f_{0}\left(f_{1}\right)$.

Lemma 3. Let M be non-empty. In the lattice $S^{0}(M)$ there exists a maximal chain $R_{1}\left(f_{0}, f_{1}\right)$ the length of which is c (i.e. the power of the continuum).

See the proof of lemma 1.
Lemma 4. Let $c(M)$ be the cardinal number of the set M, let $\kappa(M)>c$. In the. lattice $S^{0}(M)$ there exists a maximal chain $R_{2}\left(f_{11}, f_{1}\right)$, the length of which is $c(M)$.

Proof. Suppose the set M is well-ordered. We construct the maximal chain $R_{2}\left(f_{0} ; f_{1}\right)$ as in lemma 2. The cardinal number of every chain $\dot{R}^{i}, i \in M$, is c. The chains $R^{i}, R^{j}, i \neq j$ have not more than one element in common (the set $R^{i} \cap R^{j}$ contains one element if i covers j or i is covered by j in M). It follows that the tardinal number of the chain $R_{2}=U R^{i}(i \in M)$ is $c \cdot c(M)=c(M)$.

Lemma 5. Let S be a lattice, $S=A \times B$, let $0_{a t}, 1_{a}\left(0_{b}, 1_{b}\right)$ be the least resp. the greatest element of $A(B)$, let $R_{1}\left(0_{a}, 1_{a}\right), R_{2}\left(0_{b}, 1_{i}\right)$ be a maximal chain in the lattice A resp. B. Then the set R of all elements of S which have the form

$$
\text { a) } \quad\left(a_{i}, 0_{b}\right), \quad a_{i} \in R_{1}\left(0_{a}, 1_{c}\right)
$$

or

$$
\text { b) } \quad\left(1_{a}, b_{i}\right), \quad b_{i} \in R_{2}\left(0_{b}, 1_{b}\right)
$$

is a maximal chain in S with the least element $\left(0_{a}, 0_{b}\right)$ and with the greatest element $\left(1_{a}, 1_{b}\right)$.

Proof. Clearly, R is a chain in S containing the elements $\left(0_{a}, 0_{b}\right)$, $\left(1_{a}, 1_{b}\right)$. Suppose that the element $(a, b) \in S$ is comparable with all elements of the chain R. Then the element a resp. b is comparable with all elements of the chain $R_{1}\left(0_{a}, 1_{a}\right)$ resp. $R_{2}\left(0_{b}, 1_{b}\right)$. If $b=0_{b}$, then clearly $(a, b) \in R$. If $b .>0_{b}$, then the element (a, b) is comparable with the element $\left(1_{a}, 0_{b}\right) \in R$; hence $a \geqq 1_{a}, a=1_{a}$, consequently $(a, b) \in R$.

Lemma 6. Let M_{1}, M_{2} be non-empty, disjoint subsets of the set M with $M_{1} \cup M_{2}=M$. Then the lattice $S^{0}(M)$ is isomorphic with the direct union $S^{0}\left(M_{1}\right) \times S^{0}\left(M_{2}\right)$.

The proof is clear.
Now we will prove the
Theorem. Let a be a cardinal number, $c \geqq c$. There exists a complete and completely distributive lattice S_{a} with the least element f_{0} and the greatest element f_{1}, which has the following property: for any cardinal number β with $c \leqq \beta \leqq \alpha$, there exists in S_{a} a maximal chain $R_{\beta}\left(f_{0}, f_{1}\right)$ the length of which is β.

Proof. Let M be a well-ordered set the cardinal number of which is c. We show that $S_{a}=S^{0}(M)$ possesses the required property. For $\beta=c$ or $\beta=a$ the statement is proved in the lemma 3 resp. 4. Let $c<\beta<\boldsymbol{\beta}$. Then there exists a subset $M_{1} \subset M$ such that the cardinal number of M_{1} is β. Denote $M_{2}=M-M_{1}, A=S^{0}\left(M_{1}\right), B=S^{0}\left(M_{2}\right)$. Let A_{0} be the superficial chain in the lattice A (see lemma 4); let B_{0} be the diagonal chain in the lattice B (see lemma 3). We denote the least and the greatest element in $A(B)$ as in lemma 5. By lemma 5 the set of all elements of $A \times B$ which have the form a) or b) is a maximal chain R in $A \times B$. The length of the chain $A_{0}\left(B_{0}\right)$ is $\beta(c)$, hence the length of the chain R is $\beta+c=\beta$. Thus by lemma 6 there exists a maximal chain $R_{\beta}\left(f_{0}, f_{1}\right)$ in the lattice $S^{0}(M)$ the length of which is β_{-}

References.

[1] G. Szasz, Generalization of a theorem of Birkhoff concerning maximal chains of a certain type of lattices, these Acta, 16 (1955), 89-91.
[2] G. Birkhoff, Lattice theory (American Math. Soc. Coll. Publ., vol. 25), revised edition, (New York, 1948).
[3] J. R. Büchi, Representation of complete lattices by sets, Portugaliae Math., 11 (1952), 151-167.

[^0]: ${ }^{1}$) The formulation of the example in the proof of this theorem is not correct; see the "Correction" on p. 270 of this volume.

