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On Artinian rings. 
By T. SZELE f in Debrecen and L. FUCHS in Budapest i). 

§ 1. I n t r o d u c t i o n . 

By an Artinian ring we mean a ring (={=0) whose left ideals satisfy 
the minimum condition. Two important classes of Artinian rings have a 
satisfactory description: 1. those without nonzero nilpotent left ideals (i. e. 
the semisimple rings) which are — in view of the classical Wedderburn— 
Artin structure theorems — characterized by a finite set of skew fields and 
natural integers, 2. the nilpotent Artinian rings whose structure is reduced 
to the finite nilpotent rings [6].2) Here we give a characterization of a third 
class of Artinian rings containing all the semisimple rings, namely, the class 
of those rings which are completely reducible from the left in the sense that 
they are direct sums of a finite number of minimal left ideals. The structure 
of these rings may be described again by a finite number of skew fields and 
natural integers (Theorem 1). 

Turning our attention to general Artinian rings, we first consider the 
additive structure of Artinian rings. Since this problem has been discussed 
in full details in (3], here we only mention the principal result according to 
which the additive group i4+ of an Artinian ring A has a direct decompo-
sition into rational groups eR, a finite number of groups <£(pm), and cyclic 
groups of bounded order.3) 

Our next considerations are concerned with Artinian rings containing 
no subgroup of type pm. We shall show that such rings have an important 
ring-theoretic direct decomposition, namely into the direct sum of a torsion 

1) AH the problems discussed in this paper were stated by T. SZELE to whom are 
due Theorems I—4 and the necessity parts of Theorems 5—6. After his death his notes 
on Artinian rings were obtained by the second-named author who made this paper ready 
for publication. 

2) Numbers in brackets refer to the Bibliography given at the end of this paper. 
3) By a rational group we mean a group SI isomorphic to the additive group of at) 

rational numbers. <2(p<=) will denote PROFER'S group of type p® and £ ( n ) the cyclic 
group of order n. 
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free Artinian ring and a finite number of Artinian p-rings. Thus the theory 
of Artinian rings without subgroups of type p03 may be reduced to that of 
Artinian torsion free and p-rings. Moreover, it will turn out that these rings^ 
form a .very important class of Artinian rings. In fact, this assertion is justi-
fied in view of the following two results: l . an Artinian ring can be imbed-
ded in an Artinian ring with unity element if and only if it contains no 
subgroup of- type p®; 2. the left ideals of an Artinian ring A satisfy also 
the maximum condition if and only if no subgroup of type p=° is contained 
in A. This second statement is an improvement of C H . HOPKINS' well-known 
result [4] stating that in an Artinian ring with a left or a right unity element 
the left ideals satisfy the maximum condition too.4) The mentioned results 
also show that the ring structure may depend to a great extent on the addi-
tive structure. 

Our final result gives a necessary and sufficient condition for the radical 
of an Artinian ring to be again an'Artinian ring. 

Some observations concerning terminology may be inserted here. We 
call a ring R torsion free, torsion or p-ring according as its additive group 
R* is a torsion free, a torsion or a p-group. The elements of the torsion 
subgroup of R + as well as the elements of the maximal algebraically closed5) 
subgroup of R+ form an ideal of R. If L is a left ideal of R, the elements 
of the form nx with x£L and n a fixed natural integer form again a left 
ideal of R, denoted by nL. The signs + and 3 will be used to denote 
direct sums in the group-theoretic resp. in the ring-theoretic sense. 

§ 2 . R ings which a r e comple t e ly r e d u c i b l e f r o m the lef t . 

By a ring in the title we shall understand a ring R which may be decom-
posed into the direct sum of a finite number of minimal left ideals. Clearly, if 

4) It follows readily that the presence of a onesided unity element excludes the 
existence of a subgroup of. type p® in Artinian rings. — Let us remark at this stage that 
AKIZUKI has proved a similar result: if a commutative ring R with the weakened minimum 
condition contains at least one element which is no divisor of zero, then in R also the 
maximum condition holds [1]. This will also follow from Theorem 6 (moreover, even for 
the non-commutative case), if one takes into account (see Satz 10 in [3]) that a ring with 
weakened minimum condition for left ideals and with not torsion free additive group has 
the same additive structure as .the Artinian rings (see Theorem 2), and hence the absence 
of divisDrs of zero implies the failure of subgroups of type p® (cf. Corollary 4 in § 5). 

z) By an algebraically closed group G (for this terminology see [5]) is meant an 
abelian group with nG = G for all natural integers n. Such groups are direct sums of 
rational groups and;or groups of type pa, and are, by a well-known result of BAER [2], 
direct summands of every containing abelian group. 
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R is assumed to have no nonzero nilpotent left ideals or to contain a unit, 
element, then the notions „completely reducible from the left" and „semi-
simple" coincide. Our aim is to get a structure theorem for the rings in the title. 

In this §, let R denote a ring completely reducible from the left and L 
a minimal left ideal0) of R. Since RLQL, we have either RL = 0 or RL = L. 
It is further known that a minimal left ideal is either nilpotent or idempotent 
(and in the latter case it may be generated by an idempotent element).7) 
Hence 

(1) = + + + + G 
where the minimal left ideals AhBj, Ck satisfy: /?i4,- = 0; RB, = Bj, B] = 0; 
RCi. — C*., C'i = C*. Evidently, for the radical8) N of R we have 

(for JVcontains all nilpotent left ideals ,4; and Bj, but can contain no element 
of C, H ( - Q , while 

A = A1-i b Ar 

is the right annihilator ideal") of R. 
Let us now consider the structures of A,,Bj,Ck. 
C = C , H r C is a left ideal of R and is — as a ring — clearly 

semisimple. Thus the structure of C is completely known in view of the 
5 Wedderburn—Artin structure theorems. 

From RA; = 0 it follows that each subgroup of Ai is at the same time 
a left ideal of R, and thus, by the minimality of Ah we conclude that the 
additive group of A; is <£(p) for some prime p.m) 

Next we intend to prove that A is also a left annihilator of R. It is 
plainly sufficient to show that for each i,j,k we have AiBj = 0 and AGi = 0. 
For this purpose we establish the equality AiL = 0 for each minimal left 
ideal L of R with RL = L. Indeed, A, L = L would imply L = RL = 
= R(AiL) = (RAi)L = 0L = 0. — The left annihilator ideal of R in general 
properly contains A; namely, it coincides with the radical N of R. To see 
this, we verify that Bj Br = 0 and BjCk = 0 for all j,j',k. In the contrary 
case BjL = L we should have L = Bj L = Bj(B3 L) = E^ L = 0 L = 0. On the 

*'•) A minimal left ideal L is different from 0 and contains no left ideal = 0 properly. 
T) S e e e . g . VAN DER WAERDEN [8], p . 145. 

*) "The notion of radical may be taken in any sense usual in the literature, because 
all usual definitions coincide, under the assumption of the minimum condition. However, 
for the sake of definiteness, here let the radical be defined as the union of all nilpotent 
left ideals of the ring. 

'•») I. e. the set of all y £ R with Ry=0. 
10) Every Ai is a zeroring, i. e. any two elements annihilate each other. 
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other hand, since R/N is semisimple, the left annihilator of R can not be 
greater than N, q. e. d. Thus NR = 0 and = 

Consider the product CB3. We have CBj = NBj + CBj = RBj = B], 
•and hence Bj is a minimal C-module, C a semisimple ring. But then Bj is 
C-isomorphic to some minimal left ideal G of C. Hence Bj is a zeroring 
whose additive group is isomorphic to some G. 

We have thus proved: 

T h e o r e m 1. A ring R completely reducible from the left has the fol-
lowing structure: 

R = (AX+•••+Ar) + (B,++B,) + (C,+ ---+Ct) = A + B + C 
where the minimal left ideals A , Bjt G satisfy: 

(i) RAi = AiR = 0; the Ai are zerorings with an additive group <£(p); 
(ii) A Bj = BBj = BjR = 0, CBj = Bf, each Bj is a zeroring whose 

additive group is C-isomorphic to some G ; 
(iii) i4G = S G = Gi4 = 0, C G = G ; C is a semisimple ring. 
Since a semisimple ring C may be characterized by a finite number 

of skew fields and natural integers, the same holds for B too, consequently, 
we obtain 

C o r o l l a r y 1. Any ring completely reducible from the left may be 
characterized by a finite set of skew fields and natural numbers. 

Let us observe that the left complete reducibility of a ring does not 
necessarily imply the same for the right. In fact, if R is completely reducible 
from both sides, then its radical N is the twosided annihilator ideal of R, 
and therefore in case s s l , i. e. if the set of the Bj is not void, R can not 
be completely reducible from the right. Moreover, it may happen that the right 
ideals of R do not satisfy the minimum condition. 

As a simple consequence of our result we mention: 

C o r o l l a r y 2. A ring completely reducible from the left is semisimple 
if and only if it contains no nonzero left annihilator. 

§ 3 . D e c o m p o s i t i o n s of Ar t i n i an r ings . 

Let A be an Artinian ring. The additive structure of A is completely 
described by 

T h e o r e m 2. The additive group A+ of an Artinian ring A is of 
the form 
( 2 ) A ^ Z ^ + Z W R X e ^ ) (m fixed) 
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where the cardinal number of the components in the first and third summand 
is arbitrary, while that in the second summand is finite. 

For the proof of this theorem we refer to [3] where it is also shown 
that to any given group AT of the form (2) there exists an Artinian ring A 
whose additive group is A+. 

Let us here observe that the aditive group R+ of a ring R completely 
reducible from the left has the form 

r * = 2 &+2 e (a)+...+2e (Pn) (pi fixed) 
where the cardinal number of the components in each direct summand 
is arbitrary. In fact, this follows at once from the structure theorem (Theo-
rem 1), if we take into account that any complete matrix ring over a skew 
field has the additive structure o r according as the characteristic 
of the skew field is 0 or p. 

While Theorem 2 establishes a direct decomposition in the group-
theoretic sense, the next result shows that in the important case of the 
absence of subgroups of type p® the Artinian rings admit a direct decom-
position in the ring-theoretic sense. 

T h e o r e m 3. An Artinian ring A without subgroups of type p°> is the 
ring-theoretic direct sum of a torsion free Artinian ring B and a finite num-
ber of Artinian p-rings C,, belonging to different primes p>, 
(3) A = B®Cl®Cl@--®Cr. 
The components B,Cu- -,Cr are uniquely determined by A. 

If the Artinian ring A contains no subgroup of type p®, then its maxi-
mal algebraically closed ideal B and its torsion subideal C have no nonzero 
element in common. Since, by Theorem 2, B and C together generate A, we 
have A = B@C. If we decompose C into its p-components, we arrive at (3). 
Evidently, the ideals B and Q are Artinian rings and are uniquely determi-
ned as the maximal algebraically closed ideal resp. the maximal p-sub-
rings of A. 

Theorem 3 reduces the theory of Artinian rings with no subgroup of 
type p® to the theory of torsion free Artinian rings and to that of Artinian 
p-rings whose elements are of bounded order.11) 

n ) We have not succeeded in deciding whether or not Theorem 3 holds in general. 
In case subgroups of type p® are present, the difficulty arises from the possibility that 
the product of two elements of B (B is now defined as the torsion free component of the 
algebraically closed subideal D) belongs to D, but not necessarily to B. It is not hard to 
see that (3) is not true in general for every choice of B, but it is an open question whether 
B can always be chosen appropriately so as to satisfy C3). 
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§ 4 . Ar t in ian r ings wi th un i ty e l emen t . 

Let the Artinian ring A contain a (left, right or twosided) unity element. 
Then A contains no subgroup <£(pa). Indeed, assume a is an element of 
order p and of infinite height12) in A. For a left13) unity element e of A there 
exists no x^A with p,lJrlx=p"e where n is any non-negative integer, since 
in the contrary case we should have 

a = ea = e (p"y) = (p'e)y = (pn+x x) y = x (p'x+ly) — x (pa) - x O = 0, 
a contradiction. Therefore p"e does not belong to p"+1A, i. e. p"H A is a 
proper subideal in p,lA. Thus 

A zjpA 3 ••• idp"A A =>•• • 

is an infinite descending chain of ideals of A, contradicting the minimal 
condition for left ideals. Hence, by Theorem 3, we get 

T h e o r e m 4. An Artinian ring A with a left, right or twosided unity 
element contains no subgroup of type pa and is the (ring-theoretic) direct sum 
of a torsion jree Artinian ring and a finite number of Artinian p-rings, all 
with the same sided unity element. 

It is known that every ring may be imbedded in a ring with unity 
element. If we perform the usual construction of imbedding for an Artinian 
ring, we do not get, in general, an Artinian ring again. Hence the problem 
arises: under what conditions may an Artinian ring be imbedded in an Ar-
tinian ring with unity element?") This question is completely answered by 

T h e o r e m 5. An Artinian ring A can be imbedded in an Artinian ring 
R with unity element if and only if A contains no subgroup of type pa. 

That the failure of subgroups c(jDx) is a necessary condition follows 
immediately from Theorem 4. Now suppose, conversely, that the Artinian 
ring A contains no subgroup of type pa. Then we have (3) and it is clearly 
sufficient to show that all of B and C, may be imbedded in Artinian rings 
with unity elements. 

First let us consider the torsion free Artinian ring B. We define an 
overring U of B as follows: U+=B~ + &. and define the multiplication for 

12) I. e. the equation p"y—a is solvable for some y, for each natural integer n. 
13) The same inference can be applied if e is a right unity element. 
14) A problem of the kind „a ring of property P is to be imbedded in a ring with 

unity element and again of property P" has been discussed by j. SZENDREI [7]; he has 
proved that every ring without divisors of zero can be imbedded in a ring with unity 
element and without divisors of zero. 
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the elements (a,?) of (J+ by 
(4) (a,g) . (b ,o) = (ab + gb + oa,go) (a,b£B;g,o£êI) 
where gb (the product of an element B by a rational number) is, owing to 
the torsion, free character of B, a uniquely determined element of B (by 
Theorem 2, B* is algebraically closed!). It follows by an easy calculation 
that U is a ring with the unity element (0,1). In order to show that i / i s a n 
Artinian ring, let - be a descending chain of left ideals Ln of U. 
Put Kn= Ln(\B; then K ^ K ^ - - is a descending chain of left ideals of 
B, hence it contains but a finite number of different left ideals. We have 
thus to prove that there is no infinite properly descending chain z j L> zd • • • 
of left ideals of U such that Z.1nB = L n S = ••• 

The left ideal K=Lur\B of B consists of all (a,g)£LH with p = 0. 
If (a, o), (b, a) Ç L» and g =i=0, then 

(b, a ) - |o, j j (a, g) = [ ô - j a, o] £ K, 

whence we conclude that each element of LH lies in the subgroup K++P 
where P denotes the rational subgroup of £/+ containing (a, g). We have 

But any left ideal of an algebraically closed ring U with unity element is 
again algebraically closed,1') hence either Ln — K or Ln = K+P. This implies 
that in the descending chain in question at most two different ideals may 
exist (whose meets with B coincide). Therefore, U is an Artinian ring. 

Now we proceed to the case of an Artinian p-ring C whose elements are 
of bounded order, say, with the bound pK We construct a ring V with the 
additive group l/+ = C+-f-Ai+ where M is the ring of the residue classes of 
the rational integers modulo pk. Let the multiplication of the elements (a, g) 
( a € V , g £ M ) be defined by the rule (4). As before it follows that thé only 
thing we must verify is that there exists no infinite properly descending 
chain ¿ , D Z , p . . . of left ideals L„ of V such that L„nC is the same left 
ideal K of C. Let g be the least natural integer with ( a , g ) £ L n . Then for 
any (b,o)€L„ there is a r^M with o = rg. Now 

(b, A ) - ( 0 , R ) (a, g) = (b-ra, 0 ) £ K 

implies that Li/K¥ is isomorphic to some subgroup of ^(p^rConsequently, 
the chain i p L D . . . in question may contain at most £ + 1 different terms, 
i. e., V is an Artinian ring. 

,5) For, together with each element a, all of its rational multiples pea belong to the 
same left ideal. 
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This completes the proof of Theorem 5. 
A simple consequence of our last result is 

C o r o l l a r y 3. A nilpotent Artinian ring A may be imbedded in an 
Artinian ring with unity element if and only if A is finite. 

In fact, by [6], the additive group of a nilpotent Artinian ring is the 
direct sum of a finite number of groups <B(pk) with Now, Theo-
rem 5 implies the assertion, t 

Finally, let us mention the following interesting problem: characterize 
all rings which may be imbedded in an Artinian ring. Evidently, a necessary 
condition is that the additive group of the ring is a subgroup of (2), i. e. the 
direct sum of a torsion free group, a finite number of groups of type pa 

and a torsion group with elements of bounded order. But this condition is 
not sufficient. The question of finding a necessary and sufficient condition 
is open. 

§ 5 . A r t i n i a n r ings wi th t h e m a x i m u m c o n d i t i o n f o r lef t ideals . 

Next we turn our attention to the problem of finding a necessary and 
sufficient condition that the minimum condition for left ideals imply Jhe 
maximum condition for the same ideals. Our result is contained in 

T h e o r e m 6. The left ideals of an Artinian ring A satisfy the maxi-
mum condition if and only if A contains no subgroup of type pa. 

The necessity of the condition follows immediately from the observation 
that in an Artinian ring A each subgroup of a group of type pa is an ideal. 
In fact, a € £ ( p c o ) is annihilated by each element b € ¿ ' e f t + . 2 £ ( ? " ) + 
+ Z<2(<7*) in (2), for ba = (p"x)a = x(p"a) = 0 if6) 0 ( a ) = p " and x£A 

<Z=t=P 
satisfies p"x = b, while for c^^€(pk) we have ca — c(pay) = (psc)y = 0 if 
0(c) =pf and y^A is chosen so as to satisfy psy = a. Hence the elements 
of (2(pm) annihilate the whole ring and therefore each subgroup of <£(pa>) 
is actually an ideal. Since the subgroups of <£(pm) do not satisfy the maxi-
mum condition, the necessity of the condition in the theorem is established. 

In order to -prove the sufficiency, let us assume that A is an Artinian 
ring with no subgroup of type pm. Then, by Theorem 3, we have 
A = B © Ci © • • • © Cr where B is a torsion free Artinian ring and C; are 
Artinian /»-rings with elements of bounded order. It is plainly enough 

,G) &(x) denotes the order of the group element x. 
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to verify that in each of B and C, the left ideals satisfy the maximum 
condition. 

First consider the ring B. We imbed B as shown in § 4 in an Artinian 
ring U with unity element. Any left ideal L of B is algebraically closed. For, 
denoting by mL a minimal one among the left ideals nL (n = l , 2 , . . . ) of 
B, from the algebraic closure of mL it follows L — mL + K for some KZL. 
But hence in view of mL=m(mL + K) = mL + mKwe get mK= 0,i.e. K= 0. 
Therefore, for any rational number g we have oL = L. Using this fact, we 
may show that L is a left ideal of U too. Indeed, (a, 0) £L and ( b , g ) £ U 
imply 

(b, o) (a, 0) = (ba + ga, 0) = (ba, 0) + 9(a, 0 ) £ L , 

considering that (ba, 0)£L and g(a,0)£L. By HOPKINS' result [4], the left 
ideals of U satisfy the maximum condition, consequently, the same is 
true for B. 

The case of Artinian p-rings C, is somewhat easier. Constructing the 
ring V of § 4, we see that, for any left ideal L, of C, (a, 0)£L and (b, g) £ V 
(g belongs to the residue class ring of the integers mod p*) imply (b, g) (a, 0) == 
=(ba + ga, 0) £ L, i .e . L is a left ideal also of V. A simple application of 
HOPKINS' result to V completes the proof. 

Obviously HOPKINS' theorem is a special case of Theorem 6, since by 
Theorem 4 an Artinian ring with onesided unity element can not contain any 
subgroup of type p°. 

On account of the fact that in an Artinian ring any element contained in 
a group of type pa is necessarily a twosided annihilator of the ring, we find 

C o r o l l a r y 4. If an Artinian ring contains no annihilator, then for its 
left ideals the maximum condition holds. 

Considering a ring R as an additive group with the left ope-
rator domain R, it is known that a composition series exists if and only if 
the left ideals satisfy both the minimum and the maximum condition. From 
Theorem 6 we conclude: 

T h e o r e m 7. The left ideals of a ring have a composition series if and 
only if it is an Artinian. ring containing no subgroup of type pm . 

As the left ideals of a ring form a modular lattice and therefore the 
Jordan—Holder theorem holds, it follows that for each Artinian ring A without 
subgroups of type p® — and only for these rings — there exist a unique 
natural integer /, the length of A, and / simple A-moduIes such that all maxi-
mal chains of left ideals have the same length /; 

A = ¿O 3 1 , 3 • • • =3 L, = 0 , 
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and the factor groups ¿i-i/X, (i=l, ...,l) are, up to order,isomorphic to the 
simple A-modules in question, it is easy to see that the additive structure of 
any simple ¿-module G is either or ^ Q ( p ) ( p a fixed prime), since/?G 
being an ¿ - sub module of G, either it coincides with G or reduces to 0; in 
1he torsion case the first alternative can not occur, for a simple ¿-module17) 
can not contain any subgroup of type p®. From this simple remark we may 
at once obtain a lower bound for / in terms of the additive structure of A. 
In (3) let Ci be a pi-ring for which the least upper bound of the orders of 
its elements is pt'. Then a composition series for the left ideals of G is of 
length s ki, considering that G 3 P . G 3 ••• idp? 'G = 0 is a properly de-
scending chain of left ideals. Consequently, the length / of A satisfies the 
inequality 

l ^ k x - \ Ykr or l ^ \ + k i + • • • + k r 

according as A is a torsion ring or not. Of course, the same inequality must 
hold for the length /' of a composition series of right ideals, if it exists. 

§ 6 . T h e rad ica l of a n Ar t i n i an r ing . 

Let A be an Artinian ring and N the radical of A. The factor ring A/N 
is always Artinian (moreover, semisimple), but the radical N — considered 
as a ring — need not be Artinian. We seek for a necessary and sufficient 
condition for N to be again an Artinian ring. 

If the radical N of an Artinian ring A is itself an Artinian ring, then 
N is a nilpotent Artinian ring and therefore it has a structure described in 
[6]. Consequently, TV is a torsion ring with minimum condition for subgroups, 
i. e. the direct sum of a finite number of groups (2(p*) with l g i ^ » . 

Conversely, if the radical N of an Artinian ring A possesses this addi-
tive structure, then N satisfies the minimum condition for subgroups and 
therefore is itself an Artinian ring. We have thus proved 

T h e o r e m 8. The radical N of an Artinian ring A is itself an Artinian 
ring if and only if it is the direct sum of a finite number of groups S (p*) 
with 1 s i s o o , — If A contains no subgroup of type p®, this condition 
reduces to the finiteness of N. 

With the aid of this result it is easy to construct an Artinian ring (for 
example, using Theorem 1) in which the radical is not an Artinian ring. 

n ) Any simple .A-module not annihilated by A is known to be isomorphic to some 
minimal left ideal of the semisimple ring A/N (N the radical of A); see e. g. [8], p. 170. 
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Finally, let us mention that the Artinian character of the radical implies 
that in the third summand of (2) there is but a finite number of subgroups 
(?(p*) with k > \ . 
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