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Une généralisation du théorème de Simmons. 
Par I. B. HAÁZ à Budapest. 

La probabilité constante d'un événement soit p\ la probabilité pour que 
cet événement se présente r fois et ne se présente pas n— r fois en n 
épreuves est 

P , = ( n
f ) p ' « r ' (q = 1 p). 

Le théorème de T . C . SIMMONS [1] affirme que si Si nP est 

entier, il y a plus de chances que l'événement arrive moins de np fois que 
plus de np fois: 

11P -1 ¡L 

ZPr> 2 Pr. 
r-J.) r=-»p+l 

Dans le câs où np n'est pas entier, ce théorème n'est pas en général 
vrai (cf. C H . JORDAN [2]) . 

Au contraire, le théorème suivant est toujours vrai: 

Théorème. S/ p < ~ et si h est l'entier égal ou immédiatement supé-
rieur à np, il y a plus de chances que l'événement arrive moins de h fois 
que plus de h fois: 

ZPr>±Pr [h = np + d ^ l ^ ± , 0^d< l). 
r=0 r=/i+l V. ¿ J 

Ce théorème embrasse évidemment le théorème de SIMMONS. 

Pour le démontrer, examinons les rapports 

R_Ph-i_ h—i+l h— 1 h h +1 _h±L-(iT 
' Ph+i n—h—i+l "' n—h—l n — h n—h+\ "' n—h + i [p) 

( / = 1 , 2 , . . . , k; A = min (h, n—h)). 
Le premier de ces rapports est 

Ph-i h h+1 q2
 = npq + dq npq + dq + q ^ j 

Hl~ Ph+1 n—h n—h+ï p- npq—dp npq—dp+p 
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Pour examiner les rapports R2, R3,..Rk, posons 

Ri h — i +1 h + i q-
Sr-

Si—Si-

( / = 2 , 3 , . . . , k)\ 

/ + 1 n—h + i n—h—i + 2 n—h + i—ljp*' 

Ri— 1 n — h—i+l n—h + i f 
on a pour i = 3 , 4 , . . . , A:: 

f / i—/'+1 /k + i A—i + 2 h + i— 1 

On en tire que 
sgn (Si—Si-l) = sgn[(h—i+\)(h + i)(n—h — i + 2)(n—h + i—\)— 

_ ( „ _ A _ / + l ) ( n _ / i + l-)(A_,- + 2)(A + / - l ) I = 

sgn 

c'est-à-dire que 

Donc on a pour i = 3,4,..., k: 

Ri Ri — 1 , , ~> n 
S e I ° n q U e 

11 y a trois cas à distinguer: 

1. En cas où h — n 1 , on a h>^> n—h, donc 

Rk ^ Rk— 1 R* h— 1 h+ 2 q-
Rk— 1 Rk—2 R, n—h— 1 n—h + 2 p-

Comme / ? , > 1 , il en résulte que 
Rk>R,:-l >•••>/?,>#,> 1. 

En ce cas k = n—h, h—k= 1, h + k = n, donc on a 

P, P> Ph-2 Ph-l > > • • • > — > " > 1 . 
~h+1 Ml Pu -1 P/i+2 

Par conséquent 
Pi,-i > , > P/,+2, . . . , P , > P„-1, P, > P„, 

et évidemment P0 > 0. L'addition de ces inégalités vérifie notre théorème 
dans ie cas envisagé. 

2. En cas où A = on a 

Rk __ Rk-1 _ = Pi _ . , 
P*-l P*-2 "' P, ^ ' 



Une généralisation du théorème de Simmons. 43 

> ... > 

c'est-à-dire 

Ph-l > PhH , Ph-i > Phrl , •••, Pl> Pu-1, P0 > P,,, 

Par addition, notre théorème en résulte aussi dans le cas où h — . 

ri I 

3. En cas où h n —h, on a k = h et 

" " < < . . . 

Rh-l Rh-2 Rl 
Rh , Rh-i . R2 

Nous savons que M > 1, mais il est possible qu'il y ait un Ri ^ 1. 
Dans ce cas, soit j le plus petit des indices i pour lesquels cette inégalité 
subsiste, 1 < j ^ k h . On a alors Ry.Rj-i<l, et comme le rapport Ri.Ri-i 
diminue lorsque / augmente, on a aussi /?;:/?,-!< 1 pour / s j. Donc 

Rx > 1 , . . . , Rj-i > 1, Rj^l, /?;+i < 1 , . . . et par conséquent 

lorsqu'on convient de poser P t - = 0 pour / < 0. Les inégalités (*) restent 
valables aussi dans le cas où Ri > 1 pour tous les i, si l'on convient de 
poser dans ce cas j = h -j- 1 . 

Dans la suite, nous pouvons procéder suivant la méthode de E . FELD-
HEIM [3]. Multiplions chacune des inégalités (*) par le facteur j — i , qui est 
positif pour / = 1, . . . , _ / = 1, égal à 0 pour i=j, et négatif pour 
i — j + \ , . . . , n — h . On obtient 

avec le signe. = seulement pour i—j. Par addition (omettant les probabilités 
égales à 0) il en résulte que 

* 0 = 1 , 2 , . . . , y — 1 ) , 
(i=j,j+\,...,n—h) 

O - O A - , iÊ (j-i)P, ( / = 1 , 2 , . . . , n — h ) 

h v-h 

Zu-i)p*-i>2u-i)p> •h-i, 

donc 

2 ( j - h + r)Pr> Z U~r+h)P, 
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La moyenne des écarts np—r étant nulle, on a 

Z(np-r)Pr = Z(r-np)Pr^ 2 0r-np)Pr. r=0 r=h r=/i+l 
En ajoutant cette inégalité à l'inégalité précédente, nous obtenons: 

(np-h+j)ZPr>(j+h-np) 2 Pr. r=0 r=h +1 
Comme h = np + d, 

( j - d ) 2 P r > ( ] + d) 2 Pr, 
T - . 0 • r=h+1 

et à plus forte raison: 
*=1 n 

2 P r > 2 P r , r=0 r=fc+l 

ce qui achève la démonstration de notre théorème.1) 
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