
. 203 

T h e von Neumann coordinatization theorem 
for complemented modular lattices. 

By K. D. FRYER and I. HALPERIN1) in Kingston (Canada). 

1. Introduction. 

1 . 1 . In all of what follows n will denote a fixed positive integer, V 
will denote the set of all vectors u — (cc\...,ccn) of length n, and left modu-
les will always mean non-empty left modules of V. The coordinates a> will 
be arbitrary elements in a ring sJi. 

If 9i is a division ring it is well known that the set of all left modules 
of V form a complemented modular lattice. If sJi, more generally, is a regular 
ring with unit element, then, as discovered by JOHN VON NEUMANN, a com-
plemented modular lattice is formed by all left modules of finite span (a left 
module is of finite span if it is spanned by a finite number of vectors). In 
the case that 3fl is a division ring every left module is of finite span. 

A deep converse to the previous statements was discovered by VON NEU-
MANN (7, vol. 23, page 18; 8, vol. II, Theorem 14.1, page 141]. Let L be a 
complemented modular lattice possessing a finite homogeneous basis alt..., 
an of order n and let Ly denote the set of inverses of a3 with respect to 
at + Oj. VON NEUMANN showed that if n s 4 the following theorem holds: 

T h e v o n N e u m a n n c o o r d i n a t i z a t i o n t h e o r e m . For every 
i =)= j, addition and multiplication can be defined for the elements of ¿¡, in 
such a way that: 

(i) the Ltj become regular rings with unit, isomorphic to a common 
regular ring 31, 

(ii) all sub-lattices L(at) (¿(a,) consists of all x s a<) are isomorphic 
to the lattice of all left principal ideals of % 

(iii) L is isomorphic to (coordinatized by) the lattice of all left modules 
of finite span in the space V of vectors (a1,..., a'1) with all «' in 91. 

') Canadian Government Overseas-A ward Fellow 1954—55. 
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This generalizes the classical theorem that a projective geometry carr 
be coordinatized (with coordinates in a suitable division ring) if the geometry 
has dimension ^ 3 (that is, has order ^ 4). But the classical theorem also 
asserts that a projective geometry of dimension 2 (i. e. a plane geometry)' 
can be so coordinatized if and only if D E S A R G U E S ' S theorem holds [ 3 , Kap.. 
V; 6, Theorems 10, 11, ex. 19, page 204] and this result is not covered 
by VON N E U M A N N ' S theorem as formulated hitherto. 

In this paper we will give a presentation of VON N E U M A N N ' S coordinat-
ization theorem which further simplifies our previous treatment [1, 2] and 
which includes the case of plane projective geometry. Our discussion will 
apply to any complemented modular lattice L possessing a homogeneous 
basis of order g 3 ; for the case n = 3, we postulate the additional restrictions 
(4. 3. 3), (4. 3. 4) and (4. 10. 3). When L is a plane projective geometry these 
restrictions reduce to the so-called fundamental theorem on quadrangular 
sets [ 6 , p. 4 7 ] , which is, in turn, equivalent to D E S A R G U E S ' S theorem. 

Since detailed discussions of the von Neumann coordinatization theorem 
which have appeared previously [8, vol. II; 4; 1 ,2 ] are not readily acces-
sible, we find it desirable to give here a complete exposition. 

1 . 2 . Con ten t s of th is p a p e r . This paper does not assume previous 
knowledge of either VON N E U M A N N ' S theory or general lattice theory. Sections 
2, 3 and part of 4 are a simplified exposition of parts of [8, vols I, II]. 

In section 2 definitions are given for: lattice with zero element, modular 
lattice, relatively complemented lattice, complemented lattice and independence 
of a collection of lattice elements, together with some properties which are 
required later and are easily verified. 

In section 3 regular semi-groups and regular rings are defined and 
some of their properties obtained. With V denoting the module of all vectors 
of length n with coordinates in a regular ring it is shown that a left module 
(i.e. sub-module of V) of finite span is always spanned by n vectors 
(«•>',.••, <'-J"), j — n , with the properties: for each j, a" is idempotent, 

say; for all i > j, uJ' = 0; for all i < j, e'iO: = «•<' and a1'' e' = 0. Such 
a set of n vectors will be called a canonical basis for the left module. It is 
shown that the left modules of finite span form a relatively complemented 
modular lattice; if the regular ring ;){ has a unit then this lattice is com-
plemented. 

In section 4 a ring of coordinates is constructed for a given comple-
mented modular lattice L. In § 4. 1 homogeneous bases and normalized 
frames for L are defined. Addition and multiplication are defined in §§ 4. 2 
and 4. 9 respectively, for elements in a fixed ¿¡j (this is a lattice generali-
zation of. familiar constructions in projective geometry). In §§ 4 . 2 to 4. 14 
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it is shown that the U, then become isomorphic regular rings with unit if L 
possesses a homogeneous basis of order / 1 2 3 and satisfies the additional 
restrictions (4.3. 3), (4. 3.4) and (4. 10.3). Assuming these conditions on L, 
Parts (i) and (ii) of the von Neumann coordinatization theorem are established 
(Theorem (4. 14.6)). 

In § 4. 15 certain collections of lattice elements (x;f, (.%; i>j) 
with all x;j in Lij, are called ¿-numbers and upper semi-L-numbers respec-
tively. These numbers form rings 3t, respectively, and 5T is identified in 
a natural way with a subring of 3{ (actually ?){' coincides with SJi; this is 
shown directly if n s 4 but for n = 3 is obtained only as a consequence 
of Part (iii) of the coordinatization theorem). is called an auxiliary ring 
for L. in (4. 15.5) -Ji is shown to be ring-isomorphic to every L,r The proof 
of Part (iii) of the coordinatization theorem (to be given in sections 5, 6) is 
in terms of the [space V of vectors (« ' , . . . , «") with cil in the auxiliary ring №. 

In section 6 we give a rule which assigns to each x in L a family of 
modules of V. It is shown that all left modules assigned by this rule to the 
same x coincide (Theorem (6.2.5)) and that the rule sets up a (1, 1) order 
preserving correspondence (i. e., lattice isomorphism) between L and the set 
of all left modules of finite span (Theorems (6.2. 1), (6. 2. 6) and (6.2.7)). 
This establishes Part (iii) of the coordinatization theorem. 

The rule which assigns left modules to an element x is as follows. 
First we consider special elements y which satisfy: for some integer /, 
y ^ £?!+-... -¡-a.-, + • •. + fl,--i) = 0 (such an element is called an /-element). 
We show that every /-element can be expressed in terms of suitable 
„projections" ¿11., j<i (each in ¿¡J), together with a suitable „covering" 
idempotent e (see (6. 1. 1)). In § 6. 2 we assign to each /-element y a vector 
u(y), not necessarily unique. Then an arbitrary x is expressed as a. sum 
x , + . . . + *„ with each x; (not necessarily unique) an /-element. The module 
spanned by vectors u(x/),..., u(x„) is assigned by our rule to x. 

Certain relations required in the proofs of section 6 are collected 
together in the previous section 5. The involved identity (5. 2. 3) is required 
in the proof of Theorem (6.2.3). In § 5. 3 the nullity «u = («'?; / = l , . . . , / i ) 
and the reach «' = («; ; / = 1, . . . , n) with 0 S «'.', a', g a,, are defined for 
each a in 9i. If 9f is a division ring, each of «';' = 0, ci,: = ai is equivalent 
to a4=0 ; in the general these conditions are equivalent to: a has a right 
inverse and a has a left inverse, respectively. Theorems (5.3. 1) to (5.3.7) 
give properties of reach and nullity and are designed to-meet complications 
which arise in section 6 due to the fact that 3t need not be a division ring. 

Section 7 specializes the previous discussion to- the case of projective 
_geometry with a normalized frame consisting of points. It is shown that the 
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additional restrictions (4.3.3), (4 .3 .4) and (4.10.3) are then equivalent to 
a restricted formulation ( 7 . 4 . 3 ) of D E S A R G U E S ' S theorem. 

1 . 3 . Notation. Greek letters a, /?, y,... (but excluding y f ) without 
subscripts will denote elements in a semi-group 5 or in a ring SR; e, f , g 
will be reserved for ring elements which are idempotent. For fixed a1, a3 , 
in 9?, («', a2,. ..)i will denote the left ideal consisting of all finite sums 
pcix + (f-cr-f-... with arbitrary ¡Si in 9i; similarly (a\a~,...)r will denote 
the right ideal of elements a1 pl+a?p3 + ...; if a is in a semi-group 5, (a) t 

will denote the left coset consisting of all pa with arbitrary /3 in S, (a)r will 
denote the right coset consisting of all a / i with arbitrary ¡S in 5 (if the 
semi-group 5 is the multiplicative semi-group of a ring 91, the left coset 
(n)i and the left ideal (a) t coincide as do the right coset and right ideal 
(ia)r). The letters u, v,... will denote vectors of length n with coordinates 
in 9i and (u ,v , . . . ) i will denote the left module spanned by u,v,... which 
consists of all finite sums au + Pv-\-... with arbitrary a, /?,... in 91. The 
letters a, b, c, d,..., x, y, z,..., p, q, w,..., A, B,... will denote elements in 
a lattice L. The letters i, j, k, m, s, t, will denote positive integers. The same 
symbols 0, 1 will be used to denote ring elements and lattice elements but 

1 there will be no ambiguity. The symbols + , 2 will denote addition for ring 
elements and lattice join (i. e. supremum) for lattice elements but there will 
be no ambiguity. Similarly c/S and I l j a ' will denote ring multiplication 
whereas xy and /7, x] will denote lattice meet (i. e. infimum). With each 
ring element a there will be associated certain lattice elements to be denoted 
by a with subscripts (with or without superscripts) thus «y, k?, and «;. For 
certain lattice elements we will define in § § 4.3, 4 .10 new operations 
x + y, xXy with values which are again lattice elements; these should not 
be confused with the lattice operations x+y, xy. 

2. Complemented modular lattices. 

2 . 1 . Lattices. A lattice with zero L is a collection of elements 0, a, 
b, c,..., x, y, z,..., partially ordered by a relation a s b (also written b^a) 
such that 0 ^ x for eveiy x, and for each pair a, b there are elements a + b 
and ab (necessarily unique) satisfying: 

a + b ^ x if and only if o g x and b^x, 
x ^ a b if and only if x g a and x ^ b . 

L(a) will denote the sub-lattice with zero of all x^a. 
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2 . 2 . Modular lattices. L is called a modular lattice if: a(b + c) — 
= 6 + ac for all a, b, c with ftga. This modular law implies .the absorption 
law: ab + c = a(b + c) for all a,b,c, with c i a ; the clipping identity: 
a(b + c) = a[b{a-{-c)c] for all a,b,c; and the superfluous term identities: 
ab = a(b + c) if c(a + b) = 0 and b = bd if b s d. Applications of these 
identities will be indicated by (ML), (AL), (CI) and (ST), respectively. 

2 . 3 . Independence. In a modular lattice with zero, for each m —1,2, . . . , . 
elements x\...,xm are called independent if, for each / ^ m, X'(JC1 + \-
+ x i~1+x i + 1 + [- xm) = 0. If for some ordering of the xi it is true that 
x-'Xx1 H f-xJ-') — 0 for 2 ^ j ^ m then the x' are necessarily independent. 
If the x* are independent and for each of a finite number of j , is a sub -
set of the integers 1,2, . . . , /n , then 

/7>(2x'; i in />) = (2"xi; / in all /,); 

if the x' are independent and xij i i x' for each of a finite number of j, then; 

Iljli xiJ = ZilljX'i. 

The symbols ©, 2® will sometimes be used in place of + , 2 to 
imply independence of the elements involved. 

A detailed treatment of this theory of independence was given by VON 
N E U M A N N [ 7 , vol. 2 3 , page 2 2 , footnote 7 ; 8 , vol. 1]. 

2.4. Complements and relative complements. If z in a lat-
tice L with zero then a relative complement, or inverse, of x in z is an ele-
ment y (not necessarily unique) such that x © y = z; [z—x] will be used to 
denote such an inverse of x in z. A lattice L with zero is called relatively-
complemented if there exists at least one relative complement of x in z when-
ever x^kz . 

A lattice L is said to have a unit 1 (necessarily unique) if x g 1 for 
all x in L. If L has zero and unit elements then a relative complement of x 
in 1 is also called a complement of x; L is called complemented if each x 
has at least one complement. 

A relatively complemented lattice with unit is obviously complemented; 
on the other hand, a complemented modular lattice is also relatively comple-
mented (indeed, if x ^ z and y is a complement of x then yz is a relative 
complement of x in z). 

The modular law implies the indivisibility of inverses, which asserts: 
whenever y1 and y2 are both inverses of a in b and yi^yi, then yx = y* ( for 
y1 = yib = y2(yl+a)=yl+y2a = y?). Because of this indivisibility of inver-
ses it is possible to replace „points" as used in certain constructions in the. 
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classical theory of projective geometry, by „inverses". We shall use the 
phrase general indivisibility of inverses to refer to the more general theorem 
(also a consequence of the modular law): if y, + a = y., + a and- y,a = y,a 
for some a, and yt ^ y>, then y, = y... 

V 

2. 5. Perspectivities. Elements x' and x2 in a lattice with zero are 
called perspective if they possess a common inverse in x' + x2. Any such com-
mon inverse b is called an axis of perspectivity and, if the lattice is modu-
lar, sets up a (1,1) order preserving mapping (called a perspective mapping) 
of L(x') onto L(x-): 

if z' then z1-* (z' + 6)x-, 
if z - ^ x 2 , then z--+(z1 + b)x\ 

If z' and r correspond under this mapping then z1 + b = z--f b. 

3. Regular rings. 

3 . 1 . Definit ion of regular semi-group and regular ring. A non-
empty system 5 of elements « , /? , . . . is called a semi-group if an associative 
multiplication is defined on S, i. e. cip is defined and is in 5 whenever a, P 
are in 5 and «(,?*/) — (cip)y- The multiplication is called a regular multipli-
cation and S is called a regular semi-group if, for each « in S, «,<?« — « 
for at least one ¡i in S [7, vol. 22, page 708]. 

It is easy to see that a semi-group 5 is regular if and only if for each 
a there exists an idempotent e (that is ee = e) such that ea = a and ap=e 
for some p (if «,<?« = «, then choose e = ccp); similarly a semi-group 5 is 
regular if and only if for each a there exists an idempotent / such that 
« / = = « and flcc—f for some p (if tcpu = ce, then choose / = ^ « ) . 

It is also easy to see that a semi-group S is regular if and only if 
each left coset («)/ contains a and is identical with (e)< for some idempotent 
e and if and only if each right coset («),. contains a and is identical with 
(/),. for some idempotent / . 

A ring 9i (a unit is not assumed) is called a regular ring if its multi-
plication is regular; that is, for each a,apa — a for some p in 

3. 2. Principal left ideals. (Throughout this paper, right and left may 
obviously be interchanged). In a regular ring the principal left ideals form, 
as we shall show, a relatively complemented modular lattice with zero (com-
plemented, if has a unit) when partially ordered by inclusion; the zero 
(left principal ideal) of this lattice consists of the zero element of 9i only. 
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This is easily verified since, if e,f are idempotents2): 
(i) the smallest left ideal containing (e)i and (/)< is precisely (e-f-^)! 

where g is any idempotent with (g)i = (/—fe)r, 
(ii) the left ideal of all ring elements common to (e)i and (f) t is pre-

cisely ( / — g f ) i where g is any idempotent with (g)r~(f—fe),; 
(iii) ( f — f e ) i is a relative complement of (e), in (/); whenever (e), is 

contained in ( / ) , ; 
(iv) if has a unit 1 then (1), s (e),. 
It is now easy to prove that: a ring 3t is regular if and only if its 

principal left ideals form a relatively complemented modular lattice such that 
every principal left ideal (a)i contains a and is contained in some principal 
left ideal (e), with e idempotent (possibly depending on a); and a ring 
with unit is regular if and only if its principal left ideals form a comple-
mented modular lattice. 

3 . 3 . Ring conditions on «. If g is an idempotent in a regular ring 
and yl (/ = 1, ...,m) are in dt, then, as we shall now prove, the con-

ditions on a : a is in (g), and is in (-/*), for each /, are equivalent to: 
a is in (e), for a suitable idempotent e = e(g, /?',..., y\ ...). 

We shall prove this for the case m = 1 (the general case will then fol-
low at once from § 3.2 (ii)). We write p for p and y for y' and we may clearly 
suppose that y is idempotent. Then the conditions on a are equivalent to: 
ii = tcg and «(/3—Py) — 0, that is, to the conditions: a = ug,af= 0 where 
/ is an idempotent with (/),. = (/?—/?•/),., that is, to the condition: a is in 
(g—hg)i where h is any idempotent with (h)r — ( g f ) r . 

3 . 4 . Canonical basis. If M is a left module of finite span (of vec-
tors of length n with coordinates in a ring 3t) then M is certainly spanned 
by a finite number of vectors v> = (« ' ' , . . . , a'"). If 3t is regular, then M is 
always spanned by a canonical basis (see § 1.2), as we shall now verify. 

Starting from the given v> which span M, there is an idempotent e" 
with (e")i = («'", «-",. . .)i (this implies a]"e'1 = ccJU for all j and Sj^a'" = en 

a) In (i), (e, / ) , (e - f g), since: f—fe = (f—fe)g, g = u ( / — / e ) , hence ge = 0, 
e = (e + g)—g(e + g), f = f e + ( f g - f e g ) ( e + g). Also e + g),^(e,f), since: e + g = 
= e-ru(f—fe) = {e—uf)e-\-uf. This implies that (e + g), is the smallest left ideal con-
taining (e), and ( / ) , . 

In (ii), ( f - g f ) , (e), ( / ) , since: f - g f = ( f - g ) f and f - f e = g ( / - f e ) , hence 
j - g f ^ { f — g f ) e - Also ( e ) l ( f ) , ^ ( f — g f h since: g = (f—fe)u, hence if x = xe = x f , 
then x ( f - g f ) = x - x ( f - f e ) u f = x - ( x - x ) u f = x. 

In (iii), (e,f—fe), = ( / ) , . Also (e),(f—fe), = 0 since: u = ue= u(f—fe) implies 
zi = = « ( / — / e ) e = 0. 

A 14 
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for suitable pj). Let u>' = and for j ^ = This 
new finite set of vectors (which we shall denote again as v*) span Af and 
have the additional properties: aln—e" (idempotent), e"«1' = au for all ir 
and a>n = 0 for all j > 1. 

Now apply the procedure of the preceding paragraph to the vectors 
'<••' (J = 2) to obtain an idempotent e"-1 so that the vectors which span M may be 
supposed to have the additional properties: a* n - t =e t t - 1 , e"*1«2-' = a2>< for all 
/, and « J ' n l = 0 for j > 2. Successive repetitions of this procedure show that: 
Af can be spanned by vectors v-> (now necessarily n in number) with a'- = 
= en+l--> (idempotent), C+'-J«^ = for all /, and «•>* = 0 for i>n + \ — j\ 

Now replace by —a l-n-1ir obtaining the additional property: 
ai, n-ign-i = q By repetition of this procedure, obtain: a1>ie = 0 for all i< n. 
Similarly, obtain: aJ*e' = 0 for all i < n + 1 — j . 

If u j is now defined to be vn+l~j, the u j are a canonical basis for Af, 

3 . 5 . Vector conditions on a. Suppose g is an idempotent in a 
regular ring and for each / = 1, . . , m suppose Ai* is a left module of 
finite span and vi is a given vector. We shall now show that the conditions 
on a : a is in (g)t and av{ is in Af' for. each /, are equivalent to: a is in. 
(e)i for a suitable idempotent e = e(g, v\..., M\...). 

We shall prove this for the case m — 1 (the general case will then 
follow at once from § 3.2 (ii)). We write vl — v = (a1,..., a") and we may 
suppose that Ai1 has a canonical basis W — (a>..., ajn), y ' = 1 , . . . , n. Then 
the conditions on a are equivalent to: (i) a is in (g)t and (ii) av = 2kfikuk 

for suitable /?*=. But if such ft* exist then aa'a" = pa» for all j. Hence con-
dition (ii) on a may be written: a v ° = S j a a j u ? and is equivalent to the tt 
conditions: «(«*=—2ja}'aik) = 0, k=\,...,n. It is now sufficient to apply 
the result of § 3.3. 

3 . 6 . The lattice of left modules of f inite span. If 3! is a regular 
ring then, as we shall prove below, the non-empty left modules of finite span 
form a relatively complemented modular lattice L when partially ordered by 
inclusion; if the regular ring 3i has a unit then L has a unit and hence is 
complemented (note that the vector u = (a 1 , . . . , a") is always in (u)t if 9t is 
regular, for eu = u with e any idempotent such that (e)r = (« ' , . . . , «")r). This 
is now easily verified, using the following statements: 

(i) L has a zero (left module of finite span) consisting of the zero 
vector (0 , . . . , 0) only. 

(ii) If AT is a left module spanned by vectors u l l , . . . , u l n and Ai'2 is 
a left module spanned by vectors u21,...,u2n, then the smallest left module 
containing Ai1 and Ai2 is spanned by ull,...,uln, u 2 1 , . . . ,u 2 n . 
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(iii) If Af1 and Af2 are left modules with canonical bases 

ulj = ( e y i , . . . . «v"), j = 1, • • •, n, and u-j = (a-j\ ..., a2>), j=\,...,n, 
respectively, then Ai°, the set of all vectors common to Af1 and Ai2 (clearly a 
left module) is a left module of finite span. We shall prove this now by 
induction on n (for n = 1 this is implied by (ii) of § 3.2). 

Consider the n-th coordinate a n of a vector ( a 1 , . . . , «" ) in Af°. For any 
such «" it is clear that e " « u " = ana2 n n = a" so that, without changing the 
set of vectors in Ai°, u1" and u-n may be replaced by e"«1" and e"u2" respect-
ively where e" is any idempotent with (e")i = (ah'")i(a2"")i. Thus we may 
suppose that a1"" = a2,m = en. Then necessary and sufficient conditions that. 
a be the n-th coordinate of a vector in Ai° are: (i) « is in (e)t and (ii) for 
some a', ft1, y' (i = 1 , . . . , n— 1), 

n-1 
( « ' , . . « « - ' ) = . . o V < » - i > ) - j - o ( a l B l , . . . , «i»(«-D) = 

«-I 

= •*• • - <cljU-r') + a ( a 2 n l , • • . , a2'«'"1)). 

The condition (ii), which involves vectors of length n—1, is equivalent to 
(the «' may be ignored): av is in Ai where v is the vector (a1"'—a2"'; 
i = 1 , . . . , n — 1) and Ai is the left module spanned by 2n—2 vectors of 
length n — l : («№;• / = 1 , ...,n — 1), / = 1 , . . . , n— 1), J=l,...,n—1. 

It is now sufficient to apply the result of § 3.5 to see that these coor-
dinates a form precisely a left principal ideal (e)i, say. 

Let u be a vector in Ai° with n-th component e. Then a vector is in 
Af° if and only if it differs by a multiple of u from a vector common to (Ai1)' 
and (Ai2)', where (Ai1)' and (Ai2)' are spanned by «'>, / ' = 1 , . . . , n—1, and 
u2J, j—\,...,n — 1, respectively. 

It follows, by the induction, that Af is of finite span. 
(iv) Suppose Ai1 and Ai3 are left modules with canonical bases 

a i j - ( a i / i , . . . f a } * ) , j=\,...,n, and u2> = («-;',...,a2>"), j=l,...,n, re-
spectively and suppose Ai1 is contained in Af2. 

Then for each j, (c№)i is contained in A relative complement of 
Ai1 in Ai2 may be obtained as Af, the left module spanned by u 1 , . . . , u" with 
ui = (a2»—a%»a>»)u2K For clearly this Ai is a left module of finite span and 
is contained in Af2. Next, Af and Ai1 have only the zero vector in common; 
for if 

M 'W 

W = £ = yiuli 
i=l i=l 

then, equating the n-th coordinates, we obtain ftn(ann—a2"nann)=ynann; 
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multiplying on the right with the idempotent a1"" shows that both sides of 
this equality are zero and hence: 

1.-1 i.-i 
w = y piv = X 

./ -1 ;-=i 

Successive reductions show that if = 0, as stated. Finally M1 is contained in 
M®M' (and hence M- — M® AT): for the identity: 

ti-J = W -(- a-J-'ir-i -f (a-» (S-i-i it-J — <t-jju '•>) 

shows that «-> = vector in Ai +vector in Af'-f-r where /• is a vector in Mr 
with /-th coordinate zero for all / s j. Thus by induction on k, every vector 
in AT1 with at most the, first k coordinates different from zero, is contained in 
M®M'; when k takes the value n," we obtain: M- is contained in M®Ml, 
as stated. 

(v) If R has a unit 1, then L clearly has as unit (left module of finite 
span) the left module spanned by u\...,u" with = («•' ',,.., «•"'), a" = 0 if 
j 4= / and i'J' = 1 if j = i. 

4. Construction of the auxiliary ring. 

4 . 1 . Homogeneous basis and normalized frame. Let L be a 
complemented modular lattice. Then al,...,a„ will be called a homogeneous 
basis of order n for L if a , ® - = 1 and a, is perspective to a, for all 
i, j. We shall adopt the notation: 

;4" = 0; i4; = a, + ---+fl,- ( /=1, . . . , /? ) ; 
Aj = ax-\ h aj-i + flj+i -| \-ai (1 ^ j ^ i ^ n ) . 

Suppose that for such a homogeneous basis, a, is perspective to af with axis 
X; for 1 n (clearly x1 = 0): set 

c,;, = (x, + x,) (a; + aj) 

for all /, j. Then as the reader may easily verify, the c,j (i,j= 1 , . . . , n) 
have the properties: for all i, j, k, 

< 4 . 1 . 1 ) . C;j — Cji~, c„ = 0; ( c J + c,,.-)(tf, + ai-) = c1A; 

A homogeneous basis ait...,a„ together with a set of c,(- with the properties 
(4. 1. 1) will be called a normalized frame for L. 

If i, j, k are all different, P,.j:= Pji: :„ (to be written as Pk:i if j is 
unambiguous) will denote the perspective mapping of L(ai + a}) onto 
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L(ak + cij) determined by the axis cik. The perspective mapping P will be 
called non-crossing if both i > j and k > j or both i < j and k < j. 

The collection of all inverses of a, in a, + a,- will be denoted by L,j 
(these concepts, basic for the coordinatization theorem, are due to VON 
N E U M A N N [ 7 , vol. 2 3 , page 2 0 ; 8 , vol. I I , pages 3 0 , 3 2 , 5 3 ] ) . 

Throughout the rest of this paper we shall assume n ^ 3. We shall de-
velop definitions for addition and multiplication to apply to the elements in 
L;j for arbitrary, but fixed /, j with i =j= j, such that L;, becomes a regular 
ring with unit provided that the normalized frame satisfies the three condi-
tions (4.3.3), (4.3.4) and (4.10.3) below (these conditions are equivalent 
to Desargues's theorem in the case of projective geometry). These three 
conditions need to be postulated only for the case n — 3 since, as we shall 
verify, they hold necessarily whenever n ¡s 4. 

4 . 2 . The addition construction for inverses. An important con-
struction, which for fixed i, j applies to two elements x, y in L,, and yields 
an element z is the following: Choose any A, B satisfying one or more of 
the properties: 

(4.2.1) at + A + B ^ x , 
(4.2. 2) a:(A -f-B + aj) = B(a, -f a,) = 0, 
(4.2.3) Aa3- = 0. 

Then define3) 

(4. 2. 4) z==Vy(XJrA)(ai + B) + aj){y + B) + A\{ai + a]). 
We shall verify: 

(i) (4. 2. 1) implies z + aj — ai + ctj, 
(ii) (4. 2.2) implies za} = Aaj, 

so that (4. 2.1), (4.2. 2) and (4. 2. 3) together imply that 2 is in 

P r o o f of (i): 
z ~r Oj = [{(x + A)(a, + B) + aj) (y + B + a}) + A](a, + a:) (AL) 

= [(x + A)(at + B) + a, + A](ai + a3) (ST) 
= [(x + A)(ai + B + A) + a3] (a<+a,) (AL) 
= (x + A + a,) (a; + aj) using (4. 2.1) 
= a, + aJ. 

3) Suppose, in the usual (Cartesian) u, v plane, that x is (uu 0), y is (u2 , 0), ai is 
the origin, aj is the point at infinity on the a axis, A is the point at infinity on the v 
axis, and B is the point at infinity on the line u— v: then (u^ + 0) coincides with 
the z of (4.2. 4). 



214 K- D. Fryer and I. Ha) p e r i n 

P r o o f of (ii): 
zaj = [{(x + A)(a> + B) + aj) (y+B) + A] aj 

^ [ { ( x + AXA + a j X B + a d + q f W + t y + A t o (CI) 
= [{(x+A)(A+aj)B+aj}{y+B)+A]aj using(CI)and (4. 2.2) 
= [(x + A)(A+aj) B + aj(y + B) +A] a} (ML) 
= [(x + A)(A+aj)B + A]a, using (CI) and (4.2.2) 
= {x+A)(A + B)aj (AL) 
= [A + x(A + B)(ai + Qj)] Oj (ML) 
= + x(A -f B)a^a} using (CI) and (4. 2.2) 
— Adj. 

We shall now show: 
(4. 2. 5) The z of (4. 2.4) ^ some element E in LtJ if (4.2. 1) and (4. 2.2) hold*). 
(4.2.6) The z of (4. 2. 4) ^ some element F in Li5 if(4.2.2) and (4.2. 3) hold. 

Indeed, (4.2.5) holds with E= [z—zaj] since this E is in Lj (E®aj = 
= z + aj = ai + aj, assuming (4.2.1)). 

Again (4.2.6) holds with F = z + [(ai + ay)—(z+a,)] since this F is 
in Lij (F+aj — ai + Oj and ajF = aj{z + aj) F=ajz — 0, assuming(4.2. 2) and 
(4.2.3)). 

Of course, if (4.2. 1), (4 .2.2) and (4.2.3) all hold, then E ^ z ^ F 
and the indivisibility of inverses shows that E and F coincide and coincide 
with z. 

4 . 3 . Uniqueness of the addition construction. We shall now 
show that for x, y fixed, the E of (4.2.5) and the F of (4. 2. 6) may be 
chosen independent of the A, B at least to this extent. Suppose A0, B0 are 
fixed elements which satisfy (4.2.1), (4.2. 2) and (4. 2. 3) hence determine 
some fixed z„ in L;j: if we now restrict A, B by the additional condition: 
(4.3.1) (Ao+Bo + a, + Oj)(A + B + Oi+aj) = af + a,, 
then (4.2.5) and (4. 2.6) hold with this fixed z0 for E and F. In particular, 
if A, B satisfy (4.3.1) and all of (4. 2.1), (4.2.2) and (4.2.3), then the z they 
determine coincides with this fixed z(l. 

To prove this, we first make the following observations (i) to (iv): 

(i) (A + A0)aj = AaJ if A, B satisfy (4.3.1). 
Indeed, (A + Ao)aj = [Aa(A + ^ ( a , + a}) + A]a5 using (CI) and (4.3.1) 

= [¿o{a.(A> + aj) + as) (A + a}) + A]aj (CI) 
= [A^aM + ai) + A)aj using (4.2.2) 
= Aaj using (4.2.3). 

4) (4 .2 .2 ) is used only to prove uniqueness of £ in § 4 .3 . 
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(ii) A>-M and fio + fi satisfy (4.2. 1) since A, and B0 do. 
(iii) A, + A and B» + B satisfy (4.2.2) if A and B satisfy (4.2.2) and 

<4.3.1). 
Indeed, 
-r A + B„~- B + a,) = o ;[(/l + B)(A0 + Bn~a, + a,) -f A, + Bv + a,] (CI) 

= at:[(A + B)(a, + aj) + A + Bv + a,] using (4.3.1) 
= a,[(A + B-ha,)a, + A, + Bn + a,] (AL), (ML) 
= a, (A, + B„ f fly) using (4.2.2) 
= 0 using (4.2.2); 

(B„ + fi)(a, -f- a,) = [B„(B -f- a, -j-a,) + fi](a, + a,) (CI) 
= [B0 (a, + a,) 4- B](a, + a,) using (4.3.1) 
= 5(a. + «.,) using (4.2.2) 
=•--0 using (4.2.2). 

(iv) A, + A and B» + B satisfy (4.2.3) if /1 and B satisfy (4.2.3) and 
(4.3.1). This follows immediately from (i) above if A and B satisfy (4.2.3). 

Let z, be the z determined by An + A and B„ + B and let z, be the z 
determined by A and B. 

Now if A, B satisfy (4.3.1), (4.2.1) and (4.2.2) then 'z, s z,, 
Zi-f a; = z-. + Oj, zluJ•-•— z-,a,, hence by the general indivisibility of inverses, 
2, — zs. Since clearly z, £;z„, it follows that z.2^z„ as required. 

Next, if .4, B satisfy (4.3.1), (4.2.2) and (4.2.3) then z, is z,, z, i z„, 
and z\ is in L;j since ^4,,-J-A and B^—B satisfy all of (4.2.1), (4.2.2) and 
(4.2.3). From the indivisibility of inverses it follows that z„ z, s: z., as 
required. This completes the proof of the statement at the beginning of this 
.section. 

Thus the following theorem (4.3.2) holds if n~si 4 (as we show below): 
<4.3.2) For all A, B g a, -j- a, -f-ak for some k and satisfying all of (4.2. 1), 

(4.2. 2), (4.2.3), the z of (4.2.4) has the same value (necessarily in Lj). 
More generally, the following theorems (4.3.3), (4.3.4) hold if n ^ 4 

<as we show below): 
<4.3.3) There exists a fixed zu (necessarily in Ln) such that: for all 

A, B ^ Oi + aj + ai.- for some k and satisfying (4.2.1) and (4.2.2), 
the z of (4.2.4) 

<4.3.4) There exists a fixed z„ (necessarily in L,j) such that: for all 
A, B ^ ai + aj + ai.- for some k and satisfying (4.2.2) and (4.2.3), 
the z of (4.2.4) ¿ 2 , . 

If (4.3.2) holds, in particular if n § 4 , we shall define x + y to be the 
common z of (4.3. 2) (necessarily uniquely determined by x, y). 
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We note that A,Bs a,--j-a,--j-a* for some k and satisfying all of (4.2. 1), 
(4.2.2), (4.2.3) do exist; for example, A — cy, B — a* with k- ~ i. Indeed, 
with this choice for A, B, 

a; + A + B = ai
J
raj-\-ak is x, 

a;(A + B+aj) = aiiau + a,) -0, 
B(a, -f- aj) ak(a, + a f ) =-- 0, 
An-, = C/./<iy — 0. 

Substituting A = ckj, B --= a,, in (4.2.4) we obtain: 

(4. 3. 5) x y =•-- [ | (x ^ cjk) (a, -f <fc) + fly} (>> -f a,.) c,,) (a. a,). 

Hence all of (4.3.2), (4.3.3), (4.3.4) are non-vacuous; either of (4.3.3), 
(4.3.4) implies (4.3.2) with z„ necessarily identical with the common z of 
(4.3.2). 

Easy calculation shows that is a zero for the addition -- ; that is, 
o, 4 x = a. = x for all x in Lr,. 

P r o o f of (4.3.3) a n d (4.3.4). 
To prove (4.3.3) and (4.3.4) assuming n jg 4, let z„ be taken as the z 

determined by A> ==c,„;, B„= am, for any m^i,j\ this z„ will be indepen-
dent of the choice of m. For any Ar=fc/,y", there will be an m~'-i,j, k since 
n is 4. 

Throughout the rest of this paper we shall assume without explicit sta-
tement that (4.3.2) does hold, so that x 4 - y is defined for x, y in Lr,. Where 
(4.3.3) or (4.3.4) is required, an explicit assumption will be made"). 

In section 7, we show that (4.3.2) is equivalent to the apparently stronger 
(4.3.3) and (4.3.4) in the case that the elements of ¿,7 are atoms (this 
occurs when the elements of L are the linear subspaces of a projective 
geometry). 

4 . 4 . The symmetric form for the addition construction. Sup-
pose now that p,q are elements ^ a; + aj + ak for some k and that A and B 
are defined in terms of p,q by the relations: 

A = (p + x)(q + aJ), B = q. 

Then, as we shall show below, each of (4.2.1), (4.2.2), (4.2.3) is implied 

>) (4 .3 .3 ) and (4.3.4) , a fortiori (4.3.2) , hold necessarily, even if rt ̂ -3, if x = ai 

or y — a, . Indeed, if x=--ai and (4 .2 .2 ) holds, then the z of ( 4 .2 .4 ) reduces to y -r A cr 
. which shows that (4 .3 .3 ) and (4 .3 .4) hold with y for z„; if y = ai and (4 .2 .2 ) holds, then 

the z of (4 .2 .4 ) reduces to x(A + B - f a) - f Aoj which shows that (4 .3 .3 ) and (4 .3 .4 ) 
hold with x for 
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by a corresponding condition"): 

(4.4.1) 
(4.4.2) 
(4.4.3) 

P Q'- Q-'-II;, 
q(a, - f a,) — 0 , p s ; a. 4-q, 

p(a, + a;) g x. 
The conditions (4.4.1), (4.4.2) and (4.4.3), for both p,q and q, p, are 
together equivalent to: 

( / ? - f -a , =-<7 + a . = />-</; 
(4.4.4) j q(a.-i a;) : - p(a. l-a) 0; 

• P -r q = a, -;- a, — ak. 

Finally p -—- en.-, q - ih. do satisfy (4.4.4). 
That each of (4.4.1), (4.4.2), (4.4.3) implies the corresponding rela-

tion (4. 2. 1), (4. 2. 2), (4.2.3) respectively is shown as follows: 

a. -- A -f B a, -r q -;- (p -x)(q + a,) 
~~ P f (P -rx) (? -r «;) — (p + x) (p -f </ + 0./) "Sing (4. 4- 1 >• 
. + (/;) --- A". 

Now substitution for A, B in (4.2.4) gives: 
(4. 4.5) £ = [{(? + x) (q Ar a-)- «,-{ (y + q) + (p + x) (q -j- tf;)) (a, - «,) 

• [(/>-«•)(y \-q) :~{P : x)(q + «,)! (a -f a.) 
if (4.4. 1) holds (using (ML)). 

We can now derive relations between x y and p and' q. First, (4. 3. 2) 
shows at once that: 
(4.4. 6) -v 4. y == [(p + aj)(y-rq) ( p - x) (q ^a,)) (a, - d) 
if p,q satisfy all of (4.4.1), (4.4.2), (4.4.3), in particular if, p,q satisfy 
(4.4.4); in this case we shall write (x -1 >•),,.,, to denote the formal expression 
on the right side of (4.4.6) (its value is, of course, x4- y). In particular^ 
using p = C;i:, q = a,,, we obtain 
(4.4. 7) • x 4- y = [(x + cu) 0a, + a,) + ( y + a,,) (c„ + fl,)j (</, + a,). 
Next, as we shall prove below: 

") To derive (4 .2 .2) we use only g(a ; -f- a-) = 0 but for a subsequent calculation it 
is advantageous to restrict (4 .4 .2) by the condition p :g, a, — <7. 

a. (.4 + fi - a,) - - a,(q -f a ;) - , 0 using (CI) and (4. 4. 2). 

= \p{<l~r ('¡) - i - * ] a 
= X(l ; 

== 0 . 

(Cl> 
using (4.4.3) 
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<4. 4.8) / / (4.3. 3) holds, then: 
x + y^[(pJrx)(q + dj) + (q + y)(p + Qj) ] (a, + a,), 

provided that (4.4. 1), (4: 4. 2) hold. 
(4. 4.9) If (4. 3. 4) holds, then: 

* + + + aj) + (<? + y) (P + a,)] (o; + aj), 
provided that (4.4. 2), (4. 4. 3) AOW. 

To prove ( 4 . 4 . 8 ) it need only be noted that if ( 4 . 4 . 1) and ( 4 . 4 . 2 ) 
hold, then ( 4 . 4 . 5 ) gives: 

2 = \{P + aj) (y-I- q) + ( , R + -X) (a+?,)] (ar+ aj) 

since ( 4 . 2 . 1) and ( 4 . 2 . 2 ) hold. 
To prove ( 4 . 4 . 9 ) we note that if ( 4 . 4 . 2 ) and (4 . 4 . 3 ) hold, then 

p ^ q + a; and ( 4 . 2 . 2 ) , ( 4 . 2 . 3 ) hold; hence from (4 . 4 . 5 ) : 

-x 4 - 3' z [{p + x(q + a,) + aj} (y + q) + (p + x) (q + a,)] {a. + a,) (ML) 
^ [(P+ aj) (y + q) + (p + x) (q + a})\ (ai + aj). 

4. 5. Commutativity of the addition construction. Since (x 4-}'),..,, 
is identical with ( j^x) , , . , , it follows, using any p,q which statisfy ( 4 . 4 . 4 ) , 
that x4-y = j>4-x. 

4 . 6 . Associativity of the addition construction. For fixed y in 
Li and p,q satisfying ( 4 . 4 . 4 ) we define: 

P' = (q+y)(j> + aj), <?' = ( a , + / ? ' ) ( < 7 + a>). 

Then p', q' also satisfy ( 4 . 4 . 4 ) . To prove this we note the identities: 

a,+p =aj+p, aj-j-q' = aj + q, 
y+P' = y-rq, p'q'=pq. 

Now 
a, + q' = (a;+p') (q -f aj + a) = a , - + p , 

P' -r <?' = (a<+Pl(q + aj-rP') = a, + p'. Hence 
p' + ai = q' + a; = p' + q'. 

Also 
P' ifl: + aj) == aj (q + y) = yaj = 0, 
q'(a, + aj) = a , ( a ; +p') =•= 0, 
p' + q' ^ p + q + aj^ai + aj + ak. 

Now if x,y,w are all in LiJt then, as we shall now prove: 
< 4 . 6 . 1) [ ( x 4- y)P, , 4- w] = [x 4- ( y 4- »v)P-,,-] , . 
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Indeed, 
left side of (4. 6.1) 
= [(P' + fly) (w+Q') + \P' + iP' + (P + x)(q + fly)} (fl, + aj)\(q' + a,)j (a. + fly) 
= [(/> + a>) (w + q') + i(P + x) (q + fly) +P') (q + fly)] (a. + fly) 

= [(P + fly) (w + q') + (p + x){q + fly)] (a,- + fly); 

right side of (4.6.1) 
= [(/> + fly) ( ( y + ^ k + q) + (P + x) (q + fly)] (fl. + fly) 

= [(/> + fly)[ { ( P + fly) (w + q') + q) (fl, + fly) + q] + (p + x) (q + a,) ] (fl, + fly) 

= KP + fly) (iv + q') + (p + x)(q + a,) ] (fl; + fly) 

= left side of (4.6.1). 

4. 7. Subtraction as the inverse of the addition construction. 
We shall now verify that for given x and y in the equation iv + y = .x 
has a solution w (the uniqueness of this w, to be denoted x—y, necessarily 
follows from the associativity and commutativity of -f): for this purpose we set 
<4. 7. 1) iv = [{.x + (y + a,)(c„H-fly)} (fl,; + ay) + c,,] (fl, + fly). 

First we verify that this w is in L,y. 
wa, = [{x + (>< + ak) (cik + fly)} (flfc + a.,) + c,,.]fly 

--= [x + (y + a*) ( c , + fly)]fly (CI) , ( S T ) 

= [x + (y + ak) (a, + a,) (c„L. + fl,) ] fl, (CI) 
^-[x + yaAa, (ML) 
= x fly = 0 ; 

IV - f aj - - [{x + (y + fl; + ak) (c,k + fl/)} {ak + fly) + c*] (a, + fly) (AL) 
= [(* + cik + fly) (fl, + fly) + clk] (fl, + fly) (ST) 
= (fl;.- 4 - ay + C,,) (fl, + fly) ( S T ) 

= fl,+fly, (ST). 
Next we verify that wjry = x\ indeed from ( 4 . 4 . 7 ) we obtain: 
lv 4-y= [(w cik) (a,.- + fly) + + a,) (c,7, + ay)] (a, + a}) 

= [\x + (y + fl,.) (c, + fly)} (a, + ay) + (y + ak) (<c,k + fly)] (a{ + fly) 
(AL), (ST), (ML) 

= [x + (y + «*) (c;k + fly)] [ak + fly+ ( y + fl,.) (c* + fly) ] (a, + fly) (AL) 
= [x + (y + a,) (en; + fly)] (fl.- + fl,) (AL), (ST) 
= * + (y + ak) (fl, + fly) (C|7; + fly) (ML) 
= x+>-fly (ML) 

as required. 



220 K- D. Fryer and I. Ha) p e r i n 

Thus the elements of Li} form an abelian group under the addition x.+y~ 

4.8 . Invariance of 4 under the perspectivities P. Suppose x, y 
are in Lij. We shall show: 

(4 .8 .1) P(x + y) = (Px) + (Py) with P=P*:ij (see § 4 . 1 ) ; 
(4 .8 .2) P ( x ± y ) = ( P x ) ± ( P y ) with P = PkJlij._ 

P r o o f of (4.8. 1). From (4.3.5), using the commutativity of + : 

P*: ij(x 4 y) = [|(y + cjt) («, + ab) + aj) (x + flt) + c}-h] (a. + a,). 

We obtain an expression for (Px) 4 (Py ) using (4. 3.5) with k and j inter-
changed: 

(Pik: ijX) 4 (Pil.: ijy) 
= ([{(x + cjk) (a, + au) + ckj J (a, -f aj) + a,J [(>> + cJk) (a, + a») + as\ + ckJ] (at + afe> 
= [(x + a t ) { ( ) ' + c;/ ,)(«. + «,.) + aA + c M a t + a,.) (AL) , ( S T ) , ( M L > 

P r o o f . of (4.8.2). From (4.4.7) 
. v 4 y = [(x-f- c,u) (oi + aj) -f (y + ak) (cit + a,)] (a. + aj). 

We may use A = x + y, B = y in (4 .2 .4) to calculate right side of 
(4 .8 .2) for, as we now show, these A, B satisfy the relevant conditions 
(4.2. 1), (4 .2 .2) and (4.2.3) (with i and k interchanged). Indeed A, B are 
both in Lij, and 

4 + B = [ ( * + Cik) (a, + aj) + y + a,.] (a, + aj), (AL), (ST), 
Hence: 

flt-M + B s ( * + <&)(«* + «*); <fc(A + £ + < i > ) = 0 ; B ( o , + a J ) = 0 ; = 

With these A, B, (4.2.4) (with i and k interchanged) gives: 

right side of (4.8. 2) 

= {[{(* + en) (ak + aj) + A} (ak + y) + a,] [(y + cik) (ak + aj) + + a,). 

Since 
( y + C;k) (ak + Oj) + >> = (}' + cik) (a; + Oj + ak) s Cik, (AL) 

and 
(x + Cik)(a,.. + aj) + y t i = ( j | f l t ) ( c i k + aj), (AL), (ST) , 

therefore 

right side of (4.8. 2) m [ « J + ak)(c* +aj) + + A] (ak + aj) 
= (c«fc + A) (ak -j- aj) (AL), ( S T ) 
= left side of (4.8.2). 

Since both sides of (4.8.2) are in Lij, the indivisibility of inverses shows 
that s in (4. 8. 2) implies = in (4.8.2). 



The von Neumann coordinatization' theorem. 221 

(4.8. 1) and (4.8.2) show that the abelian group L:j (under + ) is 
mapped group-isomorphically on the group Lik by />,;.:„ and is mapped 
group-isomorphically on the group Lkj by Pkj:ij (in particular, x—y, the 
subtraction of inverses, is invariant under the mappings Pu -jj, P^-jj). 

4 . 9 . The multiplication construction for inverses. A second 
construction which, for fixed /, j, applies to two elements x, y in L-,j and yields 
an element z is the following: Choose any A, B satisfying one or more of 
the properties7): 
(4.9.1) x + A + B^_a;. 
(4.9.2) + S + ay) = B(fl,+ «,) = (). 
(4.9.3) Aaj== 0. 

Then define: 
(4. 9. 4) z = {(x + A) (a, + B) + {(c;j + A) (a, + B) + yJ (a, + 5)] (a, + a,). 
We shall verify: 

(i) (4.9. 1) implies z + a ,=a, -f a,, 
(ii) (4. 9. 2) implies z aj = [(c,y -)- A aj)a: + y]iij, 

so that (4.9. 1), (4.9.2), and (4.9.3) together imply that z is in Lj. 
P r o o f of (i): 

^ + aj = [(x + A)(a, B) + {(ClJ + A)(a: + B) + y + a;) (a, + fi)](a, + aj) (AL) 
= + + + + + + + + (AL) 
= [(x + A) (a, + B) + (a; + a, + A) (a, + ff)] (a, + aj) (ST) 
= (a ,+a J + /l)[a; + 5 + (x + /l)(a, + fi)](a, + i/;) (AL) 
= a, + (x + A + B)(a, + B)(a, + aj) (ST), (ML), (AL) 
= a/ + a, from (4.9. 1), (ST), (ML) and (4.9.2). 

P r o o f of (ii): 
^ a; = [(x + A)(a, + B)(a, + fl) + { (c;J + A)(a, + B)+y\(a, + B)]a, (CI) 

= [(x + A)B + {(c,j + A)(a; + B) + y) (aj + 5)] a, (ML) and (4. 9.2) 
= [AB + {{crl + A){a! + B)+y}(a:i + B)]aJ (CI), (ST) and (4. 9. 2) 
= [(cij + A)(ai + B) + y]aj (ST) 
= [(*, + A)(a, + B)(a, + aj) + y]aj (CI) 
= [{ciJ + A(ai + aj)}ai+y]aJ (ML) and (4. 9. 2) 
= [(cii + Aaj)ai+y]aJ (CI) and (4. 9. 2). 

') (4. 9 .2) is identical with (4. 2. 2), (4.9. 3) with (4.2. 3); in the presence of (4.9. 2), 
<4.9. 1) and (4. 2. 1) are equivalent and equivalent toa;-rA-\-B = X-\-A + B (this follows 
from the general indivisibility of inverses since ai: -i- A — B -J- fly = x + A -j- B + a^ and 
/a,. + A H- B)aj = (A + B)aj = (x + A + B)aJ). 
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It now follows, as in the proof of (4.2. 5), ( 4 . 2 6) that: 

(4.9.5) The z of (4 .9.4) s some element E in L;j if (4.9.1) and (4 .9 .2) hold"). 
(4. 9 .6) The z of (4 .9 .4) s some element F in La if (4.9.2) and (4. 9. 3) hold. 

Of course, if (4.9.1), (4 .9 .2) and (4 .9 .3) all hold, then E ^ z ^ F and 
the indivisibility of inverses shows that E and F coincide and coincide with z. 

4.10. Uniqueness of the multiplication construction. The argu-
ment of § 4. 3 shows: for x, y fixed, the E of (4.9. 5) and the F of (4.9. 6) 
may be chosen independent of the A, B at least to this extent. Suppose Ao, 
Bo are fixed elements which satisfy all of (4.9. 1), (4 .9.2) and (4 .9 .3) and 
hence determine some fixed z0 in Uj\ if we now restrict A, B by the addi-
tional condition: 

(4. 10. 1) (A0 + B0 + ai + aj) (A + B + Oi + a}) = a ,+a } , 
then (4.9.5) and (4 .9 .6) hold with this fixed z0 for E and F. In particular, 
if A, B satisfy (4.10.1) and all of (4.9.1), (4 .9 .2) and (4 .9 .3) then the z 
they determine coincides with this fixed zo. 

Thus, with proofs as in § 4. 3, if n ^ 4 : 
(4.10.2) For all A, B^ ai + aj + ak for some k and satisfying all of (4.9.1), 

(4.9.2), (4.9.3), the z of (4.9.4) has the same value (necessarily 
in Li}). v 

More generally, the following theorems (4.10.3), (4.10.4) hold if n s 4: 
(4.10.3) There exists a fixed zo (necessarily in Li}) such that: for all 

A, B ta at -f aj + ak for some k and satisfying (4.9.1) and (4.9. 2)} 

the z of (4. 9.4) s 2o . 
(4.10.4) There exists a fixed z0 (necessarily in Li}) such that: for all 

A,B ^ ai + a, + ak for some k and satisfying (4.9. 2) and (4. 9.3), 
the z of (4. 9 .4) g zo. 

If (4.10.2) holds, in particular if we shall define xXy to be 
the common z of (4.3. 2) (necessarily uniquely determined by x, y). 

8) We actually use only (4 .9 .1 ) here but the uniqueness of £ as established in the 
next section applies only if the additional condition (4 .9 .2 ) holds. We note here that in 
the presence of condition (4 .2 .2) , that is, (4 9.2), the discussions of both § § 4. 2; 4 . 3 
for + and § § 4 .9 , 4 . 1 0 for x , could be included (as special cases) in a single discus-
sion of a general construction, for x, y, w in L^: 

2 - = [ {(x + A) (fli + B) + Oj) (y + E) + { ( 4 + C 0 ) {a, + B) + W } (a- + E)] (a, + aj). 
This z' reduces to (4 .2 .4 ) if c^ is chosen for w; on the other hand, if ai is chosen for y 
and then w replaced by y, 2' reduces to (4.9.4). This z' actually expresses (x x w) 4. y 
(see (5 .2 .2)) . 
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We note that A, B ^ ai+Oj+ak for some k and satisfying all of 
(4.9. 1), (4.9.2), (4.9.3) do exist, for example A = ckj, B — ak with k =}= /, 
Substituting A = ckj, B = ak in (4.9.4) we obtain: 

( 4 . 1 0 . 5 ) x X y = [ (x + cJk) (a4 - f f l k ) + (j> + Co) (a, + ak)] (a< + a , ) 

= (Pik:ijX + Pkj:ijy) (Cti + Ctj). 

Hence if any of (4.10.2), (4.10.3), (4.10.4) hold, they are non-vacuous and 
either of (4.10.3), (4.10.4) implies (4.10.2) with z0 necessarily identical 
with the common z of (4.3.2). 

Throughout the rest of this paper we shall assume without explicit sta-
tement that (4.10.2) does hold, so that xXy is defined for x,y in 
Where (4.10.3) is required, an explicit assumption will be made910). 

We shall show in section 7 that (4.10.2) is equivalent to the appa-
rently stronger (4.10.3) and (4.10.4) in the case that the elements of ¿,y 
are atoms. 

Easy calculation shows that a, is a two-sided zero and Cy is a two-
sided unit for this multiplication; that is, 

a,- x x — x x ai — ai, CijXx = xXdj=x, 
for all x in L,j. 

4 . 1 1 . Associativity of multiplication. We will now verify that if 
w, x, y are in ¿¡j, then: 

( w X i ) X ) / = w X ( i X ] ) ) . 

We note that if u — v x x where v is an arbitrary inverse, then A = (x+c,k)(ak+aj)t 
B = ak may be used in (4.9.4) to obtain u x y. For as we shall show,, 
these A, B. satisfy the relevant conditions (4.9.1), (4.9.2) and (4 .9 .3) : 

(4 .10 .4) has been given for completeness but is never actually assumed in our 
present deduction of the coordinatization theorem (see footnote 12) so that, as follows 
from this theorem, (4.3.3) , (4 .3 .4) and (4.10. 3) together imply (4.10.4). The existence of 
non-Desarguesian harmonic-point projective plane geometries shows that (4 .3 .3) and 
(4 .3 .4 ) do not necessarily imply (4.10.2) (see footnote 19, p. 245). 

10) (4 .10 .3 ) and (4.10.4), a fortiori (4.10.2), hold necessarily, even in the case 
n = 3, if x = an or x = cij, or y = at or y=cIndeed if x — ai and (4 .9 .2) holds, then 
the z of (4 .9 .4 ) reduces to a ; + [y + fy + A a j a j a - which shows that (4.10.3) and (4 .10 .4) 
hold with a( for z0; if x = c^ and (4 .9 .2) holds, then the z of (4 .9 .4) reduces to 
(Aaj + c^f l j + y[a} + (.A + B c ^ a j which shows that (4 .10.3) and (4 .10.4) hold with y 
for z0 . If y==ai and (4 .9 .2) holds, then the z of (4. 9 .4) reduces to (x -j- A + B) ai which 
shows that (4 .10.3) and (4 .10.4) hold with ai for z0; if y = ctj and (4 .9 .2) holds, then, 
the z of (4 .9 .4) reduces to ¿4^-+ + A + B ) which, with the help of footnote. 7 , 
shows that (4 .10.3) and (4.10.4) hold with x for zQ. 
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indeed, using (4.10.5) to express vxx, yields: 

<4. 11. 1) (u x x) + A = [(r + cy t)(tf. + ak) + A)(a. + a,) + A 
= (,.• + q,) (a. + ak) + A, (AL), (ST); 

(rXx) + A + B = ai + ak + A^ai, (AL), (ST); 
(A + B + aj) = a:{ak + a})=0; fl(a.+ay) = fl*(a.+Qy) = 0 ; 

A dj = (x 4- c,<.) fly = xdj = 0 (CF). 

Now use these A, B in (4.9.4) to obtain xxy and also ( i v x x ) x ) ' . 
Then: 

x x y = [(x 4- A) (ar+ ak) + {(CiJ 4- A) (a, + at) + y} (fly + ak)] (at + a,) 
- [c„, + xa, + <(c,j + A)(a, + a,.) + y) (fly + fl,,)](fl, + fly) (AL), (ST), (ML) 
i= [clk + {(c., 4-A)(a, + fl,.) 4 -y ) (fly + fl,.)](fl; + fly); 

this last expression is in L;J along with xxy, and hence = x x j ' by the 
indivisibility of inverses. Hence: 

[(x xy) + c,x] (fly 4- at) = [(Co- + A) (a. 4- fl*)+y] (fl. + fl,) (AL), (ST), (ML), 

and so, using (4. 10.5), 
w X (x x y) = [(u> 4- Cy,.)(fl, 4- fl;.) + ((* x y) + CtfXfly 4- fl,,)](fl. + fly) 

= [(w 4- cy,.)(fli + ab) 4- {(ci; + A)(a, 4- a,.) 4- y}(aj + fl* + fly). 

Again, 

(w x x) x y 
• = [ ( ( * X x)4- A)(a; 4- ak) + {(cy 4- A)(a, + ak) 4- y) (fly 4- fl*. + a,), 
and, using (4.11.1) to express u>xx, 

= [((w+^Xfl.+flA) -M}(a< + fl,.) 4- {(cv 4- A)(a{ 4" a*) + y} (fly + fl,)] (a; 4- fly) 
= l(H' + Cfl) (ai + fl,) 4- ̂ flfc + {(c,-j 4- 4) (fl. + flfr) + y} (fly + fl/.)] (fl; 4- fly) (ML) 
= [(w + Cj,)(a, + ak) + {(c,y 4- A)(aL + fl,) + y) (aj 4- flfr)](fl. + fly) (ST) 

= W x (x X y), 
which establishes the associativity of multiplication. 

4 . 12 . T h e regularity of multiplication for inverses. From § § 
4. 9, 4.10, 4.11 it follows that the elements of ¿¡j under the multiplication 
x x y form a semi-group with unit. 

We shall now show that the multiplication is regular (see § 3.1 for 
definition of regularity). For this purpose we associate with each x in ¿(J a 
lattice element x'' which we shall call the reach of x, defined as 

x r = ( x 4 - f l , ) f l y . 
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We shall prove below: 

(4.12. 1) For every b s a, and d = [a, — b] there is an e in L:j with ex e = e, 

e' =b, (c/j—e)r = d. 

(4. 12. 2) For x, y in Lj there is a w with w x x = y if and only if x's y. 
From (4. 12.1) it will follow that there is an idempotent e with er = x' and 
hence from (4. 12. 2), for suitable y and w in L i y x e — x and H>xx = e. 
From the associativity of multiplication for inverses, this implies 

x x w x -x = x x e = (y x e) x e — yxe = x, 

which shows that the multiplication is regular. 
We note that this will also show: 

(4. 12.3) The correspondence (x), —• r sets up a (1,1) order preserving map-
ping between the set of all left cosets of Lr, and the lattice L(aj). 

(4.12.3) implies that the cosets (x), form a complemented modular lattice 
under the relation of inclusion. 

P r o o f of (4.12. 1): Set'e = (b + a;)(d+Cij). Then e can be expressed 
as e — ea; + ec;j. This e is in L;j since: 

ea, = (b + a,)(d-f Cr)a3 = (b + a:aj){d + C;ya,), using b, d s a, , (ML) 
= 0, 

e + as =\b + a,) (d+ch)+b + d 
= (b + a; + d)(b + d + Cij) (AL) 
== (a, -f aj){ai + a,) = a, + a,. 

This e satisfies the requirements of (4. 12. 1), for using (4. 10.5) and (ML), 

e x e^eai+lieCij + Ci^iai + a^ + ie + CiuXak + aj^iai + ai) 
= ea, -f [(ec.j + c,*)c* + (e + c,.)(ak + a,)] (a. + a,) (ST) 
= ea, + (e-r c,;;)[(ec,:; + c/A)c,,.. + ak + o,](a, + a,) (AL) 
= ea, + e[(ec;j -f cy,)(a, -f a,) + ak + a] (ML) 
= ea: + e(e c:j + cik + ai) (a, -f a, + ak) (A L) 
= ea, -r e c,y = e • (ST), (ML). 

Next, 

e, = [(6 + a){d -f c.j) + a.-Jo; = (b + a,)(a, + a,) a, = b. 

Finally, since (4.7. 1) implies that (x—v)' = (x + y)a3 for ail x, y in ¿,y, 

(Cij—e)r = (Cij + e)aj = [dj + (b + Oi)(d+c.y)]a, = d. 

This completes the proof of (4. 12.1). 
A 15 
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P r o o f of (4. 12. 2): Because of the indivisibility of inverses, w x x = - y 
is equivalent to w x x ^ y , and this in turn is equivalent to: 

(4.12.4) (w X x) + (x+o. ) (aj + ak) y + (x + cik) (ay + ak) 

(clip to both sides of (4. 12.4) by (pi + aj) to derive w X x s j ; ) . Now (4. 12.4) 
is equivalent (use (4.10.5) to express u>Xjc) to: 

(iv + cjk) (a, + ab) + (x + c№) (a, + ak)^y+(x + cik) (a, -f a,) (AL), (ST) 

hence to: 
(w + cik) (a, + ak) S y -f- (x + c,k) (ay + ak) ; 

hence to: 

( 4 . 1 2 . 5 ) (IV-f cjk) (ai + Û;..) [y+ (x + c,k) (a, + ak)] (a, + ak) ; 

lience to 

(4. 12.6) (w-rc,,) (ai + aù + Cj*^ [y + (x + c a ) (fli + a*)] (ai+ak) + cjk 

(clip both sides of (4.12.6) by ai + ak to recover (4.12.5)); hence to: 

(4.12.7) w^[y + (x^cik) (a} + a*)] fa + ak) + cJk. 
Now the right side of (4.12.7) ^ some w in ¿¡, if and only if: 

(4.12.8) (right side of (4.12.7)) + o, s fli + ay 

(if (4.12.8) holds, iv may be chosen as 

w = [(right side of (4. 12.7)) (a,: + ay) — right side of (4.12.7))^]) . 

Thus ivXx = j> for some w in ¿¿y if and only if: 

(y-h(x + c,k) (ay + o t)] (at + ak) + cjk + ay a a, -f ay. 

This last condition is equivalent to each of the following: 

(4.12.9) y + (x + ai + ak) (ay+ak) & a,, 
(4.12.10) y + (x + ai + ak)ay^air 

(4.12.11) y + (x + ai)aJ^y + ai, 
(4.12.12) (x + ai)ay at)a}, 

(clip both sides of (4.12.11) by ay to obtain (4.12.12); add y to both sides 
of (4.12.12) to recover (4.12.11)). This completes the proof of (4.12.2) and 
establishes the regularity of multiplication. 

We note that (a,)r = (a> + ay) ay = 0 and hence using (4.12.2), x' = 0 if 
and only if x = ai. 

We shall now prove that the idempotent e of (4.12.1) is uniquely-
determined by b and d. First we prove: 
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( 4 . 1 2 . 1 3 ) If b@d = a}, then (b -(- at) (d+ci}) is an idempotent e in Lj such 
that er = b, (Cij—e)r=d; conversely, if e is an idempotent, and if 
b = er, d = (cij—e)T, then b® d == aj and e = (b + a,)(d+Cij) = 
= eai + ecij.") 

P r o o f of (4.12.13). The "if" part was shown in the proof of (4.12.1). 
To establish the "only if" part we assume e to be idempotent; that is, using 
(4.10.5): 

e = [(e + cih) (c,£ 4 - a,) + (e + ckj) (a, + afc)J (a< + a,-). 

Now 
(4.12.16) e ^ d j i e + ai). 
For 

e — e + e (lattice union, not to be confused with e-j-e) 
= [e + ca: + {e + ckj) (a, + ak)] (a< + a,) (AL), (ST) 
^ ^ + ctj(e + ai + a*)] + aj)^ c,,(e-f a). 

Since (x—y)r = (x-\ y)aj, therefore & = (e + a,)a, and t/ = (c,J4-e)aJ. 
Hence: 

b 4-d = (e + a,)a3 4-(Cij + e)aj = [e 4- a> 4- (ft, 4- e)aj\aj= (e+a, 4 -c^aj = ay, 
bd—(e + ai) (cij + e)aj = [e + Cij(e + ai)]aj = 0, using (4.12.16); 
(b 4- at) (d 4- c,}) = (e + at) (e + ci}) = e 4- ci}(e 4- a,) = e, using (4.12.16). 

This completes the proof of (4.12.13). The uniqueness of the idempotent e 
in (4.12.1) follows since (4.12.13) shows that an idempotent e is determined 
by er and (c:j—e)r. 

4 . 1 3 . Invariance of X under the perspectivities P. Suppose 
x,y are in L:j. We shall show, assuming (4:10.3)12): 

(4.13.1) P(x Xy) = (Px) x (Py) with P=Ptk,j (see § 4.1); 
(4.13.2) P(x X y) = ( P x ) ) ( ( P y ) with P == Pkj,,j. 

n ) If at is an atom, clearly the only idempotents in L;j are the zero a, and the unit c^-. 
I2) Note that the abelian group character of the ¿¡j under + and their group-

isomorphism under the perspectivities P follow from the assumption ( 4 . 3 . 2 ) alone 
(in this connection see footnote 19); the semi-group character of the under x , the 
regularity of x , and (4.13.2) follow from the assumption (4 .10.2) alone. However our 
proof of (4 .13.1) requires the. additional assumption (4. 10.3) and our proofs of distribu-
tivity (4.14. 1) and (4 .14.2) require the additional assumptions (4 .3 .4) and (4 .3 .3) respec-
tively; whether some or all of these additional conditions (4.3.3) , (4 .3 .4 ) and (4. ¡0 .3) 
are actually implied by (4 .3 .2) and (4.10.2) is not known but it is not difficult to verify, 
assuming only (4 .3 .2) and (4.10.2), that: the distributivity (4 .14.1) holds in the case that 
w is an idempotent or w a — 0 , and the distributivity (4 .14.2) holds in the case that w i s 
an idempotent or w + ai = ai-\-a-. 
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P r o o f of (4.13.1). We may obtain an element ^ xXy from (4.10.3) 
with A — (PkJy + c,,) (a,. + aj) and B = ak for these A, B satisfy the conditions 
(4.9.1) and (4.9.2) (this follows from the fact that A is in Ljk and A + B = 

Ta, ) . We obtain: 

* X y^[(x + A) (a, - f a,.) + {(c;j + A) (a, + ak) + y} (a, + a , ) ] ( a , + a , - ) 

===[(* + A) (a, -f ih) 4- -I- y) (a,- + ak)} (a, + a,) (AL), ST) 
= [(x - f A) ( a , + ak) + ( y + c , , ) (y + + ak) (a , - + a , ) J ( o , + a,) ( A L ) 

= [(x + A) (a; + a,) + cj,.(y -f a, + ak) (oj + ak)] (a, + a,) (ML) 
[ ( x - M ) (a, -r A;.) - f £•//,] (a,- + Oj). 

Then 

== [x + (Pk:jy + CiJ) (a,- + ay)} (a; + a,) 
PT.JX X Pu..jy 

using (4.10.5) with j and k interchanged to express Pk:ix x Pk:iy. The indi-
visibility of inverses now shows that equality holds in (4.13.1). 

P r o o f of (4. 13.2). We may express x>iji by (4.9.4) with A = Pk:;X 
and fi —a,. for these A, B satisfy the conditions (4.9.1), (4.9.2), (4.9.3) 
(this follows from the fact that A and B are both in Lki and 

x -r A + B = x c!k + ai, — x + a, ak a a,). 
We obtain: 

X X y = [(x + c„) (a, + a,.) + {(cu + Pt,,x) (,a, + a,) + y) (a, + a,.) ] (a, + a,) 
^ [c® + «C; + Pkjx) (a, + a,) + y) (a, + a,.)] (a, + a,). 

Pk-Ax [(c,y + Pk:ix) (a. + a,.) + y] (ak + a,) == Pk,x X />,.,- y 
using (4.10.5) with i and k interchanged to express Pk-jxy. Pk:;y. The indi-
visibility of inverses now shows that equality holds in (4.13.2). 

4 . 1 4 . The distributivity of X with respect to -(- • Suppose iv, x, 
y are in L;j. We shall show, assuming (4.3.3) and (4.3.4)'-): 
(4.14.1) iv X (x -i- j ) = (w X x)-j- (iv x y)-, 
<4, 14.2) ( x 4 j ) x i v = (x X w) -i- (y X tv). 

P r o o f of (4.14.1). We may obtain an element ^ Pk:,x-^ Pk:;y from 
(4.4.9) (which in turn is derived from (4.3.4)) with / and k interchanged, 
using q = wxy and p = (q+ ak)(Pkjw + aj), for these p,q satisfy the rele-
vant conditions (4.4.2) and (4.4.3) with / and k interchanged; this follows 
from the fact that q is in ¿,, and 

p(ak + a) = ak(PkJw + a,) = (w + cj,.)ak = 0s Pl:,x. 
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We obtain: 
( 4 . 1 4 . 1 3 ) P, t : ix 4- Pb:iy [(p + Pk:ix) (a, + fly) + (q + P,,iy) Pk-, w + </,)] (ak + a}). 
N o w , us ing (4. 1 0 . 5 ) with w in place of x, 

q + P,r.;y = (W X y) + Pk:iy = (Pk:jw + Pk:ty) (a. + fly) + Pk:iy = Pk:Jw + Pk:;y. 
N o w from ( 4 . 1 4 . 3 ) , s ince P(x + y) = Px + Py (from ( 4 . 8 . 2 ) ) , 

Pk,(x + y)m [(P + P*:>x) (at + a,) + P,,jW] (ak + a,). 
Hence, us ing ( 4 . 1 0 . 5 ) with iv in place of x and x 4 - y in place of y, 

W X (X 4- y) = [Pir.jW + Pi,:i{x - y)] (di + fly) 
[P>,Jw-r{(p-r P,,iX) (a, + fl,) + Pk:jw\ (at + a,)](a, + fly) 

= [(p + P,,,x) (a, -f fly) + P,,jW] (a,: + fly) (AL), (ST) 
^(p + Pk:ix) (a; + a,) 
= [ ( (iV X y) + fl„) Pk:i IV + fly) -f Pk:; x\ (fl, -f fly). 

N o w we may calculate (w X x) -j- (m> X y) from ( 4 . 4 . 6 ) with (w X x) in 
place of x and ( w x y ) in place of y, us ing p==Pk:jW and q = ak, for these 
p, q satisfy the relevant condit ions ( 4 . 4 . 1), ( 4 . 4 . 2 ) , and ( 4 . 4 . 3 ) ; indeed, p 
is in L;K and 

p(a, + fly) £3 (Pi.-.j w -r Pi.-.,x) (fl, -f- fly) =--= iv X x. 
W e obtain: 

(w X x) -j- (iv X y) 
= [{Pl,,,w + fly) ((iv x y) + 0 k) + (Pk-,w + (iv x x)) (ak + fly)] (fl,: + fly). 

N o w , us ing ( 4 . 1 0 . 5 ) with w in place of x, x in place of y, 

Pk-.jW + (W X X) S Pk,iW + Pk,iX\ 
(PL-.jW + (W X X)) (fl, + fly) g P/,;,X + P,:yiv(fl,; + fly) = P,: ,x . 

Then 
(W X X) 4- (IV X y) I:: [(P/,:yIV + fly) ((iv x y) + fl,,) + Pk,x) (fl, + ay) 

g iv x (x 4- y). 
N o w the indivisibility of inverses s h o w s that equality holds in ( 4 . 1 4 . 1 ) . 

P r o o f o f ( 4 . 1 4 . 2 ) . W e may obtain an element Pk,,x4-Pkjy from 
( 4 . 3 . 3 ) with j and k interchanged, us ing A = Pk:iw and 5 = ay; for these A, 
B satisfy the relevant condit ions ( 4 . 2 . 1 ) and ( 4 . 2 . 2 ) with j and k inter-
changed {A is in Lkj). W e obtain: 

( 4 . 1 4 . 4 ) P „ y ( x ±y) = Pk:yx 4- Pk-.jy 
^ [(A:yX + Pk:i w) (a, + fly) + fl.] (Pk jy + fly) + Pk,w 

g ((x xw) + a,) (Pk:jy + ay) + Pk:iw. 
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Hence, using (4.10.5) with x-ly in place of x and w in place of y, 

(X 4- y) X IV = [Pk J(x 4 - ) 0 - r Pk-.i ivj (a, + aj) 

^ [((x x w) + n,) + 0/) + Pk:i w] (a, + Qj). 

The inequality implies equality because of the indivisibility of inverses (the 
last member is easily shown to be in ¿¡J). Therefore 

(4. 14.5) ( x + > ) x № = [((!>; w) + al.){Pk,iy + aj)-\-Pl,.iw} {a: + aj). 

Now we may calculate (y x w) 4- (x x w) from (4.4.6) with y xw in 
place of x and x x w in place of y, using p = Pk-.jy and q~ak', for these 
p, q satisfy the relevant conditions (4.4. 1), (4.4.2) and (4.4.3); indeed, p is 
in L,,. and 

p{a: 4- aj) (Pk:jy + P,,, iv) (a; + a3) = y x w. 
We obtain: 

(y X w) -L (x x iv) 
= [(Pk:jy + aj) ((x xw) + a,) + (Pk:,y + (y x u>)) (a,. + a>)j (a, + aj). 

Now using (4. 10.5) with y in place of x and vv in place of y, 

Pk jy + (y X w) '£ Pk :jy -f P,:,w; 
(P- jy-r (y x w))(fl, + aj) S p„:,IV + P,:Jy(a, 4- aj) = Pk:, w. 

Then 
(>• x w) -i- (x >< IV) s + w) + al,) + Pk:, w](a;-±aJ). 

Now (4. 14.5), the indivisibility of inverses and the commutativity of 4- show 
that equality holds in (4. 14.2). 

This completes the proof that x is distributive with respect to 4- • 
Thus, under the operations 4- and x the Lkl„ become regular rings 

with unit if the two conditions (4. 3. 3), (4.3. 4) hold for all pairs /, j. If in 
addition (4.10.3) holds, §§ 4.8, 4.13 show that the mappings Pby.ij> 
P.i.:.j yield ring isomorphisms of L;j onto Lkj, Lik respectively, so that as 
regular rings, the Lkm are all isomorphic. 

This, together with (4.12. 3), establishes: 

(4.14.6) Parts (i) and (ii) of the von Neumann coordinatization theorem 
hold if n > 3 or if /7 = 3 and L possesses a normalized frame satis-
fying (4. 3. 3), (4. 3.4) and (4.10. 3). 

4. 15. Fraternal systems, L-numbers, upper semi-fraternal sys-
tems and upper semi-L-numbers. A fraternal system is defined to be a 
set of lattice elements <6> = <6,v>==<60 ; i,j=\,...,n, /={=/> satisfying 
(i) bij^a. + aj, (ii) Pkj,:jb;j = bkj and (iii) Pik,iJb;j = bik for all i, j, k. A 
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lattice element x is called an (/, j) fraternal element if there is a fraternal 
system (by with bij—x (if such a b exists it is clearly uniquely, deter-
mined by x). 

An upper semi-fraternal system is defined to be a set of lattice elements 
< 6 > = <^> = <6 0 ; i, / = 1 , . . . , / / , / > / > satisfying (i) bij ^ a,-fa,-, (ii) 
Pkj:ijb{j = bkj with both i>j, k >y, (iii) bik with both i>j, i>k 
{the mappings P in (ii) and (iii) are non-crossing according to the definition 
in § 4.1). 

Suppose (by is a fraternal system or an upper semi-fraternal system; 
then: if bij ^ a, for some i, j it follows from the definition of Pik:ij that 
this holds for all /, j and by is independent of j ; similarly if bij ^ fl; for 
some /, j then it follows from the definition of Pkj-ij that this holds for all 
i, j and b,j is independent of i; finally, if b i s in ¿,y for some i, j it is 
clear that this holds for all i, j. 

Fraternal systems (by with b;j in L:J will be called L-numbers; upper 
semi-fraternal systems (by with bn in L;j will be called upper semi-L-num-
bers. If ¡3 denotes an ¿-number or an upper semi-L-number (by we shall 
sometimes write to mean b,j. 

If a and ¡H are both ¿-numbers we define « + /? to be the system (b/ 
with b;j = (iij 4-A; for all /4= J and«/? to be the system (by with b;, = a-,j x ¿¿;j 
for all / =J= 7. It is clear from § § 4 . 8 , 4 .13 that a-'rf1 is an ¿-num-
ber and if (4. 10.3) holds, then «/? is also an ¿-number. Subtrac-
tion is defined for ¿-numbers with a—(i=(a,j—,<%; i,j—\,...,n, i=^jy 
{the last paragraph of § 4 . 8 shows that this system is an ¿-number since 
subtraction of inverses is invariant under the perspectivities P). Finally the 
¿-numbers form a ring Si' with two-sided unit 1 = (b; b:j = c:j for all /==/> 
if (4.3. 3), (4 .3 .4 ) and (4. 10. 3) hold. 

Similarly if ( 4 . 3 . 3 ) , (4. 3 . 4 ) and ( 4 .10 .3 ) hold the upper s e m i ^ -
numbers form a ring 3t with two-sided unit; that ?K is regular and ring-iso-
morphic to every Li, will be shown in (4. 15. 5) below. 

The regular ring :K = •){(£,, cy ; 1 , . . n , i4= j) will be called an 
auxiliary ring for the lattice'Vs). 

13) It follows easily from the definitions of 1 and . that :)(. (the abstract ring) is 
completely determined by any three elements of the homogeneous basis, thus (au a.,, %). 
To what extent 31 is completely determined by L (of order n) is not yet known. However 
it was shown by VON NEUMANN [7, vol. 23, page 20, line 38; 8, vol. II, Theorem 4.2] that 
¡8M, the regular ring of all n v, n matrices with elements in iH, is uniquely determined by L 
It is not difficult to show that if L, of order n, has an auxiliary ring which is a field 
(footnote 11 implies that this occurs if L is a projective geometry and the a{ are points) 
then the auxiliary ring (corresponding to this order n) is uniquely determined. 



232 K- D. Fryer and I. Ha) per in 

If <67.,,,; k m) is a fraternal system and <dk,„; k > my is an . tipper 
semi-fraternal system and if b,j = d-,j for some i>j, then clearly b q ^ ' f y i b r 
all / > j. Also every fraternal system when restricted to i :>/. clearly 
gives a semi-fraternal system and we shall identify these when there is no 
possibility of confusion. Then 3T becomes a subring of Actually it will 
follow as a consequence of the coordinatization theorem (§ 1.1) that 
(in the case n ^ 4 the equality 9i' = 3t follows directly from the lemma of 
VON N E U M A N N , ( 4 . 1 5 . 2 ) below). 

We shall show below: 

( 4 . 1 5 . 1 ) Let ( f ( x i , . . x r ) be a lattice polynomial in xu.. ,,xr and let 
v(yi,<j> •••>y>-,'.i) = yij- If t h e O > n , o ; ' > / > are ail "PPer semi-frater-
nal systems, then so is / > ; if the <ym^j; /={=/> are all 
fraternal systems, then so is /4- f}-

(4. 15. 2) Lemma of von Neumann [7, vol. II, lemma 6. 1]: /f n^4, then for each 
x g ai + aj for some i =(=/', there is one and only one fraternal sys-
tem (by with b,j = x (that is x is an (i,j) fraternal element). 

(4. 15.3) Qj for some i > j then there is one and only one upper 
semi-fraternal system <by with b^ = x. 

(4. 15.4) Every x i= some Ui or some c-,j is an (i,j) fraternal element. 

(4.15.2) was used by VON NEUMANN as a technical aid for proving the 
coordinatization theorem for the case n ¡ 2 4. For this case VON N E U M A N N 

showed that the ¿-numbers form a regular ring with unit and he proved 
the coordinatization theorem using coordinates from this ring. 

In the present paper we shall establish the coordinatization theorem 
for the general complemented modular lattice with /2 is 3 (assuming the 
Desarguesian-type conditions (4.3.3) , (4.3.4), (4 .10.3) for the case n = 3) 
by using as a technical aid the apparently weaker lemma (4.15. 3) and using 
coordinates from the regular ring of all upper semi-L-numbers. 

P r o o f of (4.15.1). This holds since lattice union and lattice inter-
section are preserved under the perspective mappings P. 

P r o o f of (4.15.2) . We need only prove, assuming n ^ 4: if 
TzzE. Ttm-jj (/ =r=y, Ar ={= m) is the product of an ordered sequence of s per-
spective mappings P such that T maps L(ai + aj) onto L(ak + am) and 
T(a.) = a,: (such T exist) then Tis uniquely determined by /, j, k, m ((4. 15.2) 
then follows by setting bkm = Tkm:ijx for all k^m). 

To verify the general uniqueness of such T it is clearly sufficient to 
confirm that, in the case i = k and j — m, T cannot fail to be the identity 
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mapping. If it could, we would choose s to have its least possible value to 
give such a T different from the identity and derive a contradiction a s 
follows. 

Easy calculations, using the modular law, establish the identities : 

(ii) Pi;„,:kjPi:j:ij = Phm-.imPuHVj if /',/, k, m are all different. 
It may therefore be supposed (since s has its least value) that the 

sequence of mappings which defines T begins: 

(necessarily: h 4='; k=fh,j). 
If k 4= i so that /, j, h, Arare all different, we can, without changing T, replace 

Ph.k-.hjPi,¡-¡j by Puk-.ikPikuh then we can replace PMK.MPHK.IB by PMBUB. This would 
express T as a product of fewer than s mappings. Therefore we must have 
k = i. 

The same argument shows that m—j and that T is defined by map-
pings beginning: 

Pjr:ji Pji-MiPlu-.ltjPhj-.ij' 
Since n & 4, there is an integer t such that i,j,h,t are all different. Then we 
may replace P,(Wy by Piu-mPm-mj; then PM-,,j\ P,,j:iJ by PM,iTP;t-jj; then Pji-juPm-M. 
by Pji-ji Pjt-.ht; then we may replace PM.,PM-m by P j t o t ; then PjnjiPji:jt by Pj,..j,. 
T will now be expressed by fewer than s mappings; this contradiction 
establishes (4.15.2). 

P r o o f of (4.15.3). We need only prove: if T=Tkm-.ij ( i > j , k > m ) is 
the product of an ordered sequence of s non-crossing perspective mappings 
P such that T maps ¿(cii + cij) onto L(a,c J

r«»«) and T(a,) = ak, then T is 
uniquely determined by i,j, k, m ((4.15.3)then follows by setting bkm = TkM:ljX 

for. all k>m). 
To verify the general uniqueness of such T it is clearly sufficient to 

confirm that, in the case k—i, m = j, T cannot fail to be the identity map-
ping. If it could, we would choose 5 to have its least possible value to give 
such a T different from the identity and derive a contradiction as follows. 

When « & 4, (4. 15.3) is implied by (4. 15.2), hence we may assume 
that n = 3, so that there are 3 different indices i,j,k. The sequence of non-
crossing mappings which defines T must begin: 

But PkjikiPki-.kj is the identity and can be omitted, contradicting the minimum 
character of s. This completes the proof of (4. 15.3). 

(i) Pkj-Jtj Phj-.;j — Pkj-.ij 
equivalently, Pik-.n, Pmuj = Pikuj 

if all of i,h,k^j, 
if all j, h,k=i~i; 

. Pl.j-.ki Pki :l.-j Pl.j: ij • 
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P r o o f of (4.15.4). Because of (4.15.2), we may assume n = 3. Now 
if x ^ ait we need only note that P k j : i j x ^ a k and hence: 

Pji-.H Pki*jPky.ijX = PjiM(x + cik) (ak + a,) = ( x + c,y)fly; 

Pji-.jkPjk-.ikPik-.ijX = Pjk:ikX — Pji-kiPki-.kjPky.ijX. 

If x s Cij = Cj;, we need only note that: 
Pji-.kiPkiikjPkj-.ijX — Pji:kiPki:ltj(x-\- Cik)Ckj 

= Py;/ :;[(* + Cik)Ckj + Cij + x](f i i + flfc) = Pji-.jkPjk-.ikPik-.ijX. 

From (4.15.3) and the definitions of addition and multiplication for 
upper semi-i-numbers, it follows at once that: 
(4.15.4) is a regular ring with unit, isomorphic to every L-,j. 

5. Properties of the auxiliary ring. 

5 . 1 . Addition and multiplication formulae for elements in iH. 
For future reference we list the following formulae: 
( 5 . 1 . 1 ) (r.< + = [P^aij + (/% + ak) (cik + a , ) ] (a , + a , ) , if / > j, i =j= k =|=y; 

= [«v + (/% + ak) (cik + a,)] (ai + aj), if i >j, i±k > j. 
(5.1.2) (« + = [(M/r.y«^ + «y) (P'»:/ -h Qfe) + (Oi -h ay), if i>j,i + k±j; 

= [(«* + aj) (fiij + ak) + c>*] (ai + fly), if / > j, i >k=^j. 
<5.1.3) («—;.% = [«,;; + (a6-f A,) (Oj + Cik)] (ak + aj), if i>j,k>j, i±k. 
<5.1.4) {Ctrl);, =(Pk:ij(Cij+Pkj:ijPij)(ai + aJ), if i > j, i ̂  k ^ j ] 

= («» + Ay)(ai + Uj), if i>k>j. 
Such formulae were first given by VON N E U M A N N [8, vol. I I ] and follow 
immediately from (4.4.7), (4.3.5), (4.7.1), (4.10.5). 

5 . 2 . An important identity. Suppose that 1 <j <i^n and let 
<)'"' and 6"\ m = 1,. . .,y'—l and ¡3 be arbitrary elements in 31. We shall now 
prove that the following identity holds1115): 

(5 .2.1) n[(d"l+l30"');„l+Ai;1) 
m=l 

= ) i 7 ( < c -}- Ai)+ff(d;n+Aj
l-l)\ < *J'1 (AJ-l + a). 

(5. 2 .1) was established in [2, § 5J for the case n S ; 4 . The present proof holds 
for n ^ 3 assuming (4 .3 .3) , (4 .3 .4 ) and (4.10.3) . The identity (5 .2 .1 ) makes possible a 
simple proof that the module which we shall assign to an x in L (see § 6 .2 ) is uniquely 
determined by x (Theorem (6 .2 .5) ) . This is a critical step in the proof of the coordinati-
zation theorem as given in the present paper, 

•i) As defined in § 4. 1, 

A' — at -i i-ti,.; A) = ax-, ¡- -f- ajH -j b 
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To prove this identity we shall first establish that for arbitrary indices 
1 ^km< j <i ^ n and arbitrary 6, (i, d in 5K, 
( 5 . 2 . 2 ) (<J + /J(9)„„ = [6Jm + (di„, + fly) (A , + amJ (a, -j- a ,„)... 
We may calculate (i3d + d),m = (d + <M),m from (4.2.4) with JV in place of 
x, with 6 in place of y, with j replaced by m and using A —fy,,., B — a; 
(indeed, these A, B satisfy the relevant formulae (4. 2. 1), • (4.2.2), (4.2.3) 
with j replaced by m, since A is in LJU, and 

a; + A + B = di + aj + 6jM §s (¿j + 6jm) (a, + an) = (,^)„„ 

from (5.1.4) with ,«? in place of a , f ) in place of /?). We obtain: 

(¿0 + d) !m = {[((/?0),-„, + ejm) (a,- + fly) + am] (a, + dim) + djm) (a; + aw) 

=: i (0?0 &].>) (fii + a ) -r a4 (ai -r dim) -f Qjm } (a; + am) 
------ [(Aj + OjmCij + aM) (fly + d„„) -f 0y,„] (a.- -f ara) 

[(#/ + (dj -r <L„) + dj + dJm] (a, ~ u,,,) 
= K,'J'j -r a.„) (fly -1- <lr.) + djm] (a, + a,„). 

This proves (5.2.2). It follows that jin the rest of § 5 . 2 we shall write 11 

in place of [ f \ : m=i / 

left side of (5.2.1) = / / [ ¡0;;;, + (C,4-fly) ( ^ + a,„) j (a, + fl,„) - Ai~l\ 

=(a; + a ' 1 ) /z [ (6»;: -h A i ; 1 ) + ( d - ; , + a . ) a + a - 1 ) j 

right side of (5.2.1). 
But each side of (5.2.1) is an inverse of A'"1 in a,-f A''1 since, for: 

A "'(right side of (5.2.1)) g A"'(left side of (5 .2 .1)) = 0; 
a, -F A'"1 G: (left side of (5.2.1)) 4- A'~1 

s (right side of (5. 2. l))-4-A'"1 

= ( « , + A ' -1) [me::,+A -11 > + & + ' ) / / ( c . + a o ] 

Now the indivisibility of inverses shows that.equality holds in (5.2. 1). 
As a corollary to (5 .2 .1) we shall derive the following identity which 

holds for arbitrary ,3"' and ¿T, m = l , . . . , j,j<i^n, and arbitrary / : 

(5 .2 .3) — A- A 7 " 7 J + + A-! J + l) = ' 

= (Mj+A"1) n (?;:„+Ai)+H(0?m+Ai;1). 

The right side of (5. 2. 3) is precisely the left side of (5 .2 .3) with 0 in' 
place of y. Thus we need only show that the left side of (5.2.3) has the 
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same value for all y, equal to its value when. y = ft, say. It is therefore 
sufficient to prove: 

(5. 2. 4) left,side of (5. 2. 3) = + № ) * + № ] + U + 
Now (5.2.4) can be obtained by substituting in (5.2. 1): ft—y for ft 

and ¡ r -f yff" for <V", nt = 1 j — 1 and adding the term lT(d';n + A V ) 
to both sides. 

5. 3. Reach and nullity. We shall define below, for each « in %. 
two fraternal systems which we shall call the nullity of u and reach of a. 

Suppose (c is an upper semi-I-number and i, j fixed, / > j. Lemmas 
(4. 15. 1) and (4. 15. 4) show that there exists a unique fraternal system 
with b;, •---= <'..¡0, ; since < b > is a fraternal system it follows from the defi-
nition of upper semi-fraternal systems that, for all k > m, bkM=akMak and 
does not depend on m. Note: bk„, is defined for all k=!=m although akm is 
defined only for k > m. We shall call this fraternal system, to be denoted 
as a", the nullity of so that, if / > 1 , rc! = <-.',, for all j<i and if a is 
an ¿-number, then a,- for all i =}= j. 

Similarly, lemmas (4. 15.1) and (4. 15.4) show that for each « in 3t, 
the system 6,/ - («,, -¡-0,)«,, i > j is an upper semi-fraternal system, which 
is part of a fraternal system. We shall call this fraternal system, to be 
denoted as cr, the reach of a ; so that, if j < n, it] = (a.j + a^aj for all i > j 
and if <e is an ¿-number, then c.j (u,j-f a,) a-, for all i ~j-w) 

We shall prove the following relations: 

(5. 3. 1) Every idempotent e in ii is an L-number and for every decomposition 
a = b^rd, for some fixed j, there is a unique idempotent e in 9i 
with e'i = b and (1—e)'j = d. 

(5. 3. 2) For a, ,> in :){ there is a y satisfying ya = ¡i if and only if a'- ̂  # . 
(5. 3. 3) ap== 0 if and only if c.'j si ¡'j-
(5. 3. 4) e'i =-• (1 —e ) j for every idempotent e. 
(5. 3. 5) e] rb (1 —e)" = e] ® e'i = aj for every idempotent e. 
(5.3.6) (". —¿if; («;; + 0j) 0,- if / >j. 
(5. 3. 7) (te-fly-i-fi if k>j. 

P r o o f of (5.3.1). If e is an idempotent element in then for any 
fixed i> j, lemma (4. 12. 13) shows that e;j is of the form e,j a, + C;j and 

"'') The reach of a, «J, is identical with the {a), of VON NEUMANN [8, vol. II, Defini-
tion 9. 1); (5 .3 .1 ) and (5 .3 .2 ) were established in [8, vol. II, Theorem 9.3, Lemma 9. I]-
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lemmas (4. 15. 1) and (4. 15.4) show that e-j is an (/, j) fraternal element 
and hence e is an ¿-number. The rest of (5. 3. 1) need only be verified for 
some particular j which can be taken < n and this follows from (4. i2.1). 

P r o o f of (5.3.2). The proof of (5. 3. 2) follows easily from (4. 12.2). 

P r o o f of (5. 3. 3). We need only prove this assuming some i > j > k. 
Then a ¡3 — 0 means 

ft = («,;/ + ?),) (Cl; -i- a,). 
Because of the indivisibility of inverses, this is equivalent to each of: 

a, '-i («,;/ 4 - £;;,) (fl; 4" ft.) 
a, S «.;/ + ¡¡,¡1: 

( 5 . 3 . 8 ) A,- 4 - « / / g ttij + fr-

(5 . 3 . 9 ) (a, 4 - « / / ) (aj + a,) s. p',-, 

(add «,;,- to both sides of (5.3.9) to derive (5.3.8)). Thus «,? = 0 is equi-
valent to: 

«'j ^ a; ¿r,. = 

P r o o f of (5.3.4). We need only prove this assuming some i > j > k. 
That (1—e)j ^ e ' j follows from (5.3.3). By (5. 3. 1) there exists an idempo-
tent / with f i — [e'l—(1—e)j]. Then /•' g e- ; by (5.3:3) this implies 
/i? = 0, /(1—<?)=/> hence, using (5.3.2), / • = / ; ( 1 — e)): = 0, that is, 

P r o o f of (5. 3. 5). Because of (5. 3. 1) and (5. 3. 2) the correspondence 
(«)/-—«/ is a (1, 1) order preserving correspondence between the left 
principal ideals of :K and the x^L(aJ); it follows that cj(1—e)']--
Now (5. 3. 5) follows from (5. 3. 4). 

P r o o f of (5. 3. 6). Using (5. 1.3): 

{« — !' ----- [<'-;, 4 - (ft. 4 -y .y ) (oj 4-c;,,)]a,.-

( « - ¿ ) / = ( ( « c * J a,- = («.>• + aj 4 - f » ) <7; 

= = ( « / / « O f t -

PrOOf of (5.3.7). We need only prove this assuming some k=t=i>j. 
Using (5. 1.3): 

( a - ¿})kj -j- .rj = 4- ( a , - f ,of.:/) (</, 4 - c.-/,) + 0 % + a,-)a,-] ( a , 4 - <&) 

= [«•:/ + {¿¡j + ft + («/ + c*) ] + « , ) 

The methods used to prove (5.3.2) will also show the following 
theorems (we omit proofs since we do not make use of these theorems). 
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(5.3.10) For a, p in 3i there is a y in 31 satisfying ay = p if and only 
if a0. =s /i?. l ' » 

For a in 9i and P in 31': 

(5. 3. 11) uij ^ Pji if and only if ap= 1; 
(5. 3. 12) aij fa if and only if pa = 1. 

6. The procedure for assigning coordinates. 

6 . 1 . The /-elements in L. We shall call x an i-element if x A' and 
xAl l = 0. We shall prove that for arbitrary ft in /' = 1, . . . , /—1, and 
arbitrary idempotent e in 5ft, the formula: 

( 6 - 1 - 1 ) y = (e: + A 1 - ) 7 7 ( 4 + 4 " ) 
3=1 

(the factor i 7 to be omitted if /==1) defines an /-element. If e = 1 then 
e'l + A1'1 = fl,

i + i4'"1 and may be omitted. 
Indeed, y ^ A' and 

y y r 1 == FlWj+AT') - a ' " 1 n ^ + ¿ j - 1 ) = o . 
j=i /=i 

Now consider an arbitrary but fixed /-element x. Define 
(6.1.2) ¿ = (x + Ayi)(ai + aJ), y = l , . . . , / - l . 

For fixed choice of idempotent e = e(x) with ei = (x + Al~1)ai (such an e 
exists by (5.3.1)) we define: 

(6.1.3) B = B(x) = x + e°i; BJ = + + a,) 

(B may not be uniquely determined by x). The following relations hold: 

(6. 1.4) el + ai^J + aj', xi + Ayl = x+A^'1; el+ A*'1 = x + A1'1. 

(6.1. 5) BJ-e? + (x + AT'Xai + aj) = e? + x3; 
BJa£ = et! + xiai; 
BA{~1 = [x + e°(x + A1"1)]^'"1 = (x + eU^A1'1 = 0 by (5.3. 5); 
B + A" = A1'1 + x + el = ¿''-1 + ei-b e? = A\ 

(6. 1.6) B'cij = (B + A^aj = (BA'-1 + Aj'^Oj = 0; 
Bi + aj = (B+A1-1) (a( + aj) = at-+ aj. 

(6. 1.7) B(er
i+Ai-1) = B(x + Ai-1) = x (use(6. 1.3), (6.1-5»; 

BJ(ert + a,) = fiV' + a,) = xJ (use (6.1. 5), (6.1.6)).. 
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(6.1.6) shows that B} is in ¿ 0 for each / < / . Let aJ be the element 
in iii with ccij = BJ. Then for every ft in 3Î with ftj^x*, as we shall, 
now show: 

(6 .1 .8) eaJ = aJ = e f t . 

To verify (6.1.8): from (6. 1.7), «4 = BJ g x ' ; from (6.1.5) and' 
(5.3.4), (aJ)" = BJa( ^ e ? = (l—e) t

r; then (5.3.3) implies (1— <?V = 0„ 
that is, ea3 = a1. 

Next, since a j j f t j ^ . x J , it follows from (5.3.6) that: 

(5 .3 .3) now shows that e(aJ—ft) = 0, hence eci-> = «•' = e f t . 
In the next section we shall make use of the following remark. Sup-

pose ë is also a possible choice for e(x) and let aJ, j < /, denote the cor-
responding 9t-elements. By definition, er = er; (5 .3 .2) implies ee= ë,. 
eë = e; and from (6. 1.8) 

( 6 . 1 . 9 ) e c J — â.j (1 i / o ) . 

Since BAiX = 0, 

(6 . 1. 10 ) n W ; + A y l ) = = n ( B + A r l ) = B + n A r l = B -j=i j= i 

(6 . l . i l ) ( f t r + A i - 1 ) 7 7 ( 4 - i - / i j - , ) = ( x + ^ - 1 ) f l = x . 

We shall now prove that for arbitrary ft with ^ g x', / < / , the /-ele-
ment y given by (6. 1.1) is identical with x. Indeed, 

(el + A-l){a:, + AY1) = AY11 + BJ(e:4- A:'l)(a;-FaJ) 

= Aj'1A-BJ(er
i + aJ) = Aiyl+xi (use (6.1.4), (6.1.5), (6. 1.6)) 

^ a;1--ft,j 

for each / < / ; hence x ^ y. It follows from the indivisibity of inverses that 
x = y (yA1'1 = xA1-1 = 0 and y + A'~l =e[ + A"1 = x - f r ' ) . . 

Conversely, as we now show, for. arbitrary idem potent e and arbitrary 
ft in sJt, the /-element y of (6.1.1) has the properties: yJ ^ ftj for / ' < / , and' 
e is a possible choice for e(y). Indeed, (y + — eri and 

I J ^ + Ai-^ + A y ^ + a-
.«.-l J 

y'^tf+A'-1) 

^(tij+Ayl)(ai + aj) = ftJ, 

as stated. Moreover, (6.1.8) shows that aJ(y) — e f t . 

) 
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6 . 2 . The rule for assigning left modules to elements of L 
For each x in L call xu...,x„ a base-decomposition of x if each x,- is an 
inverse: 

X; = [xA'—xA"1] ( / = 1,.. .,n). 
Clearly each x, is an /-element and x = x, ® -©x a . For each base-decom-
position of x and for any idempotent e satisfying: 

(e;y: = (x. + A'->,= (xA + A;i)a,, 
let B(Xi), BJ(x!), a ' = «•'(x,) be determined as in § 6.1, and define the vector 

«(x.) = (—«" , . . e , 0 , . . . , 0). 
Now, for each such u(x;), / = l , . . . , n , assign to x the left module 

M (x , , . . . , x„) = (u(x,),..., u (x„)),. 
We note that: (i) the x, may not be uniquely determined by x and for each 
x, the idempotent e may not be uniquely determined by x, , however it follows 
from (6.1.9) that (H(X, ) ) I is uniquely determined by x; so that Af(x,, . . . , x„) 
is uniquely determined by x , , . . . , x „ ; (ii) if x is a ./-element then the x, are 
uniquely determined with x, = x for i=j and x, = 0for /4=/'; (iii) if x; is an 
arbitrary /-element for each / = l , . . . , n , and x = x,©-••£Px„ then x , , . . . , x„ 
is a base-decomposition for x. 

We shall prove below the following statements (6.2.1)—(6.2. 7). 

(6.2.1) Every left module M of finite span is identical with Af(x,,.. ,,x„) for 
some base-decomposition x , , . . . , x„ of some x in L. 

(6.2.2) Suppose x , , . . . , x„ and x x„ are base-decompositions for the 
same x. If 

11 (x„i) - =- {—a'"'1 — ('."'•"1, e"\ 0 , . . . , 0) 
and 

u(x,„) = ( — « " ' • ' — a - 1 , e'", 0 , . . . , 0 ) 

and the «"'•'• and the 7c'"-k both form canonical matrices17) with 
e.„ = i"", then M(x,,..., x„) = M(x, x„). 

(6.2.3) Suppose.y is an i-element, u(y) has i-th coordinate e and 2 is a 
j-element with 1 ^ j < / ^ n. Then (i) if 7 in :K satisfies e 7 = 7, the 
vector a(y) + ya(z) also has i-th coordinate equal to e and coincides 
with 11 (x) for some i-element x; and (ii) if for some i-element x there 
is a relation u(x) = u(y)4- yu(z) for some y in M, then x + z = y + z. 

A matrix whose rows form a canonical basis (see § 1.2) is called a canonical 
matrix. 
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(6.2.4) If x has a base-decomposition xlt...,x„ with 
u(xm) = (—«•"• s.. .,—«'"•em,0 0), 

with the same em, such that the cim-k form a canonical matrix and 
M(xu..., Xn) = M(x,x„), then 

(6.2.5) for each x in L, all M(xu.. .,xn) assigned to x coincide, so that we 
may write M(x) for Ai(x, , . . . , x„); 

(6.2.6) x ^ y implies that M(x)^M(y); 

( 6 . 2 . 7 ) M(x) ^ M(y) implies x ^ y . 
The coordinatization theorem follows easily from (6.2. 1), (6.2.5), 

(6.2. 6) and (6.2.7). 

6 . 3 . Proof of (6.2.1). M is spanned by some canonical basis 
u' — («*',..., c.'"), i — 1 , . . . , n (§ 3. 4). Choose e', x(i) as follows: 

e{ = «"', 

x(0 = + Ail] H [(-#%• + Ay1}. 
j=i 

Then § 6.1 shows that each x(/') is an /-element and that e: is a possible 
choice for e(x(f))\ with this choice of e(x(i)) it follows from the last para-
graph of § 6.1 that «•>(*('")) = — a ' ' (for a canonical basis e'cc1' = a,J), that 
u: is a possible choice for u(x(i)) and hence Ai coincides with M(xlr..., x„). 

6. 4. Proof of (6. 2.2); We shall show that xm = x,„ for all m so that 
the «'"* are uniquely determined by x and the e'" (if the are to form a 
canonical matrix). 

Set Uk = (e% ^ a,, for each k < m. Since (5.3.5) shows that 
(<?,.)!• (<?,);; = 0, it follows that 
(6.4.1) Uk(xk + Ak-l) = 0-, xk(Uk + Ak'l) = 0. 

We shall show that 
in ~i 

(6.4.2) x,„ = x / 7 (Uk + /41"); 
k—l 

this will establish the uniqueness of xm since the U* are uniquely determined 
by the V . 

From § 6 .2 there is a B(xm) ^ xm for which 
cCK

k = B(xm) + Al'-1) (am + aky, 
now (5.3.3) implies that (a"*)£ ^ («*)*; i. e„ (B(xm) + Ak)a,.Uk. Hence 
¿ / -Ml" ^ B(x,„) m xm for each A: and so 

right side of (6.4.2) 
A Hi 
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Equality in (6.4.2) now follows from the indivisibility of inverses; indeed, 
(6.4.3) (right side of (6.4.2)) + Aml^xAa + Am~l = xm + Am~l 

so that equality holds in (6.4.3), and 
m-1 

(right side of (6.4.2)) >P-I = (x 1 + . . . + X m . l ) U ( U k + Ak) 
/.=i 

k—l 

= (X. + • • • + (Uml + Am~2) ff(Uk + A?-1) k=l 

= ( * + . . . - } - xm_o) J t V ' + AT1) (use (6.4.1)) 

= (x, + • • • + * . . , ) JJUf+AT*) = • • • = 0 = x,„ A""1. 
s - i 

6 . 5 . Proof of (6.2.3). (i) u(y) + yu(z) is of the form 

( - e f t , - e f t , . ..,-~eft-\ e,0,.. . ,0) 
and hence coincides with u(x) for some /-element x by the last paragraph of 
§ 6 . 1 . 

(ii) We need only prove x ^ y + z; for the relation u(y)=u(x) + (—y)u(z) 
would imply, in the same way, y ^ x + z , hence x + z ^ y + z ^ x + z . 

To show x ^ y+z we need only prove the statement: for arbitrary 
idempotents e and e and am with eam = « " ' for m < i, ft'1 with eft'= ¡3™ 
for m<i, and ff" with e f f n = dm for m < j, the conditions 

¡a —p for j < m ^ i 

(6.5.1) \ ai = ft—ye for some y 
' a l = pm + yOm f o r i ^ m < j 

imply: 

(6. 5. 2) (er,+ A<"1) / 7 ( < C + A'„:]) 
m=1 

(Z + A'-^naiZ + A^ + ti + A?-1) ft + 
»1=1 - ' m=l 

It is sufficient to establish in place of (6.5.2): 

(6.5.3) lJ(al + Mu) " ' 

Si Z7(C+¿i)+(ej+AJ~1) IJ(d;n+.C) 
m=l nj=l 
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for we can then derive (6.5.2) by adding aj+H l-fl.-i to both sides of 
(6. 5.3) and then clipping both sides by 

( ¿ [ + A " 1 ) n (aZ + AV). 
m=j+l 

But (6. 5. 3) can be derived from 
i J-1 

(6. 5.4) left side of (6.5.3) / / ( / C + A3
m) + + A " l ) 

w=l m=l 

by clipping both sides of (6.5.4) by + A*'1: indeed, this clipping 
does not change the left side of (6.5.4) since one of its factors is 

fih + (-ye)r: + A?~l using (5.3.7) 

^ d + ti'+J'1 using (5.3.2); 
on the other hand this clipping changes the right side of (6. 5.4) to 

7 7 ( / C + Al)+0% + erj+ A'-1) n(6Tm + A t ' ) ( M L ) 
m=l m=l 

= right side of (6.5.3) 

since the modular law implies ($•+erj + A1'1)A? = + 
Since am = pm + Y e f f n for m<j and = ye, the desired (6.5.4) 

follows immediately from (5.2.3), using ye in place of the y in (5.2.3). 

6 . 6 . Proof of (6.2.4). By (6.2.3), for each m > 1, the vector 
u(x,,.) + (t'" lu(x1) coincides with u(xm) for some /n-element Xm such that 
xm + xx — xm -)- X\. Then xu x2,..., xn is again a base-decomposition of x with 
¿m,igi = o for m > 1. Similarly x3,...,x„ can be replaced so that the new 
a*') satisfy also cm-2e2 = 0 for m > 2 . Successive repetition of this procedure 
establishes (6. 2.4). 

6 . 7 . Proof of (6.2. 5). If M = M(xlt..., xn) = (u(xj),..., «(*„)), and 
em is the m-th coordinate of u(xm) we may, without changing M, replace 
u(Xm) by fn(u(xm) where f is any idempotent satisfying (fm)l=(xAm+Am~1)am. 
The statement (6.2. 5) now follows from (6.2.4) and (6.2.2). 

6 . 8 . Proof of (6.2.6). If x ^ y, we may choose base-decompositions 
x>, i g n and y t, i ^ n so that Xi^y( (for example, choose yi — xi-\-[yAi— 
— (yi4 ,"1+*i)l. Then (e(Xi))Ti g (e(^))I which implies e(Xi)e(yt) = e(xt)\ we 
may choose /?'(*,) to coincide with fiJ(yt) since 

MAyd ^ (y< + (ft + ":) i= * + (ft + oj). 
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Now e(x;)u(>',) = u(x,) for i s n , hence Ai(x, , . . . , x„) ^ Ai(y, , . . . , y„). Be-
cause of (6. 2. 5) it follows that M(x) ^ M(y). 

6 . 9 . Proof of (6. 2. 7). Since x is a union of /-elements, it is clearly 
sufficient to prove (6. 2. 7) with the restriction that x is an /-element. Then 
we suppose that y has a base-decomposition and that 
<6.9.1) u(x) = Y,u(yl)+---{-7„u(yll). 

Let e(x) be the /-th coordinate of u (x) and let e(ym) be the m-th coor-
dinate of u(y,„). Then in (6.9. 1), we may suppose that (i) /,„ = 0 for m >/ , 
(ii) e(x)e(y;) = yr^e(x), (iii) e(x)yM = -/,„ for all m. 

To prove (i), suppose / < « . The n-th coordinates of u(x) and of 
y,,u(y„.) for ni < n are all 0; hence the n-th coordinate of y,tu(y,,) equals 0 
and we may suppose -/„ = 0. Successive applications of this argument esta-
blish (i). 

Now consider /-th coordinates; e(x)~y;e(yj), hence e(x)e(y;) = y,e(y!) 
= e(x) and we may replace •/, in (6.9.1) by e(x) to obtain (ii). 

Since e(x)u(x) = u(x) we may replace -/,„ in (6.9. 1) by e(x)y,„ to ob-
tain (iii). 

We may even assume that •/, == 1 in (6. 9.1), for the last paragraph of 
§ 6. 1 shows that y:ii(yl), (that is, e(x)u(yi)), coincides with u(yi) for some 
/-element y ;. The last paragraph of §6 . 1 shows that y i ^ y ; since 

(e(yi))'i = (.e(x)e(yl))r
i ^ (e(y,))'i. 

Hence it is sufficient to prove (6.2.7) with y, replaced by y,. Thus we may 
suppose that in (6.9.1), /¡==1 and e(y) = e(x) = e (say) and eyM = ym for 
all m. Now (6. 2. 3) shows that u(y) + yi-\u(yi-i) = u(z) for some /-element z 
with z ^ y-, +y;-i. Similarly, u(z) + yi--2u(yi-2) — u(z) for some /-element 
z ?= z-r J/-2 ^ yi-ryi-i + y;--2. Repetition of this argument finally yields 
x si yi + yi-in '\-y\=y, as required. 

This completes the proof of all statements from (6. 2. 1) to (6.2.7) and 
establishes the coordinatization theorem. 

7. The case of projective geometry. 

7 . 1 . The previous discussion clearly applies to the case of classical 
projective geometry with a normalized frame consisting of points, that is, 
atoms18). We shall now investigate the meaning of our conditions (4.3. 3), 
(4.3.4) and (4.10.3) in the case of plane projective geometry (the only 
case in which these conditions need to be postulated). 

''") In this case :U, the ring of coordinates, is a field (see footnote 13). 
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7 . 2 . Because of footnotes 5 and 10 and singe x, y, ait a3, Cij are all 
atoms, (4.3. 3) and (4.3.4) need be assumed only for the case of xat = 0, 
yOi = 0, and (4.10.3) need be assumed only for the case that xait yait 

xcij and ycij are all 0. 
Now in the case of projective geometry, we shall show that (4 .3 .2) 

implies (4.3.3). Indeed, suppose (4.2.1) and (4.2.2) hold; we need con-
sider only the case that (4. 2. 3) fails. Then A s a3 and the z of (4. 2 .4) 
reduces to a, + a, so that (4.3.3) does hold. 

Similarly we shall show that (4.3.2) implies (4. 3.4). Indeed, suppose 
(4.2.2) and (4.2.3) hold; we need consider only the case that (4.2.1) fails. Then 
(a. + A + B) x = 0 and the 2 of (4.2.4) reduces to 0 so that (4.3.4) does hold. 

Similarly we shall show that (4. 10. 2) implies (4.10. 3). Indeed, suppose 
(4.9.1) and (4 .9 .2) hold. If (4.9.3) fails, A s 0j and the z of (4 .9 .4) 
reduces to a i + y . If (4.9.3) holds, then 

(z of (4.9.4)) + y = ai(x + A + cij)+y^ai+y 
so that (4.10. 3) does hold. 

7 . 3 . Thus we need assume only (4. 3. 2) and (4.10. 2) under the re-
strictions of § 7. 2. Straight-forward inspection confirms that the assumptions 
of § 7. 3 do hold if we have the following conditions" 20): 

Q u a d r a n g l e c o n d i t i o n ((7.3.1)—(7.3.4)): Suppose two quad-
rangles Pi, i— 1, 2, 3, 4, and Pi, / = 1 , 2 , 3, 4, and a line W are such that: 
(7. 3.1) no three of the vertices of the same quadrangle lie on a common line; 
(7.3. 2) W contains none of the vertices of either quadrangle. 

, s ) To derive (4 .3 .2) from the quadrangle condition, choose P t = A,P3 — B, 
P, = (x + A) (a, - f B), Pi = [(x + A) (a. + £) + a j t f y 4- B) and a, 4 - a, (the rendi-
tions (4.2.1) , ( 4 . 2 . 2 ) and (4 .2 .3 ) together with the restrictions x4= y =}=ai imply that 
A, B are points with A 4= B, and that (7.3.1) , (7.3. 2) hold). Actually (4 .3 .2 ) can be de-
rived from the uniqueness of the harmonic point condition; indeed the z of (4 .2 .4 ) coin-
cides with the harmonic conjugate of a- with respect to ai and b where b itself is the 
harmonic conjugate of a, with respect to x and y. The uniqueness of the harmonic point 
condition is of course implied by the quadrangle condition but the converse need not hold 
(5, § Hi 3]. To derive (4.10.2) from the quadrangle condition, choose P, — A, Pt — [y 4-
4- (C;j + A) (a,. 4- B)\ (a, + B), + B) (c:j 4-A), P 4 = ( x + A) (a 4 - B) and W= a^a, 
(the restrictions (7 .3 .2 ) and (7 .3 .3) follow from (4.9. 1), (4 .9 .2 ) and (4 .9 .3 ) together 
with the restrictions x 4= a ; , x 4= c:j, y 4= ait y =p 

( 7 . 3 . 1 ) is the fundamental theorem on quadrangular sets as given by VEBLEN and 
V O U N O [ 6 , Theorem 3 , page 4 7 ] ; ( 7 . 4 . 3 ) is the theorem of Desargues [ 6 , Theorem 1 , page 
4 1 ] , and ( 7 . 4 . 2 ) is the duai (ana converse) of the theorem of DESARCUES [ 6 , Theorem l , 
page 4 1 ] . However, the hypotheses of our quadrangle condition, and ( 7 . 4 . 2 ) , ( 7 . 4 . 3 ) are 
subject to restrictions which are not specifically included in the corresponding theorems of 

- V E B L E N a n d Y O U N O . 
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For i,j= 1, 2, 3, / j, let Pij = (P, -f- Pj) W (P,j is a point since P + P 
and W are different lines). Similarly let Pij = (Pi + Pj)W. Now suppose 
also that: 

(7 .3.3) Pij = P,j except possibly for the pair (/,» = (3,4). 
(7. 3. 4) Then (7. 3. 3) holds also for the pair (/, j) = (3, 4). 

7. 4 . It is well known (and easily shown) that in a plane projective 
geometry all lines contain the same number of points, N (say), and each 
point lies on precisely N distinct lines. We shall prove : 

(7.4. 1) (i) If N=3 or 4 the quadrangle condition necessarily holds. 
(ii) N is infinite or finite but >4, the quadrangle condition20) can be 
deduced from the following two triangle conditions: 

(7. 4.2) If Pi, / = 1 , 2 , 3 , are points not on a line, if P'„ / = 1, 2, 3, are 
points not on a line, if W is a line containing none of the Pir 

P', /== 1, 2, 3, and if for each pair i, j = 1, 2, 3, / 4= / •' the lines 
Pi + Pj and Pi + Pj (these are lines different from W) meet W in the 
same point, then a point Q exists such that for each /=1,2,3: 
the points Q, Pi, P\ are on a line. 

(7. 4. 3) / / Pi, / = 1, 2, 3, are points not on a line, and P'„ / = 1 , 2 , 3 , are 
also points not on a line, and Q is a point on none of Pi + Pj, 
Pi + Pj, i, j= 1, 2, 3, /#=/, and if for each / = 1, 2, 3: Q + P, = 
= Q + P;, then a line W exists such that for each pair i, y ' = 1, 2, 3, 
/ =j= j: the lines W, Pi + Pj, Pi + Pj contain a common point. 

P r o o f of (7. 4. 1) (i). From (7. 3. 1), (7. 3. 2) and (7. 3. 3) each of 
Pu, Pu, Pû is different from each of Pis, Pu, P33, Pu, and P 1 3 4=P 1 4 4-
P-4 4 = ^ i 3 = r P i s - Suppose if possible that P u ^ r P û - Then N must b e > 3 ; 
hence N=4 and P13 = P24, Pu = P«s, Pi2 = P34 or P-U (without loss of 
generality, assume Pi2 = P34). Let Q be a point on P1 + P4, with Q different 
from each of P i , P4 , P u (such Q exist since N=4). Now each of Q + Ps, 
Q + P2 is a line and must contain the point of W which is different from 
each of Pi2, P23, Pu- Since Q is different from P u , it follows that Q lies 
on P2 + P3; since Q also lies on Pi + P4 and POS = PH, this implies Q = P U . 
This contradiction establishes (7.4. 1) (i). 

P r o o f of (7.4.1) (ii): Case I. Suppose, as a special case, that: 
(7.4.4) Pt + P ' + Pi + P-i; A + / * # = « + « ; Pl + P A ^ P Î + PÎ. 
We may assume 
(7.4.5) p 3 + p t ^ p é + p> 
for equality in (7.4.5) would immediately imply Pu = Pii . 
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(7.4.2), applied to A , A , Ps and P i , A , P's, shows that a point Q 
exists such that for each / = 1 ,2 ,3: the points Q, Pit P; lie on a line. 
Similarly a point Q' exists such that for each / = 1 , 2, 4: the points Q', 
Pi, P: lie on a line. From (7 .4 .4) it follows easily that Q = ( A + Pi)(P2 + Pi) 
= Q' and that Q is different from each of P i , P i , P 3 , P 4 , Pi , P ^ Pa, Pi 

If the line P1 + P4 contained Q it would also contain Pi ; then 
Px + p4 = p , + p14 = P | + PJ4 = Pi + Pi , contradicting (7.4. 4). Thus Q does 
not lie on P1 + P4. Similarly Q does not lie on any of Pi + P3 ,P i + P i , 
PI + P&. 

Next, if P j - f P t contained Q, it would also contain Pa + A , contra-
dicting (7.4.5). Thus Q does not lie on P3 + P4, and similarly Q does not 
Jie on Pi + Pi , 

The preceding paragraphs show that (7.4.3) applies to Pi, Pa, Pt and 
Pi, PS,P4. Hence there exists a line W' such that for each pair / , / = 1, 3,4, 
i=f=j: W", P , - f P j , Pi + P ; contain a common point. 

Now by (7.4.4), P i - f P.) :-p Pi + Pi; hence their intersection Pia (which 
lies on M7) must lie 011 W'. Similarly, A (which lies on W) must lie on W . 
Since P18 + P14 it follows that W = W . Hence P34 = ( P 8 - f A ) W = 
(P i -{- P i ) XV=P\u as required. 

Case II. Suppose, as a special case, that: 
(7.4.6) A + A ^ A + A s ; P2 + A = ^ P i + P3) Pi + P i ^ = P i + Pi . 
Then the proof for Case I with 1 and 2 interchanged shows that (7.4. l)(ii) 
holds in this case also. 

General Case. We shall show the existence of points Pf, / = 1 ,2 ,3 ,4 , 
such that: 

<7.4.7) the conditions (7.3. 1), (7 .3 .2 ) and (7.3.3) and also (7 .4 .4) are 
satisfied by P and P f , / = 1 ,2 ,3 ,4 ; 

(7 .4 .8) the conditions (7.3.1), (7 .3.2) and (7.3.3) and also (7.4.6) are 
satisfied by A and PI, / = 1 ,2 ,3 ,4 . 

It will then follow that PH = A t = A'4, which will complete the proof of 
(7.4.1) (ii). 

To determine such Pf, choose any line W' through P\i different from 
W, Pi -[- A , Pi + Pi (this is possible since i V g 4 ) . Choose a point Pf on W' 
but different from each of Pa, ( A + Pa) W', ( A + Pt) W (such P'i exist 
since i V a 4 ) . Choose a point PS on W' but different from each of P [ 2 , Pt, 
(Pi + PfiW, ( A + (such P i exist since N > 4). 

Now let A: = (Pi + P 1 3 ) (A + P28), P'i = (Pt + P11)(Pi J
r Pat). It is easily 

verified that PJ, Pf are points and that these P* satisfy the conditions 
(7.4. 7) and (7. 4.8). 
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Next we shall verify: 

(7 .4 .9) The dual (and converse) triangle conditions (7.4.2) and (7.4. 3) are 
equivalent. 

P r o o f of (7.4. 9). Assume (7. 4 .2) and suppose that P,,Pi, i— 1,2,3, 
and Q satisfy the conditions of (7. 4. 3). 

If Pi - --PI, then the line containing Pi and any point of (P> + P J ) ( A H - A ) 
will serve as the required W; hence we may suppose Pi -F PI. Similarly 
we may also assume P>4= Pi ,P 3 - \=Pa and hence A - | - A , P : H ~ P S , A-R-P:'I 
are different lines. 

Let J4I- (P, - - P,)(P-M- PS), A*-- (P,-i-Pi)(P;I -i- P\),AN- -(PI P>)(P; ;P'2).. 
Then the Ai must be different points. 

Let <45 — (Ai + A>)(Pi Pa), P* — (A« + P'j)(P{ + Pi). Necessarily, At is 
a point different from At. If .4» were on P i - f P i i , this would imply that 
.-li-l-A* coincides with P2 + P3 and contains A», hence also P i ; thus 
P'\,Pi,Pi would lie on a line, contrary to hypothesis. Thus A3 is not on 
P - H - A (similarly is not on P 1 + P 3 ) . Hence P i is a point not on P i - t P » . 

Now Ail --- A«, so that the line A , f A-> serves as the required W\ for 
if A3 4= A3, then At does not lie on P i - f - P i and the conditions of (7.4.2) 
are satisfied by Pi , A , A a n d P t , P - 2 , P 3 and the line Ai + A2. Hence 
there exists a point Q' such that Q', P i , Pf lie on a line and Q\ 
P,-,P; lie on a line for / = 2,3. Then Q' must be Q and P i lies on A + A ' , 
hence P* = P i , and hence As lies on P1 + P3, a contradiction. This shows 
that = as stated and (7.4.3) is proved assuming (7.4.2). 

The dual of the above proof shows that (7-. 4 .2) holds if (7.4. 3) is 
assumed. This completes the proof of (7.4.9) . 

Thus our coordinatization theorem proves that a projective geometry 
can be coord ina ted if its dimension is & 3 or if its dimension is 2 and 
DESARGUES'S theorem, as stated in (7.4.3), holds. 

On the other hand, if a projective geometry can be coordinated, the 
projective geometry can be embedded in a projective geometry of dimension 
sr 3, and it is then easy to verify that DESARGUES'S theorem must hold. 
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