A remark on the theorem of Simmons.

By A. RÉNYI in Budapest.

The theorem of Simmons in question [1] can be formulated as follows: If n and h are positive integers, and if we put for $0 \leqq p \leqq 1, q=1-p$

$$
\begin{equation*}
f_{n, h}(p)=\sum_{r=0}^{h-1}\binom{n}{r} p^{r} q^{n-r}-\sum_{r=h+1}^{n}\binom{n}{r} p^{r} q^{n-r} \tag{1}
\end{equation*}
$$

then we have

$$
\begin{equation*}
f_{n, h}\left(\frac{h}{n}\right)>0 \quad \text { if } p=\frac{h}{n}<\frac{1}{2} \tag{2}
\end{equation*}
$$

An ingenious and simple proof of this theorem has been given by E. Feldheim ([2] and [3]; the proof is reproduced also in the text book [4], p. 171-172).

The generalization of the inequality of Simmons, for the case when ap is not an integer, has been considered in this journal by Ch. Jordan ${ }^{1}$) [5] and recently by I. B. HaAz [6].

Hadz tried to generalize the inequality of Simmons in that he has shown that for fixed values of n and h
(3) $f_{n, h}(p)>0 \quad$ if $1 \leqq h \leqq \frac{n+1}{2}$ and $\frac{h-1}{n} \leqq p<\min \left(\frac{1}{2}, \frac{h}{n}\right)$.

The aim of this note is to show that the apparent generalization given by HAAZ is really a consequence of the original inequality of Simmons if $\frac{h}{n}<\frac{1}{2}$, and for the remaining cases $n=2 h$ resp. $n=2 h-1$ it follows
${ }^{1}$) One of Jordan's results expressed by the notations of the present paper runs as follows:

$$
f_{n, h}(p)>\binom{n}{h} p^{n} q^{n-h} \text { if } p<\frac{1}{2} \text { and } \frac{h-1}{n} \leqq p \leqq \frac{h-\frac{1}{2}}{n} ;
$$

furtherofor $\frac{h}{n+1} \leqq p \leqq \frac{h}{n}$ and $p<\frac{1}{2}$ the reversed inequality is valid.
from the evident relations
(4)

$$
f_{2 h, n}\left(\frac{1}{2}\right)=0 \quad \text { and } \quad f_{2 h-1, h}\left(\frac{1}{2}\right)>0
$$

To prove our assertions we need nothing else than the well known formula

$$
\begin{equation*}
\sum_{r=0}^{s}\binom{n}{r} p^{r} q^{n-r}=(n-s)\binom{n}{s} \int_{p}^{1} t^{s}(1-t)^{n-s-1} d t \tag{5}
\end{equation*}
$$

(see e.g. [2] p. 110 or [4] p. 133). It follows from (1) and (5) that

$$
\begin{equation*}
f_{n, h}(p)=\binom{n}{h} \int_{p}^{1}(h(1-t)+(n-h) t) t^{h \cdot 1}(1-t)^{n-h-1} d t-1 \tag{6}
\end{equation*}
$$

It can be seen from (6) without any calculations that $f_{n, h}(p)$ is a decreasing function of p ($0 \leqq p \leqq 1$). Thus it follows from (2) that

$$
\begin{equation*}
f_{n, h}(p)>0 \quad \text { for } \quad p \leqq \frac{h}{n} \quad \text { if } \quad \frac{h}{n}<\frac{1}{2} \tag{7}
\end{equation*}
$$

further it follows from (4) resp. (5) that

$$
\begin{equation*}
f_{2 h . h}(p)>0 \text { and } f_{2 h-1, h}(p)>0 \text { for } p<\frac{1}{2} . \tag{8}
\end{equation*}
$$

Evidently (7) and (8) contain (3) which is thus shown to be a consequence of (2) :esp. (4).

We have at the same time shown that for $\frac{h}{n}<\frac{1}{2}$ (3) can be replaced by the stronger inequality

$$
\begin{equation*}
f_{n, h}(p)>f_{n, h}\left(\frac{h}{n}\right) \text { for } p<\frac{h}{n}<\frac{1}{2} . \tag{3'}
\end{equation*}
$$

References.

[1] T. C. Simmons, A new theorem of probability, Proceedings of the London Math. Soc., 26 (1894-95), 290-334.
[2] E. Feldheim, Simmons valószinūsėgszámitási tételének új bizonyitása és általánositása, Mat. és Fiz. Lapok, 45 (1938), 99- 113.
[3] E. Feldhem, Nuova dimostrazione e generalizzazione di un teorema di calcolo delle probabilità, Giornale dell''stituto Italiano degli Attuari, 10 (1939), 229-243.
:14] Rényı A., Valodszinüségszámitás (Budapest, 1954).
[5] Ch. Jordan, Complément au théoreme de Simmons sur les probabilités, these Acta, 11 (1946), 19-27.
[6] I. B. HaAz, Une généralisation du theọrème de Simmons, these Acta, 17 (1956), 41-44.

