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On quasi nil groups. 
By L. FUCHS in Budapest. 

§ 1. Introduction. 

In his paper [6]1) T . S Z E L E has called an additive abelian2) group G 
a nil group, if there exists up to isomorphism only one ring R whose additive 
group is isomorphic to G, namely the zero ring in which any two elements 
have 0 as product. He has shown that the torsion nil groups coincide with 
the torsion divisible3) groups and that there do not exist mixed nil groups, 
while the problem of characterizing by group invariants the torsion free nil 
groups remained open. In an other paper [7] he investigated those groups G 
over which exactly two non-isomorphic rings may be defined4) (he called 
them quasi nil groups of species 2 ) ; these results are almost complete in 
the sense that the problem is reduced to that of torsion free nil groups. 

Our present aim is to characterize the quasi nil groups (of finite 
species)5), i .e . those abelian groups G over which but a finite number of 
non-isomorphic rings can be defined. We shall discuss the case of torsion, 
torsion free and mixed groups separately. It will turn out that the main 
difficulty lies again in the torsion free case where our results are again far 
from giving an explicit description of the structure of the groups in question. 

Our main results are contained in Theorems 1 — 3. 

' ) The numbers in square brackets refer to the Bibliography given at the end of 
this note. 

2) We shall throughout consider abelian groups, therefore henceforth „group" is used 
for the longer phrase „abelian group" (with additive notation). 

8) For the terminology and basic facts on abelian groups we refer to KUROSH [ 5 ] or 
KAPLANSKY [ 3 ] . 

4) We say the ring R is defined over the group G if the additive group of R is 
isomorphic to G. 

5) There is a simple difference between the terminology used by SZELE and that 
used here: he meant by a quasi nil group a quasi nil group of species 2, while we mean 
thereby one of finite species. 
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§ 2 . T h e t o r s i o n case . 

We begin with the following two lemmas which are essential in the proof 

Lemma 1. If G is a torsion group which is not divisible, or is a 
mixed group whose torsion subgroup is not divisible, then G has a cyclic 
direct summand €(pk) of order pk,k a natural integer*). 

For the proof we refer to KULIKOV [4 ] or SZELE [8 ] . 

L e m m a 2. In a p-ring R the elements of infinite height annihilate 
every element of the ring. 

S e e e . g . SZELE [6] o r FUCHS [2] . 

Now let G be a torsion quasi nil group. G can have but a finite number 
of p-components GP which are not divisible. In fact, in the contrary case, 
in view of Lemma 1, an infinity of GP would be decomposable as 
Gp = í¿(pk) + G¿ and we may define over (2(p*) a ring I(p") [the residue 
class ring of the rational integers modulo p*], while over G'p and over all 
other Gq (q^p) zero rings, and then form their direct sum in order to obtain 
pairwise non-isomorphic rings over G. By Lemma 2, the divisible p-compo-
nents of G_ are zero rings and it is clear that the non-divisible ones must 
again be quasi nil groups. 

Next suppose GP is a quasi nil p-group and let Bp be a basic sub-
group of GP. We shall show that Bp is finite. For, in the contrary case let 
aua2,... be a countable set of basis elements of cyclic subgroups in a 
direct decomposition of Bp. Each 

< = { « : } + • • • + { « „ } ( « = 1 , 2 , . . . ) 

is a direct summand of GP, GP = + Gp°, and if we define over Gp'° the 
zero ring, over each {<?,} ( / ' = ! , . . . , « ) a ring 7(p"') where p"' is the order 
of a¡, then we obtain a ring Rn for each n. It is obvious that these rings 
R„ are not isomorphic for different integers n, because the orders of Bp0 — 
Zip0 may be defined as a complementary direct summand of the annihilator 
GPn) of GP— are different. 

Considering that Bp is thus finite, it follows that it is a direct summand 
of GP, 

GP = BP + Dp 

where Dp is a divisible group. Consequently, a torsion quasi nil group G 
has the form 
(1) G = B + D ( B finite, D divisible). 

>'•) We denote by £ ( n ) the cyclic gr° u P of order n, by ( 2 ( p m ) the group of type p m 

and by cR, the additive group of the rationals. 
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Conversely, assume that G is a torsion group of the form (1) and R 
is a ring with G as additive group. In R, the p-components belonging to 
different primes annihilate one another, hence Lemma 2 implies, that the 
elements of D are annihilators of the v/hole ring R. B as a finite group has 
the form }-{&} where are of prime power orders. Consider 
the group A generated by B and by all products 0,0j (i,j= 1 , . . . , t). 
If didj lies outside B, then its D-component in (1) is an annihilator, so that 
the subring generated by B must coincide with A. Since A is again finite, 
we conclude that there is a divisible subgroup A of finite rank r in D such 
that A ^ B + Di. Each a,-ay increases the rank at most one, thus we have 
r ^ t 2 . Further, mB = 0 implies mA = 0, i .e. A belongs to7) B + D,[m] = A,. 
It results that all the products of the elements of R belong jo a finite sub-
group of G which may be chosen — up to automorphism — independently 
of the product definition of R. Since there is but a finite number of 
possibilities for defining a ring over a finite group, we arrive at 

T h e o r e m 1. A torsion group G is a quasi nil group if and only if 
it is a direct sum of a finite group and a divisible group. 

§ 3 . T h e tors ion f ree case. 

Let G be a torsion free quasi nil group and R a ring, different from 
the zero ring, over G. We may alter the multiplication ab of the elements 
<7, b of R by setting ax„b = nab for some fixed natural integer n. We then 
get rings /?„ ( / i = l , 2 , . . . ) with the same additive group G. No R„ is a zero 
ring and. by hypothesis among the Rn there exists but a finite number of 
non-isomorphic rings; let these be /?„,,, Rm„,..., R,„t. Thus, for each n, R„ is 
isomorphic to some Rmj(j= \ ,...,t). 

Next take into account that, by definition, all the products in Rn belong 
to nG, i .e. R'n^nG. If /?r,,/?r2,... are isomorphic to Rmi, then in Rm, all 
the products a x , , h b = mxab belong to ftnG. Thus if m = m1... mt, then for 

i 
every pair of elements a, b we have mab£(}nG where n ranges over all 

n 
natural integers. (Note that R„ is isomorphic to a certain Rmjl) Therefore mab, 
and hence ab' is divisible by every integer n, i. e., in R every product belongs 
to the maximal divisible subgroup D of G. D-j=0, for G is not a nil group. 

By a known result, D is a direct summand of G, G — D + H where// 
contains no nonzero divisible subgroup (i. e. it is reduced), further D is the 

' ) For a group G, G[m] denotes the set of all x£G with mx = 0. 
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direct sum of groups 5t isomorphic to the additive group of the rationals, 
D = 2 & . Here the number of direct summands cannot exceed 1, for every 
algebraic number field of degree 2 over the rationals has an additive group 
of type 5t + 5t, and there is an infinity of non-jsomorphic such fields. Thus G 
is of the form G = SL + H where the reduced group H must be a nil group, 
for otherwise we could, define over G a ring in which not all the products 
belong to 51. 

The group H must be of finite rank. For, assume H is of infinite rank 
and let [6,, ...,ba,...] be a maximal independent system in H and bu ..., bn,... 
a countable (proper or improper) subsequence of it. For each n we define a 
ring Rn by putting 1. babp = 0 if « and /? are different, 2. ¿>1 = 0 or = b0 

according as « = 0 , 1 , 2 , . . . , n—1 or a is different from these indices. Here 
b„ denotes an arbitrary nonzero element of <01. Knowing the products of 
the ba, the distributive law enables us to extend the multiplication to the 
whole of G (all the products belong to 51!). Since any product of more than 
two factors vanishes, the associative law holds, and we conclude that /?„ is 
indeed a ring. In /?», any element of the form + (-¿»-i&>>-i 
(A, rational) is an annihilator of /?„, while any element containing a summand 
Xaba with ¿„4= 0 and « ={= 0, ],..., n—1, is no annihilator, for it does not 
vanish multiplying it by b«. Thus, the rank of the annihilator ideal of R„ is 
just n, consequently, n =j= m implies that R„ and Rm are not isomorphic and 
thus H is necessarily of finite rank. 

If H — 0, then G = 5t and there are two non-isomorphic rings over 51, 
namely the • rational number field and a zero ring. 

If H-J=0, let the rank of H be the natural integer r. We denote by 
b0 a nonzero element of 51, and by [blt..¿>r] a maximal independent system 
of H. Our aim is to get information on all rings over 51 + //. For this 
purpose it is sufficient to know all products bity. Since they belong to 51, 
we set 

(2) bibj = kijbQ (kij rational) 
for i, j — 0 , . . . , r. The /y may arbitrarily be chosen, only the associative law 
(bibj) bk = b^bjbk) must be fulfilled. This is equivalent to 
(3) hjlok = i-jklio (i,j,k arbitrary), 
and therefore we assume (3) to hold. Now we distinguish two cases according 
as /.a,4=0 or = 0 . • 

Case 1. ¿oo =j= 0. There is no loss of generality in assuming ¿00= 1, 
since this can be achieved by an eventual alteration of the choice of b0 in 51.8) 

8) It suffices to replace b0 by /i^1 b0. 
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Under this assumption, (3) implies for the case k = 0 

(4) ¿ij = kjoXio 
whence it follows that ¡Uj; = Xji, i. e. the ring is necessarily commutative. Write 
¿¡o — = then (2) becomes bibj = XiXjb0 (¿0 = 1) and (3) is automatically 
satisfied. — Let another ring be defined over G with the rule bi X b3 = /i,^ b0 

( f o = l ) where the fii are arbitrary rationals. Define a (group) automorphism 
a of G by putting 

bl^bi+lm-^b, (i=0,1 ,...,r). 

It is obvious that a induces in fact an automorphism of G. Take into 
account that 

= [bi -(- (m—It) b0) [bj + (Vj—Xj) 60J = (Pibo) (pjbJ = u^j b0 = bi x bj 
(note that bi behaves like Xiba under multiplication), and then conclude that 
under a, the rings defined by the U and the .u,, respectively, are isomorphic. 
Thus all rings defined over G with ¿„<,=¡=0 are isomorphic. 

Case 2. = 0. Then from (3) in case Ar = 0, i = j we obtain 
Alo = 0, A,0 = 0, and similarly, Ao; = 0, that is, is an annihilator of the 
ring. (3) shows that Ay (i,j = 1 , . . . , r) are not subject to any condition. Each 
ring R over G thus defines, in view of (2), a square matrix 

(An Mi • • • 

Xrl Xr2 . . . k r r ! 

with arbitrary rational elements. Another ring 5 over G gives rise to a matrix. 

|

>ll.< 12 • • •/» l / 

(lr! (Xrl . . . flrr) 

relative to the same independent set b0, bu ..., br. Let a be a (group) auto-
morphism of G with 

r 
b" = b0, b" =^2)9'kbk ('= 1, ..., r) 

' s=o 
p 

where go, Qik are certain rational numbers. Before passing on we remark that 
r 

a induces an automorphism a* of H by setting bf — 2 9<kbk (i — 1, ..., r), 
k— I 

the matrix of a* is 
(P l l ?12 • • • 9lr\ 

P = 

&r I Qr-2 • • - Qrr) 
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and any automorphism a* of H may be extended (in several ways) to auto-
morphisms a of G, by choosing arbitrary rationals po, P i o , . . . , p*>- The two 
rings R and S defined over G are isomorphic if and only if there is an 
automorphism a of G such that the elements bl may be multiplied in R in 
the same way as the elements 6, in S, i. e. 

bïb'i = 2 Q'k bk L2 ' ji bi = Z 2 Q* Pji hi bo 
*=0 J Ll=0 J k=1 1=1 

is equal to /*;;(p,A) for /,/ = 1 , . . r . The condition obtained may be written 
in the matrix form 

(Qn---Q\r\ /An . . . M (9ii...9ri\ (t*ii---hir\ 

VPrl . . . Qrr) V^rl . . - lrr> W . . • OrrJ Vjllrl . . . flrr) 

that is, 
(5) . PAP' = g0M 
where P' denotes the transpose of P. Calling two matrices A and M 
H-equivalent if there is an automorphism a* of H with the matrix P and 
there is a rational number p0 such that (5) holds, we get an equivalence 
relation among the rxr square matrices with rational elements. Our argu-
ments above show that two rings over G are isomorphic if and only if the 
corresponding matrices A and M are //-equivalent. (The system b0,bu...,br 

may be taken fixed.) Thus the number of equivalence classes under this 
//-equivalence equals the number of non-isomorphic rings over G with 51 
as an annihilator, and we conclude : 

T h e o r e m 2. A torsion free group G is a quasi nil group if and only 
if it is either a nil group or has the form 

G = Sl + H 
where H is a nil group of finite rank r such that the number of classes of 
H-equivalence in the set of rxr square matrices9) with rational elements 
is finite. 

In particular, let us consider the case r= 1. Then both A and M are 
rational numbers and we may take P=l (corresponding to the identity 
automorphism of H) and then conclude that there are two //-equivalence 
classes, namely A = 0 alone forms one class and the nonzero rationals form 
the other class. Thus the group G=Si + H with a nil. group H of rank 1 
is a quasi nil group. Over this G the following non-isomorphic rings may 
be defined: 

®) Of course, relative to a fixed maximal independent system. 
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1. the zero ring; 
2. over H define the rational number field F, and over H a zeroring H, 

and take10) F®H (see Case 1); 
3. define H to be the annihilator of the ring and the products of the 

elements of H to lie in SI. 
This example disproves a conjecture of S Z E L E [ 7 ] which stated that 

besides <& and the nil groups there exist no torsion free quasi nil groups. 

§ 4 . The case of mixed groups. 

Assume G is a mixed quasi nil group. Since Lemma 1 is valid for 
mixed groups too, by the same argument as in § 2 we may conclude that 
almost all /7-components Tp of the torsion subgroup T of G are divisible 
groups and those Tp which are not divisible have a finite basic subgroup Bp. 
Then 7P = Blt + D? with a divisible group DP and 7 is of the type 7 = B + D, 
B a finite, D a divisible group. By a well-known result, if in a mixed group 
the (maximal) torsion subgroup is of this type, then it is a direct summand, 
that is, 
(6) G^B + D+J 
where /=j=0 is torsion free. Evidently, J must again be a quasi nil group, 
hence is of a structure described by Theorem 2. 

Next suppose that D^O, i.e. in G there exists a direct summand of 
the type <2(p®).for some prime p. Then for this prime p necessarily pJ=J 
holds. In fact, if pj is a proper subgroup of J, then pnJ is a proper sub-
group of p" - 1/ (n = 2, 3 , . . . ) , and thus there is a homomorphism J/p"J~ <2(pn) 
and hence a homomorphism J~<S(p"). Let <£(pa)= {clt c2,...} with p c 1 = 0 , 
pc<i = Ci According to (6), each element g of G has a unique representa-
tion g — b + d+a (b£B,d£D,a£j). Define a ring /?„ over G by the 
multiplication rule . 
( 7 ) gigi = (b1 + dl + a,)(bi + d2 + a2) = k1koC„ 

where k^n.k^c» are the images of aua2 under/~(2(p n ) . Since in /?„ any 
product of three elements vanishes, (7) actually implies a ring Rn over G. 
Clearly, by = the /?„ are not isomorphic for different n's, thus the 
hypothesis pjczj contradicts the quasi nil character of G. We have thus 
proved that the presence of Sip 0 0) Sn G implies pJ—J. — Moreover, it 
follows that the rank of J is 1. In order to verify this assertion, take any two 
independent elements u, v in / ; then each element a of / has the form 

10) The s i g n © will be used to denote direct sum in the ring-theoretic sense. 
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a ~ { U + oi'í-x for some x (which identically vanishes if the rank of J is 2 ) 

and rational numbers p, O. If we agree in putting -^¡Ci = Ck+I in (2(p®), then 

may be regarded as a group with rational operators (for pc, Q a rational 
number, c in ő(p®), is a well-defined element in (2(p™)). We define, for 
each p-adic integer ;r,- a ring R(TI) over G by. the rule 

gi g-> = (¿>i + dl + P . U + <7, V + Xi) (bi + dz + QvU + OtV-h x2) = ( o , p 2 + <7, o 2 n ) c x . 

/?(«) is plainly a ring. Consider the elements g which are divisible by every 
a 

power of p. If ~ denotes any element y with pvy = g, then") 

f g f f b d , p a , x \ 2 Q^ + rfn , , , , . 

Thus every g, divisible by all powers of p, defines an endomorphism of 
£(p®) which may be represented by the p-adic integer g2 + <fix. The set of 
these p-adic integers, taken for all g, contains 1 and is countable. If two 
rings are isomorphic, then the corresponding sets of /7-adic integers may 
differ merely by a /7-adic unit factor (inducing an automorphism on (2(/?®)). 
Since 1 was supposed to belong to this set, there is but a countable set of 
p-adic integers belonging to a class of isomorphic rings. The uncountability 
of the p-adic integers implies that there is an infinity of non-isomorphic 
rings R(n) over G. Consequently, J must be of rank 1. 

Next we show that there is but a finite number of primes p for which 
(2(/?m) exists in D. For, in the contrary case there would exist a homo-
morphism i}p of J into each of these <£(pa'), and by the same methods as 
used in the preceding paragraph we could show that each t]p gives rise to 
a ring R(p) over G such that all products "lie in <2(/?®), but not all of them 
vanish. Since G is a quasi nil group, this is impossible. 

Assume that G = B+J where B is finite and J is a nil group, and let 
p be a prime dividing the order-m of B. Then JjpJ is finite, for in the con-
trary case there would exist in J an infinite set of independent elements 
űtjűj , . . . belonging to pairwise different cosets modpJ . Let. b£ B be of 
order p and put af — b if i>n and ű;űy = 0 in all other cases, furthermore, 
for the elements independent of the a; define the multiplication to be identi-
cally 0. Then this definition gives rise to a ring R„ over G and for different 
n's the rings R„ are not isomorphic, for the annihilator of RH mod {B, pJ} is 

» ) For simplicity assume (this can always be done without restricting generality) 
that in the denominator of (> and a the prime p does not occur. 



On quasi nil groups. / . .., 41. 

of rank n (note that B is the torsion subring and pj is also an invariant for 
all rings over G). It follows that JlpJ and hence J/mJ is finite. 

What we have proved shows that a mixed quasi nil group G has one-
of the forms 

I. G=B-\-J where B is finite of order m,J a torsion free quasi nil. 
group such that JlmJ is finite whenever J is a nil group. 

II. G — B + D+J where B is finite, D a torsion divisible group with 
a finite number of /7-components, J a torsion free quasi nil group of rank 1 
such that pJ=J for the primes p occurring in D. 

Conversely, assume the group G has the form I. We intend to show-
that but a finite number of non-isomorphic rings exists over G. 

It is evident that mJ annihilates B and among the elements of J only 
those outside mj may have a product not belonging to J. In order to know 
a ring R over G, it suffices to know the following products: 1. the elements 
of J by the elements of J ; 2. the elements of B by the elements of B; 3. the 
elements of B by some representatives of J mod mJ. The products 2. and 3. 
lie in B, thus there is but a finite number of possibilities for defining them. 
The products 1. are of the form a-ia1 = az-\-b (a>£j, b£B); here b does not 
alter if we replace aand a2 by other elements of the cosets of ^ and a.2 

mod mJ. Thus to each ring 5 over J Si GjB there is but a finite number of 
rings R over G with S^R/B. If the rings 5, and S2 over J are isomorphic, 
and Ri is a ring over G which corresponds to Si, then we may extend S*. 
such that the S-components of the products in 2. and 3. be the same in R2 

as those of the corresponding elements in /¡\ (we let B fixed). To be more 
explicit, if e .g . a1a2 = a3-\-b (a,£j,b£B) in Ru then tz,a.2 = holds in S l r 

and if <JP is an isomorphism of S j onto S2, then we set afat — aa+b. It is 
easily seen that, since m j is carried onto itself by every automorphism, the 
rings R\ and R2 will be isomorphic, and this establishes what we intended 
to verify in this paragraph. 

Let now G have the form II and consider those rings R over G in 
which all the products lie in the torsion subgroup B-\-D of G. First of all 
observe that -D is an annihilator of G, for besides it annihilates B + D, it so 
does J , considering that pJ=J holds for all p with (2(p®)S£>. 

For a fixed the mapping v—»uv is a homomorphism of J onto a 
subgroup Tu of B + D, and from /"(/) = 1 we conclude that Tu has the form12). 

(7) 7u = e ( p i ® ) + . . . + e ( A » ) + ( S ( 9 i . ) + . . . + ( 2 ( ^ ) 

with different primes p-i,..., p„ qu ..., qt- If pJ=J, then also pTu — T 

l z ) S e e e . g . BEAUMONT a n d ZUCKERMAN [ 1 ] . 



31) 
L. Fuchs 

so that qjf^J and therefore <2.(q?) does not exist in Dr i. e. the "finite part" 
<2(<7i')H 1-£(<7?') of T„ belongs to B. Choose a u£j such that u is not 
divisible by those primes q of the order of B for which qJ^=J, and no 
pr-component of u2 in T„ is zero ( / = 1, ...,s). Then the squares u'/p/" 
already determine all products vw(v, w since v — gu, w = au with rational 
o,o and thus vw — gou2 is a well-defined element of T„ whenever in Tu the 
multiplication by rationals is appropriately defined. Next take into account 
that the multiplications of J by p t , . . . , p r , respectively define automorphisms 
of J , so that only the fact is essential that the components of the squares 
i2(v(:J) in Q(pT), • • Q(pT), respectively, are of odd or even exponents. 
Consequently, there is but a finite number of possibilities for defining the 
multiplication of the elements of J in order to obtain non-isomorphic rings. 
The same holds for the products b i b 2 ( b i £ B ) and the products of the elements 
of B by representatives of J mod mj, since it is irrelevant, which subgroup 
of type S(p®) in D will contain components of products. It results that over 
a group of type II there exists but a finite number of non-isomorphic rings 
with products in the torsion subgroup. 

Let G be again of type II and consider the case when not all the 
products lie in the torsion subgroup B + D. Then the factor ring with respect 
to the ideal B + D is not a zero ring, consequently, J must be isomorphic 
to J t . Now in any ring R over G the products axa.2(ai^J) are divisible by 
every integer, thus they belong to D+J (the maximal divisible subgroup 
of G). It is not hard to verify that (oa)a = ga2 varies over a subgroup K 
of G, K ^ S L , when a is fixed in J and g runs over all rationals. Then any 
product g^gi with gt^K lies in K and B + D must belong to the annihilator 
of K, consequently, A" is a direct summand of R in the ring-theoretic sense: 
R — (B + D)®K. Since B + D is a quasi nil torsion group and the ring 
over K is isomorphic to the rational number field, we arrive at the 
following result. 

T h e o r e m 3. A mixed group G is a quasi nil group if and only if 
it is either of the form I or of the form II. 
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