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On the Jordan—-Dedekind Chain Condition. 
By G. GRÁTZER and E. T. SCHMIDT in Budapest. 

1 . I n t r o d u c t i o n . The well known Jordan—Dedekind theorem of lattice 
theory was firstly generalised by G . BIRKHOFF ( [ L ] 1 ) p. 66) who proved the 
following assertion. 

Let L be a lattice satisfying the following two conditions2): 
(a) xr\y-<.y implies x-cx^jy (x,y£L); 
(/3) all bounded chains in L are finite. 

Then 
i in L all maximal chains between fixed end points have the 

^ ' | same length. 
Some attempts have been made to get a more general form of this 

result. R. CROISOT [2] and G. SZÁSZ [3] proved that if we replace condition 
(/?) by the weaker 

, . \ there exists at least one finite maximal chain between 
\ a and b (a<b; arb£L), 

then it results that ( J D ) holds in (he interval [a, b\. Although under weaker 
conditions, the Croisot—Szász theorem asserts the validity of (JD) only for 
the same family of lattices as the Birkhoff theorem. Therefore we have tried 
to generalise these theorems so that the general theorem be applicable to 
lattices with continuous as well as discrete chains. 

We have also tried to obtain a statement analogous to condition ( J D ) 
in the case of infinite chains of arbitary power. We have shown that with a 
suitable definition of the length and the maximality of an infinite chain, in 
distributive lattices (JD) holds. 

2 . T h e case o f finite chains. First we give a simplified proof3) 
for the 

') Numbers in brackets refer to the Bibliography given at the end of this paper. 
-) a -i b denotes that b covers a. 
') The idea of the proof is the same as of G. SzAsz [3]. 
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T h e o r e m 1 (The Croisot—Szász theorem). Let L be a lattice satisfy-
ing (a), and Ci,C2two finite chains of L with the same end points. If C, is 
a (finite) maximal chain of length r, then 

(a) C2 is a finite chain ; 
(b) the length of C2 is at most r; 
(c) Ca is maximal if and only if its length is r. 

P r o o f . Let 

Ci: a = a0 < аг < • • • < ar — b. 

We use an induction on л The case r = 1 is trivial in any lattice. We assume 
the validity of the statement of the Theorem for r—1. Suppose it is possible 
to choose a subchain of C2 of length r + 1 : 

a = x0<x1< ••• <xr+i^=b. 

Consider the chain 

(*) Q\ gűi^JÍ! ^ ••• ^ al^xT+l = b 

and denote by t the least integer with xi Ш аг (t Ш 1). If i and / + 1 ̂  t, then 
trivially űi wXi < о , ^ x i + i . If i and / + 1 < t, f r o m ' a ^ a , it follows a — xir\a1 = 
= xi+i R\au hence in view of (A) XÍ-ÍXÍ^ÜÍ and x j + i ^ x ^ w a , , excluding 
the possibility x i ^ a l = Xi+i Consequently, x j ^ a 1 = x j l . 1 ^a 1 is impossible 
unless j = t—1. Thus the length of (*) is r and the proof is completed. 

We prove also the following, somewhat generalised form of the Croisot— 
Szász theorem. 

T h e о re m 2. Let L be a lattice satisfying (a), Ci and C2 two finite 
chains of L with the same end points. Then Q and C2 can be refined so that 
the refined chains have the same length. 

Theorem 1 follows at once from Theorem 2. On the other hand, we 
show that Theorem 1 implies Theorem 2. 

In the proof of the Theorem 2 we may assume, without loss of the 
generality, that the length m of C2 is less than or equal to the length n of Ci. 
There exists a maximal chain4) M (with the same end points as Ci and C2) 
which is a refinement of C2. If M has more than n elements, then C2 has a 
refinement of length n and thus the statement of Theorem 2 is obvious. So 
we may suppose that M has at most n elements, but this contradicts 
Theorem 1. 

*) The existence of M is equivalent to the Axiom of Choice of ZERMELO ( [ 1 ] , pp. 42—43).. 
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3 . Counter -examples . G. SzAsz [4] proved that if we define the 
length of an infinite chain as the power of the set of its elements, and call an 
infinite chain maximal, if it is no proper subchain of any other one, then 
even in distributive lattices condition ( J D ) does not hold. This possibility is 
illustrated also by the following 

E x a m p l e 1. Let R be the chain of the rational numbers of the 
interval { 0 , 1 ] and V the chain of all real numbers of [0, 1]. In the lattice 
R- V (i. e. in the cardinal product of R and V, in the sense of [1] p. 7) all 
the elements (x, x) ( x rational) form a maximal chain between ( 0 , 0 ) and 
(1,1) . This follows at once from the fact that in the case y=^z,(y, z) and 
(x, x) are incomparable, where x is an arbitary rational number between y 
and z. Hence in R- V there exists a countable maximal chain between ( 0 , 0 ) 
and (1 ,1 ) . On. the other hand, the elements (x, 0) and (h y) form a maximal 
chain of the power of continuum. 

The following problem arises. Let C\ and C2 be maximal chains (with 
the same end points). Is then Cx a homomorphic image of C2 or C2 a homo-
morphic image of Ci, at least in distributive lattices? In general, this asser-
tion fails to hold as it is shown by the following 

E x a m p l e 2. Let A be a well-ordered and B a dually well-ordered 
infinite bounded chain with the bounds O l f A and 0 2 , h (Ou h i A; 02, h € B). 
In the lattice A-B, all the elements (x, 0 2 ) and (Iuy) form a maximal chain 
Ci, and the elements (0lty) and (x,I2) form a maximal chain C2. Let us 
suppose e .g . that Cs is a homomorphic image of C,. Using the Duality 
Principle we. may assume without loss of generality that the homomorphic 
image of (A, O t) is greater than or equal to (Oi, /2). In this case all the elements 
(Ouy) of C2 form a chain isomorphic with B, which is a convex 
subchain of the homomorphic image of A. Since a homomorphic image of 
a well-ordered chain is a well-ordered chain and a convex subchain of a 
well-ordered chain is again well-ordered, we get that B is a well-ordered 
and at the same time dually well-ordered chain, i. e. B is finite, in con-
tradiction to the hypotheses. 

4. The case of infinite chains. Our aim is to establish an analogon 
of the condition (JD) for infinite chains in distributive lattices. By a cut of 
a chain we mean a subdivision of the chain into two non-void convex sub-
chains and define the length of a chain as the power of the set of its 
different cuts. Thus the length of a finite chain consisting of n -f-1 elements 
is n as usual, while e. g. the length of the chain of all rational' numbers is 
equal to the power of the continuum. 
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A chain C well be called strongly maximal, if 
(a) C is no proper subchain of any other one with the same end points; 
(b) for every homomorphic image of C, (a) is valid. 
With the aid of these notions we prove: 

T h e o r e m 3. If L is a distributive lattice6), then all strongly maximal 
chains between fixed end points have the same length; i. e. an analogon of 
the condition (JD) holds in L. 

P r o o f . Let C be a strongly maximal chain in L with the end points 
a and b ( a < b ) . We cut C into two convex subchains, I and J (a £ /, b £ J). 
We consider the congruence relation 0 of L induced by / = a and J=b. 
In [5] we have shown the following assertion: If z$[x,y\, then z = x(@,,y) 
is false (Qx,y denotes the congruence relation induced by * = >>). This result 
implies at once a^b(0). Clearly from (b) [a, b]j0 ^ 26), hence ©produces 
a cut on all chains between a and b. 0 is the minimal congruence relation 
with a=I and J=b, but from [ o , i j / 0 s 2 it is clear that 0 is the maxi-
mal one with the same property. It implies that in [a, b\ exists one and only 
one congruence relation with I ^ a , J ~ b and a ^ b , hence different con-
gruence relations (which are induced by a cut of C) define different cuts on 
strongly maximal chains between a and b. Thus the length of a strongly 
maximal chain between a and b is equal to the power of the set of all con-
gruence relations on [a, b] which are induced by a cut of C. Thus the proof 
is completed7). 

R e m a r k . If, following A. G. K U R O S [6], we consider only complete 
chains, i. e. chains for which every qut goes through an element (i. e. either 
J has a 1. u. b. or J has a g. 1. b.), then the above notion of length coincides 
with the usual one. Since in a complete lattice every maximal chain is 
complete, we obtain that in complete distributive lattices Theorem 3 holds 
with the usual notion of length (but in general not with the usual notion of 
maximally). 

5) We conjecture that Theorem 3 holds in semi-modular lattices too. 
6) 2 denotes the lattice with two elements. 
") We remark that it is possible that two chains have the same length, 'one of them 

is strongly maxima), the other has not this property. This may be shown by the two 
chains considered in Example 1. 

) 
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