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On complete semi-groups.
By RICHARD WIEGANDT in Oroshaza (Hungary).

§ 1.

By an (algebraic) structure we shall mean in the following a group, a
ring or a semi-group. A structure will be called a 7-structure if it has some
specified additional property 7.

It is a well-known fact that the Schreierian extensnons of a group ora
ring are the groups or rings, in which the given group or ring is a normal
subgroup or an.ideal, respectively. REDEI [3] treated the Schreierian exten-
sion theory of semi-groups with identity;') the Schreierian extensions of a semi-
group are the semi-groups in. which it is a "left-normal semi-group* (see
below). ' :

Definition. A T-structure S is called complete with respect to the
‘property T (shortly: T-complete) if it is a direct component (i.e. direct
factor or direct summand) in every T-structure which is a Schreierian- exten-
-sion of S.

Examples of complete structures are the complete groups among the
groups (each of their automorphisms is inner, their center consists of the identity
only), . the complete Abelian groups among the Abelian groups (for every
element a and positive integer n there exists an element x such that nx= a),
and the rings with identity among the rings. In these examples the property T
means group, Abelian group, or ring, respectively (BaEr (1], {2], ReDEI [4]).

In this paper our main purpose is to characterize the complete regular
semi-groups”) with identity; finally we make some remarks on groups and
Abelian groups, which are complete with respect to certain properties.

~

1) A semi-group is a structure in which an associative multiplication is defined. The
identity will be denoted always by e.

) A semi-group is regular, when xz=yz or zx=zy implies x==y for every
element x, j, z ‘
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§ 2.

Consider the case when the property 7 means ’regular semi-group
with identity. First we need some preparatory remarks.

Let F denote a semi-group with the identity e (F is not necessarily
regular). According to REDEI [3], a sub-semi-group N of Fis called left-nor-
mal, if F has a compatible classification of the form

(1) a,N, a;N, ... (a:€F, a,=¢)

and the products a;N are without repetition.

Similarly we can define the right-normal semi-group. If Nis at the same
time left-normal and right-normal in F, then N is called a normal sub-
semi-group of F.

Let us consider an example for a left-normal semi-group. Consider
the semi-group which is generated by the elements e, a, b (e is the identity)
and defined by the relation ab==25. It is easy to see that in this semi-group
the elements e, @ (n =1 integer) form a left-normal semi-group, but this left-
normal semi-group is not right-normal. '

Let b: (€a;:N) denote an arbitrary element of the class a;N; then
bNSaN (i=1,2,..)), and the equality sign is valid obviously in every
case if and only -if N is a group.

' .N contains the identity of F. Otherwise we should have, according to the
previous fact, N=eN&a:N (a.==¢e) for some-k==1, what is impossible.

So F and N have a common identity, further a; (k=2,3,...) is con-
tained in the class a. /N, but in general it is not possible to replace «. by
an arbitrary element of the class a. N.

The classification (1) is determined uniquely by the semi-group N.
Consider hamely beside (1) an other left-normal classification

2) biN, b.N, ... (b,=2¢)

of F. Every a: belongs to a fixed beN, and b to a fixed a;N. Since (2) is compa-
tible, so a;NS b N; from (1)follows by N a:N.Hence aiNEaN,a;N=aN
and &;N= b, N follows proving the statement. ‘

Lemma. If N is normal in the semi-group F with identity, then the
left-classes are identical with the right-classes. If a (€F) has an inverse in
F then the class of a can be written in the form aN, and we have aN == Na.

Proof. Let a.N be an arbitrary left-class and let a, belong to the
right-class Nb,. Since the classification is compatible, so ax =¥&,. Multiplying
from the right with an arbitrary element r (€ N), we get '

ar=br=be=b,
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thus a. NS Nb,. Likewise Nb; S a, N ; from these k= n and a,N = Nb, follows,
which proves the first statement.

Let the element a (€F) have an inverse in 'F, and let a belong to the
class ayN. Then .
_ aN&axN.

Multiplying from the left with a~!, we get

NCa lap N.
Consequently in both relations the equality 51gn is valid and so the class of
a is aN. :

The third statement follows from the preceding statements.

Let the property T mean that the structure is a regular semi-group
with identity. Such a semi-group is called complete by the above defi-
nition, if F is a direct factor of every regular semi-group with identity,
which contains it as a left-normal semi-group.

Now we prove the following

Theorem. The regular semi-group F with identity is complete if and
only if its automorphisms are all inner automorphisms, and its center consists
of the identity.

N

) ~Remark. If in particular F is a group, then the theorem reduces to
a known theorem of BAER [1] for groups.

Proof. The proof is a modification of BAER’s [1] proof.

Assume that F is complete, and let ¢ be an arbitrary automorphism
of F. Consider the factor-free Schreierian extension of F with an infinite®)
cyclic group: B = I o F ([ is the additive group of the integers). The elements
of B are the pairs (i, f) (i€, f€F) in which the multiplication is defined by

the following rule: . . s el
(l,f)(j,g)=(l+j,f g)
(¢ is the j-th power of the automorphisms a).
By theorem 1 of REDEI [3] Bisa semi-group, and Bis obviously regu-
lar too. It is clear that (0, e) is the identity of B.In B the elements (0,f)
form ‘a left-normal semx-group F, which is isomorphic to F. Embed F in
the usual way into B;. further denote the element (1, e) by ¢, and denote
the so formed semi-group by B. t has an inverse: ¢ —(—1 e). Since
| @, )= (1,60, /),

the elements of B are of the form ff. Since
(1: e) (O)f)(— l)e) =(O;fa)7 ’

3) If the order of the automorphism « is a finite number n, we may take instead of
the infinite cyclic group, the cyclic group of order n.
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the following relation holds in B:

tft =f (feF).
Thus the automorphism « of F is induced by the transformation of the
element t (€B). Since F is left-normal in B, therefore F is by the hypothesis a
direct factor in B. Hence there exists an endomorphism g of B with the
following properties :
B'=F,  f’=f  (f¢F).
In particular s=¢t*¢F, and
i) there exists an inverse of s in F,
ii) for every element f in F

sfsT =Ef = ftY =" =
Thus the automorphism ¢« is induced by the element ‘s of F, thus every -
automorphism of F is inner.

Let z be an arbitrary element .in the center of ‘F. Denote by /° the
additive semi-group of the non-negative integers, and consider the direct
sum /==/"+1". Consider the endomorphism-free Schreierian extension of F
with J: Z* = JoF. The elements of Z* are of the form ((i, f), f) ((i, /)€ ], f€ F),
and the muitiplication is defined as follows :

((l:])’f) (&, 0, g)= ¢+ k,J+1),fngL)
By theorem 1 of ReDE1 |3} Z* is a semi-group, further Z* is clearly regular.
Obviously ((0, 0), e) is the-identity of . Z*. In Z* the elements ((0, 0),f) form a
left-normal semi-group. F* which is isomorphic to F. Embed F ‘into Z* and
denote the elements ((0,1),e), ((1,0),e) by x and by y, respectively.
Denote the so formed seml-group by Z. It is easy to see that the following
relatlons hold in Z:
xy=yxz, xXf=fx, yf=fy  (f€F).

Since F is left-normal ifi Z, so F is by the hypothesis a direct factor in Z.
Hence there exists an endomorphism y of Z with the following properties :

Z'=F, f'=f  (feF).
Xf=x"f" = (xf)" = (fx)" =fx",

which proves that x! belongs to the center of F. Analogously, y* belongs
to the center of F. Consequently

, Yx¥=x"y = (xy)" = (yx2)’ =y"x72".
Since F is regular, we have z=e. Hence we have shown that the identity

is the only element in the center of F; and so we have proved the necessity
of the theorem.

If f€F then
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Assume conversely that every automorphism of F is inner, and its
center consists of the' indentity only, further F is left-normal in the regular
semi-group D with identity. Denote by. C the centralizer of F in D (which
consists of all those elements in D, which commute with every element in F).

We show that CF = D. Otherwise there would exist an elément w (€ D)
which does not belong to any class ¢F (c€C). Let w belong to the class
woF (W& C). It may be assumed that w, has an inverse; othérwise we should
~consider the semi-group obtained by adjoining to D an element w;' subject-
ed to the following relation: w;'wo=-e¢; since Dis regular, the obtained
semi-group is an extension of F in which F is also left-normal. wp induces
an automorphism of F, which contradicts the condition that every automorphism
of F is inner. Consequently D= CF. Since Cn F=e according to the
hypothesis, therefore D is the direct product of F and C. Hence F is direct
factor in D, and this completes the proof. '

§ 3.

Intermediate concepts between those of general groups and Abelian
groups are the concepts of soluble groups .and nilpotent groups.
Consider the complete soluble and complete nilpotent groups. It is easy
to see by the proof of the theorem that the center of a complete soluble
or complete nilpotent (or other complete not Abelian) group must be the
identity. On the other hand every soluble (and so every niipotent) group has
non-trivial centér. "So every complete soluble and complete nilpotent group
must be the identity.

Every finitely generated- complete Abelian group is the 1dent1ty They
are namely the direct products of cyclic groups; but the cyclic groups are
not direct factors in the containing cyclic groups. :

The author is grateful to Professor L. REDEl who kindly helped him
‘with the preparatlon of this paper.
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