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On almost orthogonal operators in //-spaces. 
By MISCHA COTLAR and RAFAEL PANZONE in Buenos Aires (Argentina). 

Let Ki (x), . . . , Kx(x) be integrable functions defined on the «-dimensional 
Euclidean space £"' = {x}, x = {£i, . . . , §„} (we shall also identify the point 
x with the vector Ox and use vector notations such as x— y, |x| = (2? + 
H b?»)1'2), and let 

(1) Tif=f* K = f f ( y ) Ki ( x — y ) dy, 
F.N 

(2) /^(x) = ^ ( x ) + - . . + ^ ( x ) , 

( 3 ) 7 / = / * Z T, f = = J / 0 0 K(x - y) dy, 
E" 

(4) Ki(x)^K*K^j(x) (1 ^ i ^ i + j ^ N ) , 

í \ilp 

( 5 ) 1 1 / 1 1 , , = J " | / ( x ) ; | " f l f x (dx = d& . . . d&). 
[ E" ) 

In a previous paper [1] one of the authors proved the following 

T h e o r e m A. If the kernels K¡¡ satisfy the conditions 

(6) 11K¡1=§ c-b< (1 ^ i s i+j^N), 

where 0 ¿ k 1 , and if f £ L¿ (£"'), then 
(7) H/Hc/q^cJ/11.,, Cí = c(é,c), 
where the constant c, depends on í and c only, and not on N. 

(Since Ti are operators on L1 with ||7i|| ^ HA^H,, and since (6) implies 
|| Ti Tl+j || g; c-s:i, we say that the T¡ are "almost orthogonal" operators on L2). 
B . S Z . - N A G Y [2] gave a very simple proof of Theorem A (and of a more 
general theorem) by reducing it to the following numerical lemma: 

L e m m a A. For any sum S=Í;1H |-?;jV of real numbers with 
|V¡Vi+jI =£«•> (1 ^ / ^ i+j ^ N), it is true that s - ; c(s). 

A 12 
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Here we give the following generalizations of Theorem A to ¿ ' -spaces 
and to subspaces of E": 

T h e o r e m B. Let 0 ^ y < n = dimension of E". Let the kernels Kt} 

satisfy the conditions 

(8) ¡\Kij{x + h)-Kij{x)\dx^c-^-\hfy (1 
.K" 

for an s, 0 ^ s < 1, and for every h £ E'\ if p = 2 n/(n + y), \/p + \/q = 1 , 
then 

(9) II/* All* ^ - 1 1 / 1 1 , 
holds for every /£ L1' (£"'), where c1 depends on s, y and c only. 

(Theorem B reduces to Theorem A for / = 0 and p = 2.) 

T h e o r e m C. Let 0 ^ y < n, m < n < m -f 2y, Em cz E". Let in formula 
(3) y vary in E"' and x in Em, so that f and K are defined in E'\ while 
F(x)—f*K is considered as a function defined in E"1. Then, if the kernels 
Kij satisfy conditions (8), we have for every f^L''(E") 

(10) || F f = II/* K'\I?0 < ci ll/lf;0, c. = c, (e, c), 
where p = (n-\- m)/(m + / ) , 1 //? + 1 ¡q = 1, and 

l V1'1 

| | F | | < f f l ) = j > ( x ) | V x • 
( Em ) 

T h e o r e m D. Let 0 ^ y < m, m < n < m-\-2y, E'" cz En. Let in formula 
(3) y vary in E'" and x in E", so that f is defined on E'", while K and 
F=f*K are defined on E11. Then, if the kernels K,3 satisfy conditions (8), 
we have 

(11) ll/^r = II/* KW? ^ ci ll/lir, C, = cl (e, y, c), 

for every f £ L"(£'"), where p=--(n + m)/(m + -/), 1 jp-f \/q=\. 

Theorems B, C, D are easy consequences of Lemma A and the following 
lemmas: 

L e m m a B. Let 0 g / < n. Let f{x), K{x) and F(x) =/* K be defined 
on En, and assume that 

( 1 2 ) H 7 - ! / ^ « ) ! ^ c 

holds for all u £ E", where K is the Fourier transform of K. Then 

(13) \\f*K\\q^Cx\\f\\p, C^Cl{y,C), 

with p — 2n/(n-\-y), \/p+ 1/q — ]. 
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L e m m a C. Let 0 ^ y < n, m < n < m + 2y, Em <=. E". Let f , K be 
defined on En while F=f*K is considered as defined on E"\ Then, if the 
kernel K satisfies condition; (12), it is true that 

(14) H / ^ i / ' ^ H / r , c ^ c d y . c ) , 

with p = (m + n)/(m + •/), \/p + \/q = 1. 

L e m m a D. Let 0 ^ y < m, m < n < m + 2y, E'n aEn. Let f be defined 
on E"\ while K and F—/* K are defined on E'\ and let the kernel K satisfy 
condition (12) for all u £ E"- Then 

(15) 1 1 / ^ r ^ c . H / r , 

with p = (n + m)/(m + / ) , \/p+\/q=\. 

P r o o f of L e m m a B. For every function g£Lv(En) and \/p + 
+ 1 / < 7 = 1, 1 <p ^ 2, we have the following classical inequalities of 

H A U S D O R F F — Y O U N G and H A R D Y — L I T T L E W O O D — P A L E Y ([3], Chap. 9) : 

!

\ i / i / \i/p 
{ | £ ( * ) | 9 d x ^ j l £ ( " ) l P r f " > \\g{u)\"\u\n{p-2)du^cP j\g{x)fdx, 

EN J ( EU ) EN EN 

where g is the Fourier transform of g. Using these inequalities and hypothesis 
(12), and taking in account that p==2n/(n + y), py = n(2—p), we obtain 

IP i U Ip 

l l / K / ^ H I ^ s i J i / W r f y = \ j\fXu)¥>\k(u)fdu[ ^ 
( EN ) [ EN ) 

I \1 ¡P I \1 IP 

, EN ) \ EN 

\ i IP / ^l Ip 

— 

( E" ] \ EN ) 

P r o o f of L e m m a C. Now / and K are defined on E", and f* K 
on Em, m<n. Let E"1 = {t} = {x} = {v}, En"'1 = {z} = {w}, E" = EmX 
X E"~m = {>-} = {(i, z) } = {«} = {(«, w)}, and let f ( y ) = f ( t , z). Then 

(16) F(x) = f dt J f(t, z) K(x—t, —z) dz 
j^m gn - m 

arid 

F(v)= f F(x)ei(x-°)dx = \dt J f(t,z)K(x—t,—z)dz = 

( 1 7 ) = J dz \ f z ( t ) d t ¡K(x,—z)eK:r'0)eHt>v)dx= J f(v)K-z(v)dz, 
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where f,(v) is the Fourier transform of fz{t), considered as a function of t 
with fixed z. Hence 

i ) i )1/7 

(17a) I IM*)l"<tz I lK(v)fJdz . 

Here rpi: (z) — K (<;) is the Fourier transform of K2 (t). If we take now the Fourier 
transform r/> of cp,{z), considered as a function of z, we obtain 

cpi: (w) = | K, (v) e'(z' 'n dz = I I K(t, z) e (,>v) el ,r) dt dz = 

= \K(y)eii!h")dy = K(u) = K(i;,w). 
E" 

Hence, applying Hausdorff—Young inequality to <pc(z) and taking into account 
that \K(u)\^c\u\-y = c(\v\2+\w\2yy/2, we shall have 

(' \Kz(v)\'dzi s (' \(pv(w)\"dw\ = |' \K(v, iv)|'' dwi ^ 
\ j f j f En~n> j 

( 1 8 ) / / \ i h> 
SC f (\vf + \wfy^2dwl = C J (1 +\wfyvyl-dwl . 

Since p = (m + n)/(m + y) and n<m + 2y, we have p< 2 and py — n + 
-\-m—pm>n — m, and the last integral of (18) is finite, and since 
n — m — py~n(p — 2), we obtain from (17a) and (18), that 

in 0-2)/,, \m\"dz\ . 

Hence, using the inequalities of Hausdorff—Young and of Hardy—Littlewood— 
Paley, we obtain 

v 1//' 
i(»0 | " 0 > - 2 ) in " ' I \fz(i;)\''dz dv\ \F(v)\vdv\ ^c, 

T j,<m 1 F jt>w Fn -m 

1 silv / yh> 
= c, j dz j l / . C ^ r i « ! " 0 " 2 ^ ' ' ^ j dz j \f(t,z)\"dt] =c2||/||{: ,). 

f /.-11-»»» /,;»»' 1 f pm 1 

P r o o f of L e m m a D. Let £" = £'" X E""",EW = { t} = {y} = 
= {•,}, E"-»> = tz}=={w}t E- = { x } = {(ytZ)}=={l!}=={(VjW)h so that 

F{x) = F(y, z) = j/(0 K(y-t, z) dt 
iim 
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a n d 

F(u) = F(v, w) = | ei(x'dx ) f ( t ) K(y—t, z)dt = 
E" xm 

= J e ' ( " ' d y f eu'"Uz j / ( / ) K(y—t, z)dt=/(v) K(v, w). 
y)>i ¡,<n-m ' pin 

Using (12) and taking in account that py = n + m — pm> n — m, we have 

f \K(o,w)\l,dw^c [ (|?;|2 + |iv|2)"''7/2dw = 
yii-w, yti-m 

I I \n~m~py /< . | |2\-?)7/2 » I rm(i)-2) = c ) \v\ ( 1 + 1 T V | ) I Y I dw--=Ci\v\ . 
KH~m 

Hence, using (19) and (20), we obtain 
I . XI II> / ,1 H> 

IF | |f;° s j I F(U) I "dui = j' (w, w) f dv dw = ||7 

j \f(v)\7'dv j \K(v,w)fdw\ = 
f ytn Kn~m 1 

/ \IIi> / h> 
J \ m \ " \ v r ^ d v [ =sC2 j ' l f ( y ) f d y [ = C 2 | l / f -

( E'n ) ( E'n ) 

P r o o f of T h e o r e m s B, C, D. In virtue of lemmas B, C, D it is 
sufficient to prove that the hypothesis (8) implies condition (12). For any 
function g(y), y(LE'1, we have 

g{u)=\g{y)ei(v'")dy, g(u)ei'"-")^ Jg(y-h) ¿ ^ d y , 
X" EN 

¡^(")Cl-ei("',0)|3§ ¡\g{y-h)-g{y)\dy. 
EN 

Letting h = u/\u|'2, so that |/z| = l/|;/|, and g = Kij, we obtain from (8) that 

Since Kij = Ki * Kt+j, we obtain \Kt (a) \ \ Ki+j (u) | ^ c t' j u f" 7 , or 

(21) 

Applying Lemma A we obtain from (21) that 

This proves the theorems. 
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CD 

Applications, a) Let K{x) = £ K, (x) and assume that all Ar, ( x ) ^ 0 
i 

and that (8) holds for all i,j< oo.Then, since \f*K(x)\ ^ '£\f\*Ki{x), we 
deduce easily that Theorems B, C, and D apply to the operator / * K. 

b) Let y ~{yu ..., y„) and consider the operator 
11 

CO CO 

(22) Hynf(x) = F(x) = \ . . . \ f { y ) . \ x - y r d y , • • • dy„, 
o a 

with 0<y^n. Let K,(y) = \y\y'n if 2'' ^ \y\<2i+1, and zero otherwise, 
CO 

and let K = Then 
- C D 

(22a) Hynf=F=f*K. 

It is easy to check that the kernels K; thus defined satisfy conditions (8), 
and thus we obtain the following 

C o r o l l a r y . The inequalities (9), (10) and (11) are true for the 
operator Hynf. 

For /7i = /I = l, the corollary is a special case of a theorem of H A R D Y — 

LITTLEWOOD [3], and for m = n > 1 it is a special case of a theorem due 
to SOBOLIEFF [4] . For m < n and with £ ' " , £ " replaced by bounded sets, as 
well as with q replaced by s < q, it was proved by SOBOLIEFF [5], who 
proposed the full inequality (10) as a problem. The part m > n of the Corollary 
is probably new. More general and complete results of this kind are given 
in [6]. 

Generalizations. 1. The inequality of H A U S D O R F F — Y O U N G used in 
the above proofs, is a particular case of the following more general in-
equality, due to P I T T [ 7 ] : 

i \Ul> l 1 
ll/ll«2i J j l / W f ' l x n r f x j , 0 ^ « < 1 — 1 , q ^ p , -L + _ = l _ « . 

Using this inequality in the above proofs, we will obtain that the hypothesis 
(8) implies the inequality (9) for any (p, q) such that \/p — \/q = y/n. However, 
since P I T T ' S theorem imposes the restriction l < / ) £ 2 , 0 ^ « < 1 — \ / p , the 
proof applies only for p such that 1/2 ^ p ^ Y/2 + y/2n (for instance, if / = 0, 
the proof applies only for /7 = 2). Similiar remarks apply to Theorems-C 
and D. It would be interesting to extend the above proofs also to the values 

p with l / / 7 ^ 4 - + 7/2n. 
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2. In the case / = 0, p = 2, Theorem A remains true (see [1] or [2]) 
if the operators T i f = f * K i are replaced by arbitrary hermitean operators 
on I 2 (or on a Hilbert space). It would be interesting to obtain similiar 
generalizations of Theorems B, C, D, in terms of operator theory. 
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