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On almost orthogonal operators in L'-spaces.

By MISCHA COTLAR and RAFAEL PANZONE in Buenos Aires (Argentina).

Let K1 (x), ..., Kx(x) be integrable functions defined on the n-dimensional
Euclidean space E"=={x}, x=1{&, ..., &} (we shall also identify the point
x with the vector Ox and use vector notations such as x—y,|x|=(E+
e E)), and et »

(1) Tif=f+Ki= | f() Ki(x—) d,

) K(x)= K, (x)+ - + K (),

®) Tf=fs+K=2T.f= | f() K(x—)dy,

4) C Ky (%) = K% Kiyj (x) (I=i=i4+j=N),
' i \p

®) 1l = % (17 ax @x—ds ... d5).

In a previous paper [1] one of the authors proved the following
Theorem A. If the kernels K; satisfy the conditions

) | Kl = c-e/ (I=i=i+j=N),
where 0 = &< 1, and if f¢€ L*(E"), then
7N N f+ KL= el fll a=a(s0),

where the constant c, depends on & and ¢ only, and not on N.

(Since T are operators on L* with || 7:|| = ||K:|, and since (6) implies
| T: Tisjl| = c-¢/, we say that the T; are “almost orthogonal” operators on L.
B. Sz.-NAGy [2] gave a very simple proof of Theorem A (and of a more
general theorem) by reducing it to the following numerical lemma:

Lemma A. For any sum s=uvu-+---+uvx of real numbers with
fvivig| =67 (1 =i=i4+j=N), it is true that s = c(¢).
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Here we give the following generalizations of Theorem A to L”-spaces
and to subspaces of E":

Theorem B. Let 0=y <n=dimension of E". Let the kernels K
satisfy the conditions

® [1Ki(x+h)—Ky()|dx = c-si[ar (1 =i=i+j=N),

EDL

for an e, 0=¢<1, and for every h€ E", if p=2n/(n+7y), 1/p+1/g=1,
then :

©) 1 f Ky = e[| o
holds for every f¢ L"(E"), where ¢, depends on s, vy and c only.

(Theorem B reduces to Theorem A for v =0 and p=2))

Theorem C. Let 0=y<n, m<n<m+2y, E" cE". Let in formula
(3) y vary in E" and x in E", so that f and K are defined in E", while
F(x)=f*K is considered as a function defined in E™. Then, if the kernels
K satisfy conditions (8), we have for every feL"(E")
(10) IFIE = K =all IS, a=calero),
where p—(n+m)/(m-+7), 1/p+1/q—=1, and

g
| F Il = g JIFGI dxg :

F’"l

TheoremD. LetO0=y<m,m<n<m+2y, E"cCE" Let in formula

(3) y vary in E" and x in E", so that f is defined on E", while K and

F=fxK are defined on E". Then, lf the kernels K;; satisfy condttzons (8),
we have

(11) iFIE =11 K = e | 1" eo=ci(e 7 0),

for every f€ L"(E™), where p=(n+m)/(m+y), 1/p+1/g=1.

Theorems B, C,D are easy consequences of Lemma A and the following
lemmas:

Lemma B. Let 0=y <n. Let f(x), K(x) and F(x)=fx K be defined
on E", and assume that

(12) ju" - |K @)| = c
holds for all ucE", where K is the Fourier transform of K. Then
(13) [fx Kl = allfll, a=a(ro),

with p=2n/(n--7), 1/p+1/g=1.
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Lemma C. Let 0=y<n, m<n‘<m+2y, E"cE". Letf, K be.
defined on E" while F=fK is considered as defined on E™. Then, if the
kernel K satisfies condition (12), it is true that

(14) If+ KIS =allfIE, a=ac),

with p=(m-+n)[(m+7y), 1/p+1/g=1.

Lemma D. Let O=y<m, m<n<m+2y, E"CE". Let f be defined
on E™, while K and F=f*K are defined on E", and let the kernel K satisfy
condition (12) for all u€ E" Then

(15) If K| = e FI5,
with p=(n+m)/{(m-+7), 1/p+1/g=1.

Proof of Lemma B. For every function g¢L”(E") and 1/p+
4+1/g=1,1<p=2, we have the following classical inequalities of
HAUSDORFF—YOUNG' and HARDY—LITTLEWOOD —PALEY ([3], Chap. 9):

1/p

o lg@r e de = ¢ [lg@Pax,

E E

1/q
| Jlgorasf =

[18@P du

where £ is fhe Fourier transform of g. Using these inequalities and hypothesis
(12), and taking in account that p=2n/(n+4y), py=n(2—p), we obtain

1p . 1/p
ekl =liFl = | [1F@P =§ i@ K(u)lpduz =

=c

1/p 1/p
(1P ™ duz =c§ flf(u)l”lul"‘p'g’duz = ¢,(|ll-

E’ll

Proof of Lemma C. Now f and K are defined on E", and fxK
on E",m<n Let E"={t}={x}={v}, E""={2}={w}, E'"=E" X
XE™"={y}={{t,2)} ={u}={(v,w)}, and let f(y)=F(t 2). Then

(16) Fw= [dat | 1t 9 kK(x—t,—2)dz
and’ o
F)= [ Foye®Pdx= [ é“ax [at | f(t,2) K(x—t, —2)dz=

E"l .E"" E'In En— "

an _ f dz _[fz(t)dt JK(x, —2)e® 't gx= f @) K-(v) dz,

E)l—-ﬂl El)l E?N E?l—nl
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where f.(v) is the Fourier transform of f.(f), considered as a function of ¢
with fixed z. Hence

. A iy
(17a) £ @) é% | o dz:

’,}’N -m

i 1y
‘ '&(7/)]"(122 .

h‘ﬂ -=m

Here ¢, (2) = K, (v) is the Fourier transform of K, (1). If we take now the Fourier
transform ¢ of ¢, (2), considered as a function of 2, we obtain

Po (W) = _[ K. () e'®"dz= .[ J.K(AZ)JU”N?“”’dfdz==
,,j'“—’lll ],:‘H- n lg’)ll
— [ K@) dy=R(u)= R, w)
E

Hence, applying Hausdorff—Young inequality to ¢, (2) and taking into account
that |K(u)| = clul™=c(|v[+|w[)™", we shall have

1/p
<

1/ . .
Z;j|K@wde

EH -m

g ‘ |K,(v)|" dz

-

iy .
= g [ lgeoraw

En—m

1 1/

(18) . .
se | (o whytaw

I,:'ll —-m

In . ]
=Cg|lu'u-m—p'y .VI (1 +|wl.f_)—7;'y/_dw

Ell —-m

Since pv=(m+n)/(m+y)‘ and n<m+42y, we have p<2 and py==n-+
+m—pm>n—m, and the last integral of (18) is finite, and since
n—m-—py==n(p—2), we obtain from (17a) and (18), that '

. Up
[ 1700 dz% .

R

[F@)|=c o]

Hence, using the inequalities of Hausdorff—Young and of Hardy—Li‘ttlewood—
Paley, we obtain

. 1/p . X . R ‘ 1p
HFHf,m) = g i lF('I;)["d’U% = C,; , li]v‘|"(p—') '_ [ ()] dz:|dv;2 =

o

. . _ . Up . . ’ Up :
26'3 ) @ | lfz(v)l"I'vl"("")""’2 éce§ | ez | |f<f,z)|"dt§ —cllfI".

',:)I -Hi I,:Hl l"” =Nt I,‘VNI

Proof of Lemma D. LetE"=E"XE"™, E'={t}={y}=
={x), B —{z}={w}), E"—{x}={(3,2)} ={u}={(, W)}, 50 that

F()=F(3, 2= | f(t) K(y—t,2) dt

',)1)1
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and
Fy=F(,wy= | dx | ft)K(y—t,2) dt =
En ],;‘In
19 . C e : N
19 _ ‘l e’ dy | e“"dz Jf(t)K(y—t,z) dt = f () K (v, w).
mm pn-m 'Enn

Using (12) and taking in account that py=n-+m—pm>n—m, we have

‘ K (s, w)|['dw = ¢ r (

],')l-)ll l,:”—'l)l

. ] |1) |,L_m—_1)y (1 + |w|2)—)ry/2 dw — 1 | 7/.Im(p—i).

l’:”‘”t

v

2+‘wl:2)—p'y/2dw___

(20)

Hence, using (19) and (20), we obtain
1/p

IF

) 1y N
f;”é; J|F<u>|""”2 25 ), JIE@wiavaw

E]I -m ];:'Hl

s
1;p
-

=g [1f@rav | 1K@ wpaw

],71", ],:IL -m

. . i/p . 1/p
éag | |f<v,~>|"|«ur"<v-->m,-2 gcgghf(y)v’dyg ——

B M

Proof of Theorems B, C, D. In virtue of lemmas B, C, D it is
sufficient to prove that the hypothesis (8) implies condition (12). For any
function g(y), y € E*, we have

fw=[gme®dy, gwe = [gr—hn e ay,

E R

£ @ (=)= [lgr—h)—g ()| dy.

B

~ Letting h=u/|uf’, so that |#|=1/|u|, and g =K, we obtain from (8) that
Ky (@) =c-eluf™.
Since Kjj=Ki*K.;, we obtain |K; ()] | Kivj ()| = c&' |u] Y, or
(21) (1K (@) |u)-(|Kiy @) [u]") = c&.
Applying Lemma A we obtain from (21) that
(K@ ul = 2| K@) |u]" = ¢ & 0).

This proves the theorems.
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Applications. a) Let K(x)=_> K, (x) and assume that all K;(x)=0
. - _

and that (8) holds for all i,/ < co. Then, since | f* K (x)| = 2| f|* Ki (x), we
deduce easily that Theorems B, C, and D apply to the operator fx K.

b) Let y=(», ..., y») and consider the operator

n

©

(22) Hy f () =F @)= [ - [ FO)-[x—p"dp, -y,

0

with 0<y =n. Let K;(p)=|y["™ if 2'=|y| <2™, and zero otherwise;
and let K= K;. Then
(22a) H‘ynf:F=f*K.

It is easy to check that the kernels K thus defined satisfy conditions (8),
and thus we obtain the following

Corollary. The inequalities (9), (10) and (11) are true for the
operator H,,f.

For m=n==1, the corollary is a special case of a theorem of HARDY—
Lirteewoop [3], and for m=n>1 it is a special case of a theorem due
to SOBOLIEFF [4]. For m< n and with E", E" replaced by bounded sets, as
well as with g replaced by s<gq, it was proved by SOBOLIEFF [5], who
proposed the full inequality (10) as a problem. The part m > n of the Corollary
is probably new. More general and complete results of this kind are given
in [6].

Generalizations. 1. The inequality of HAUSDORFF—YOUNG used in
the above proofs, is a particular case of ihe following more general in-
equality, due to PiTT [7]:
1p
nf‘nqsg [l xrax] , 0se<i—t, g=p Liloi—e

i § - p’ T b g
Using this inequality in the above proofs, we will obtain that the hypothesis
(8) implies the inequality (9) for any (p, ¢) such that 1/p —1/qg = y/n. However,
since PITT’s theorem imposes the restriction 1<p=2, 0 =ea < 1—1/p, the
proof applies only for p such that 1/2 = p = 1/24y/2n (for instance, if y=0,
the proof applies only for p==2). Similiar remarks apply to Theorems-C
and D. It would be interesting to extend the above proofs also to the values

p with 1/p= %—f—y/Zn.
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2. In the case y=0, p=2, Theorem A remains true (see [1] or [2])
if the operators T;f=/f+* K; are replaced. by arbitrary hermitean operators
on L* (or on a Hilbert space). It would be interesting to obtain similiar
generalizations of Theorems B, C, D, in terms of operator theory.
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