On almost orthogonal operators in L^{p}-spaces.

By MISCHA COTLAR and RAFAEL PANZONE in Buenos Aires (Argentina).

Let $K_{1}(x), \ldots, K_{N}(x)$ be integrable functions defined on the n-dimensional Euclidean space $E^{n}=\{x\}, x=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ (we shall also identify the point x with the vector $O x$ and use vector notations such as $x-y,|x|=\left(\xi_{1}^{2}+\right.$ $\left.+\cdots+\xi_{n}^{2}\right)^{1,2}$), and let

$$
\begin{gather*}
T_{i} f=f * K_{i}=\int_{E^{n}} f(y) K_{i}(x-y) d y \tag{1}\\
K(x)=K_{1}(x)+\cdots+K_{N}(x) \tag{2}
\end{gather*}
$$

$$
T f=f * K=\sum T_{i} f=\int_{E^{n}} f(y) K(x-y) d y
$$

$$
\begin{equation*}
K_{i j}(x)=K_{i} * K_{i+j}(x) \quad(1 \leqq i \leqq i+j \leqq N) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\|f\|_{n}=\left\{\int_{E^{\prime \prime}}\left|f(x)_{i}\right|^{n} d x\right\}^{1 / n} \quad\left(d x=d \xi_{1} \ldots d \xi_{n}\right) \tag{5}
\end{equation*}
$$

In a previous paper [1] one of the authors proved the following
Theorem A. If the kernels $K_{i j}$ satisfy the conditions

$$
\begin{equation*}
\left\|K_{i j}\right\|_{1} \leqq c \cdot \varepsilon^{j} \quad(1 \leqq i \leqq i+j \leqq N) \tag{6}
\end{equation*}
$$

where $0 \leqq \varepsilon<1$, and if $f \in L^{2}\left(E^{n}\right)$, then

$$
\begin{equation*}
\|f * K\|_{2} \leqq c_{1}\|f\|_{2}, \quad c_{1}=c_{1}(\varepsilon, c) \tag{7}
\end{equation*}
$$

where the constant c_{1} depends on ε and c only, and not on N.
(Since T_{i} are operators on L^{2} with $\left\|T_{i}\right\| \leqq\left\|K_{i}\right\|_{1}$, and since (6) implies $\left\|T_{i} T_{i+j}\right\| \leqq c \cdot \varepsilon^{j}$, we say that the T_{i} are "almost orthogonal" operators on L^{2}). B. Sz.-Nagy [2] gave a very simple proof of Theorem A (and of a more general theorem) by reducing it to the following numerical lemma:

Lemma A. For any sum $s=v_{1}+\cdots+v_{N}$ of real numbers with $\left|m_{i} v_{i+j}\right| \leqq \varepsilon^{j}(1 \leqq i \leqq i+j \leqq N)$, it is true that $s \leqq c(\varepsilon)$.

Here we give the following generalizations of Theorem A to L^{p}-spaces and to subspaces of E^{n} :

Theorem B. Let $0 \leqq \gamma<n=$ dimension of E^{n}. Let the kernels $K_{i j}$ satisfy the conditions

$$
\begin{equation*}
\int_{\varepsilon^{h}}\left|K_{i j}(x+h)-K_{i j}(x)\right| d x \leqq c \cdot \varepsilon^{j} \cdot|h|^{2 \gamma} \quad(1 \leqq i \leqq i+j \leqq N) \tag{8}
\end{equation*}
$$

for an $\varepsilon, 0 \leqq \varepsilon<1$, and for every $h \in E^{n}$, if $p=2 n /(n+\gamma), 1 / p+1 / q=1$, then

$$
\begin{equation*}
\|f * K\|_{\imath} \leqq c_{1} \cdot\|f\|_{p} \tag{9}
\end{equation*}
$$

holds for every $f \in L^{p}\left(E^{\prime \prime}\right)$, where c_{1} depends on ε, γ and c only.
(Theorem B reduces to Theorem A for $\gamma=0$ and $p=2$.)
Theorem C. Let $0 \leqq \gamma<n, m<n<m+2 \gamma, E^{m} \subset E^{n}$. Let in formula (3) y vary in E^{n} and x in E^{m}, so that f and K are defined in E^{n}, while $F(x)=f * K$ is considered as a function defined in E^{m}. Then, if the kernels $K_{i j}$ satisfy conditions (8), we have for every $f \in L^{\prime \prime}\left(E^{\prime}\right)$

$$
\begin{equation*}
\|F\|_{\mu}^{(m)}=\|f * K\|_{q}^{(m)} \leqq c_{1}\|f\|_{p}^{(n)}, \quad c_{1}=c_{1}(\varepsilon, \gamma, c) \tag{10}
\end{equation*}
$$

where $p=(n+m) /(m+\gamma), \quad 1 / p+1 / q=1$, and

$$
\|F\|_{q}^{(m)}=\left\{\int_{E^{m}}|F(x)|^{q} d x\right\}^{1 / q} .
$$

Theorem D. Let $0 \leqq \gamma<m, m<n<m+2 \gamma, E^{m} \subset E^{n}$. Let in formula (3) y vary in E^{m} and x in E^{n}, so that f is defined on $E^{\prime \prime}$, while K and $F=f * K$ are defined on E^{n}. Then, if the kernels $K_{i j}$ satisfy conditions (8), we have

$$
\begin{equation*}
\|F\|_{I}^{(n)}=\|f * K\|_{q}^{(n)} \leqq c_{1}\|f\|_{p}^{(m)}, \quad c_{1}=c_{1}(\varepsilon, \gamma, c), \tag{11}
\end{equation*}
$$

for every $f \in L^{p}\left(E^{m}\right)$, where $p=(n+m) /(m+\gamma), 1 / p+1 / q=1$.
Theorems B, C, D are easy consequences of Lemma A and the following lemmas:

Lemma B. Let $0 \leqq \gamma<n$. Let $f(x), K(x)$ and $F(x)=f * K$ be defined on E^{n}, and assume that

$$
\begin{equation*}
|u|^{\gamma} \cdot|\dot{K}(u)| \leqq c \tag{12}
\end{equation*}
$$

holds for all $u \in E^{n}$, where \hat{K} is the Fourier transform of K. Then

$$
\begin{equation*}
\|f * K\|_{q} \leqq c_{1}\|f\|_{p}, \quad c_{1}=c_{1}(\gamma, c) \tag{13}
\end{equation*}
$$

with $p=2 n /(n+\gamma), 1 / p+1 / q=1$.

Lemma C. Let $0 \leqq \gamma<n, m<n<m+2 \gamma, E^{m} \subset E^{n}$. Let f, K be defined on E^{n} while $F=f * K$ is considered as defined on E^{m}. Then, if the kernel K satisfies condition (12), it is true that

$$
\begin{equation*}
\|f * K\|_{q}^{(m)} \leqq c_{1}\|f\|_{p}^{(n)}, \quad c_{1}=c_{1}(\gamma, c) \tag{14}
\end{equation*}
$$

with $p=(m+n) /(m+\gamma), 1 / p+1 / q=1$.
Lemma D. Let $0 \leqq \gamma<m, m<n<m+2 \gamma, E^{m} \subset E^{n}$. Let f be defined on E^{m}, while K and $F=f * K$ are defined on E^{n}, and let the kernel K satisfy condition (12) for all $u \in E^{n}$. Then

$$
\begin{equation*}
\|f * K\|_{q}^{(n)} \leqq c_{1}\|f\|_{p}^{(m)} \tag{15}
\end{equation*}
$$

with $p=(n+m) /(m+\gamma), 1 / p+1 / q=1$.
Proof of Lemma B. For every function $g \in L^{p}\left(E^{n}\right)$ and $1 / p+$ $+1 / q=1,1<p \leqq 2$, we have the following classical inequalities of Hausdorff-Young and Hardy-Littlewood-Paley ([3], Chap. 9):
$\left\{\int_{E^{n}}|g(x)|^{q} d x\right\}^{1 / q} \leqq\left\{\int_{E^{n}}|\hat{g}(u)|^{p} d u\right\}^{1 / p}, \quad \int_{E^{n}}|\hat{g}(u)|^{p}|u|^{n(p-2)} d u \leqq c_{p} \int_{E^{n}}|g(x)|^{p} d x$,
where \hat{g} is the Fourier transform of g. Using these inequalities and hypothesis (12), and taking in account that $p=2 n /(n+\gamma), p \gamma=n(2-p)$, we obtain

$$
\begin{aligned}
& \|f * K\|_{q}=\|F\|_{q} \leqq\left\{\int_{E^{n}}|\hat{F}(u)|^{p} d u\right\}^{1 / p}=\left\{\int_{E^{n}}|\hat{f}(u)|^{p}|\hat{K}(u)|^{p} d u\right\}^{1 / p} \leqq \\
& \leqq c\left\{\int_{E^{n}}|\hat{f}(u)|^{p}|u|^{-p \gamma} d u\right\}^{1 / p}=c\left\{\int_{E^{n}}|\hat{f}(u)|^{p}|u|^{n(p-2)} d u\right\}^{1 / p} \leqq c_{1}\|f\|_{p}
\end{aligned}
$$

Proof of Lemma C. Now f and K are defined on E^{n}, and $f * K$ on $E^{m}, m<n$. Let $E^{m}=\{t\}=\{x\}=\{v\}, \quad E^{n-m}=\{z\}=\{w\}, \quad E^{n}=E^{m} \times$ $\times E^{n-m}=\{y\}=\{(t, z)\}=\{u\}=\{(v, w)\}$, and let $f(y)=f(t, z)$. Then

$$
\begin{equation*}
F(x)=\int_{E^{m}} d t \int_{E^{n-m}} f(t, z) K(x-t,-z) d z \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
\hat{F}(v)=\int_{E^{m}} F(x) e^{i(x, v)} d x=\int_{E^{m}} e^{i(x, v)} d x \int_{E^{m}} d t \int_{E^{n-m}} f(t, z) K(x-t,-z) d z= \\
=\int_{E^{n-m}} d z \int_{E^{m}} f_{z}(t) d t \int_{E^{m}} K(x,-z) e^{i(x, v)} e^{i(t, v)} d x=\int_{E^{n-m}} \hat{f}_{z}(v) \hat{K}_{-z}(v) d z \tag{17}
\end{align*}
$$

where $f_{z}(v)$ is the Fourier transform of $f_{z}(t)$, considered as a function of t with fixed z. Hence

$$
\begin{equation*}
|\hat{F}(v)| \leqq\left\{\int_{z^{n}-m}\left|\hat{f}_{z}(v)\right|^{n} d z\right\}^{1 / 1 /}\left\{\int_{z^{n}-m}\left|\hat{K}_{z}(v)\right|^{u} d z\right\}^{1 / n} . \tag{17a}
\end{equation*}
$$

Here $\varphi_{s}(z)=\hat{K}_{z}(v)$ is the Fourier transform of $K_{z}(t)$. If we take now the Fourier transform $\hat{\varphi}$ of $\varphi_{r}(z)$, considered as a function of z, we obtain

$$
\begin{gathered}
\dot{\varphi}_{:}(w)=\int_{F^{n-m}} \hat{K}_{z}(v) e^{i(z, w)} d z=\int_{F^{n-m}} \int_{E^{\prime \prime}} K(t, z) e^{i(t, v)} e^{i(z, n)} d t d z= \\
=\int_{E^{\prime \prime}} K(y) e^{i(y, u)} d y=\hat{K}(u)=\hat{K}(\psi, w)
\end{gathered}
$$

Hence, applying Hausdorf-Young inequality to $\varphi_{v}(z)$ and taking into account that $|\hat{K}(u)| \leqq c|u|^{-\gamma}=c\left(|v|^{2}+|w|^{2}\right)^{-\gamma / 2}$, we shall have

$$
\begin{equation*}
\left\{\int_{w^{n}-m}\left|\hat{K}_{z}(v)\right|^{4} d z\right\}^{1 / n} \leqq\left\{\int_{w^{n-m}}\left|\hat{\varphi}_{v}(w)\right|^{n} d w\right\}^{1 / / n}=\left\{\int_{E^{n-m}}|\dot{K}(v, w)|^{\prime \prime} d w\right\}^{1 / / \cdot} \leqq \tag{18}
\end{equation*}
$$

Since $p=(m+n) /(m+\gamma)$ and $n<m+2 \gamma$, we have $p<2$ and $p \gamma=n+$ $+m-p m>n-m$, and the last integral of (18) is finite, and since $n-m-p \gamma=n(p-2)$, we obtain from (17a) and (18), that

$$
|\hat{F}(v)| \leqq c_{1}|v|^{n(p-2) / p}\left\{\int_{z^{\prime \prime}-p^{\prime \prime}}\left|\hat{f}_{z}(v)\right|^{p} d z\right\}^{1 / p} .
$$

Hence, using the inequalities of Hausdorff-Young and of Hardy-LittlewoodPaley, we obtain

$$
\begin{aligned}
& \|F\|_{i}^{(m)} \leqq\left\{\int_{z^{m}}|\hat{F}(v)|^{\prime \prime} d v\right\}^{1 / n} \leqq c_{1}\left\{\int_{k^{m}}\left[|r|^{n(p-9)} \int_{F^{n} i-m}\left|\hat{f}_{z}(v)\right|^{\prime \prime} d z\right] d v\right\}^{1 / 1}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proof of Lemma D. Let } E^{n}=E^{\prime \prime \prime} \times E^{n-w}, E^{\prime \prime \prime}=\{t\}=\{y\}= \\
& =\{r\}, E^{n-m}=\{z\}=\{w\}, E^{n}=\{x\}=\{(y, z)\}=\{u\}=\{(\%, w)\} \text {, so that } \\
& F(x)=F(y, z)=\int_{z^{: w}} f(t) K(y-t, z) d t
\end{aligned}
$$

and

$$
\begin{gather*}
\hat{F}(u)=\hat{F}(v, w)=\int_{E^{n}} e^{i(x, u)} d x \int_{E^{m}} f(t) K(y-t, z) d t= \\
=\int_{E^{\prime \prime n}} e^{i(y, v)} d y \int_{E^{n-m}} e^{i(z, u)} d z \int_{E^{m}} f(t) K(y-t, z) d t=\hat{f}(v) \hat{K}(v, w) . \tag{19}
\end{gather*}
$$

Using (12) and taking in account that $p_{\gamma}=n+m-p m>n-m$, we have

$$
\begin{align*}
& \int_{w^{n-m}}|\hat{K}(y, w)|^{p} d w \leqq c \int_{F^{n-m}}\left(|v|^{2}+|w|^{2}\right)^{-\mu \gamma / 2} d w= \\
& =c \int_{k^{n-m}}|v|^{n-m-p \gamma}\left(1+|w|^{2}\right)^{-p \gamma / 2} d w=c_{1}|v|^{m(p-2)} \tag{20}
\end{align*}
$$

Hence, using (19) and (20), we obtain

$$
\begin{gathered}
\|F\|_{\mathscr{I}}^{(n)} \leqq\left\{\int_{k^{n}}|\hat{F}(u)|^{p} d u\right\}^{1 / p}=\left\{\int_{E^{n-m}} \int_{E^{m}}|\hat{F}(v, w)|^{p} d v d w\right\}^{1 / p}= \\
=\left\{\int_{E^{m}}|\hat{f}(v)|^{p} d v \int_{F^{n-m}}|\hat{K}(v, w)|^{p} d w\right\}^{1 / p} \leqq \\
\leqq c_{1}\left\{\int_{E^{n}}|\hat{f}(v)|^{p}|v|^{m(p-2)} d v\right\}^{1 / p} \leqq c_{2}\left\{\int_{E^{m}}|f(y)|^{p} d y\right\}^{1 / p}=c_{2}\|f\|^{(w n)}
\end{gathered}
$$

Proof of Theorems B, C, D. In virtue of lemmas B, C, D it is sufficient to prove that the hypothesis (8) implies condition (12). For any function $g(y), y \in E^{\prime \prime}$, we have

$$
\begin{gathered}
\hat{g}(u)=\int_{F^{n}} g(y) e^{i(y, u)} d y, \quad \hat{g}(u) e^{i(u, u)}=\int_{E^{n}} g(y-h) e^{i(y, u)} d y, \\
\left|\hat{g}(u)\left(1-e^{i(h, u)}\right)\right| \leqq \int_{E^{n}}|g(y-h)-g(y)| d y
\end{gathered}
$$

Letting $h=u /|u|^{2}$, so that $|h|=1 /|u|$, and $g=K_{i j}$, we obtain from (8) that

$$
\left|\hat{K}_{i j}(u)\right| \leqq c \cdot \varepsilon^{j}|u|^{-\varrho \gamma}
$$

Since $K_{i j}=K_{i} * K_{i+j}$, we obtain $\left|\hat{K}_{i}(u)\right|\left|\hat{K}_{i+j}(u)\right| \leqq c \varepsilon^{j}|u|^{-2 \gamma}$, or

$$
\begin{equation*}
\left(\left.\left|\hat{K}_{i}(u)\right| u\right|^{\gamma}\right) \cdot\left(\left|\hat{K}_{i+j}(u)\right||u|^{\gamma}\right) \leqq c \varepsilon^{j} . \tag{21}
\end{equation*}
$$

Applying Lemma A we obtain from (21) that

$$
|\hat{K}(u)||u|^{\gamma} \leqq \sum\left|\hat{K}_{i}(u)\right||u|^{\gamma} \leqq c_{1}(\varepsilon, c)
$$

This proves the theorems.

Applications. a) Let $K(x)=\sum_{i}^{\infty} K_{1}(x)$ and assume that all $K_{i}(x) \geqq 0$ and that (8) holds for all $i, j<\infty$. Then, since $|f * K(x)| \leqq \sum|f| * K_{i}(x)$, we deduce easily that Theorems B, C, and D apply to the operator $f * K$.
b) Let $y=\left(y_{1}, \ldots, y_{n}\right)$ and consider the operator

$$
\begin{equation*}
H_{\gamma n} f(x)=F(x)=\int_{0}^{\infty} \cdots \int_{0}^{\infty} f(y) \cdot|x-y|^{\gamma-n} d y_{1} \cdots d y_{n} \tag{22}
\end{equation*}
$$

with $0 \leq \gamma \leqq n$. Let $K_{i}(y)==|y|^{\gamma-n}$ if $2^{i} \leqq|y|<2^{i+1}$, and zero otherwise; and let $K=\sum_{-\infty}^{\infty} K_{i}$. Then

$$
\begin{equation*}
H_{\gamma n} f=F=f * K \tag{22a}
\end{equation*}
$$

It is easy to check that the kernels K_{i} thus defined satisfy conditions (8), and thus we obtain the following

Corollary. The inequalities (9), (10) and (11) are true for the operator $H_{\gamma n} f$.

For $m=n=1$, the corollary is a special case of a theorem of HaRDYLittlewood [3], and for $m=n>1$ it is a special case of a theorem due to Sobolieff [4]. For $m<n$ and with $E^{\prime \prime \prime}, E^{n}$ replaced by bounded sets, as well as with q replaced by $s<q$, it was proved by Sobolieff [5], who proposed the full inequality (10) as a problem. The part $m>n$ of the Corollary is probably new. More general and complete results of this kind are given in [6].

Generalizations. 1. The inequality of Hausdorff-Young used in the above proofs, is a particular case of the following more general inequality, due to Pitt [7]:

$$
\|\hat{f}\|_{q} \leqq\left\{\int_{E^{n}}|f(x)|^{p}|x|^{n \alpha p} d x\right\}^{1 / h}, \quad 0 \leqq c<1-\frac{1}{p}, \quad q \geqq p, \quad \frac{1}{p}+\frac{1}{q}=1-c
$$

Using this inequality in the above proofs, we will obtain that the hypothesis (8) implies the inequality (9) for any (p, q) such that $1 / p-1 / q=\gamma / n$. However, since Pitt's theorem imposes the restriction $1<p \leqq 2,0 \leqq c<1-1 / p$, the proof applies only for p such that $1 / 2 \leqq p \leqq 1 / 2+\gamma / 2 n$ (for instance, if $\gamma=0$, the proof applies only for $p=2$). Similiar remarks apply to Theorems C and D. It would be interesting to extend the above proofs also to the values p with $1 / p \geqq \frac{1}{2}+\gamma / 2 n$.
2. In the case $\gamma=0, p=2$, Theorem A remains true (see [1] or [2]) if the operators $T_{i} f=f * K_{i}$ are replaced by arbitrary hermitean operators on L^{2} (or on a Hilbert space). It would be interesting to obtain similiar generalizations of Theorems B, C, D, in terms of operator theory.

References.

[1] M. Cotlar, A combinatorial lemma and its applications to L^{2}-spaces, Revista Mat. Cuyana, 1 (1955), 4i-55.
[2] Béla Sz.-Nagy, Note on sums of almost orthogonal operators, Acta Sci. Math., 18 (1957). 189-191.
[3] A. Zygmund, Trigonometrical series (Warszawa, 1935).
[4] S. Sobolieff, Sur un théorème de l'änalyse Fonctionnelle, C. R. (Doklady) Acad. Sci. URSS, 20 (1938), 5-9.
[5] S. Sobolieff, Some applications of the Functional Analysis to Mathematical Physics (Leningrad, 1950, in Russian).
[6] M. Cotlar and R. Panzone, Generalized potential operators (to appear in Revista Math. Cuyana).
[7] H. Pirt, Theorems on Fourier and power series, Duke Math. Journal, 3 (1937), 747-755.
instituto de matemática
universidad de buenos aires

