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On strongly continuous semigroups
of spectral operators in Hilbert space.

By CIPRIAN FOIAS in Bucharest.

It was proved by BELA Sz.-NAGY [4] that any uniformly bounded one-
parameter group of linear operators {7;} on a Hilbert space § is similar to a one-
parameter group of unitary operators {U,} (i.e. there exists a regular self-
adjoint operator A, such that T,=AU,A™" for all —oco <t <+ oo). Using
especially this fact, we shall prove the following

Theorem 1. Any strongly continuous one-parameter. semigroup
{T:} (t > 0) of scalar type operators (in DUNFORD’s sense [2]) on a Hilbert
space , having their spectral measures E,(0) uniformly bounded for t>0,') is
similar to a semigroup {N,} of normal operators, i.e. there exists a regular
selfadjoint operator A on § such that T,=AN,A™" for all t>0.

1. We shall first consider a particular case. Let us call a scalar type
operator T circled if its spectrum o(7T) lies on the unit circle {i:|4|=1}.
Then the condition of uniform boundedness with respect to ¢ is unnecessary.

Theorem 2. Any strongly continuous one-parameter semigroup
{Ti} (t>0) of circled scalar type operators is similar to a semigroup of
unitary operators. '

Proof. Since 7T is circled, 7y' exists for all #>0; if we put
To=1, and T,=T7; for t+<0, we obtain a one-parameter group of operators
{T}). Since Tif=TiuTi'f— T\ Ti'f=f for t—0 and f€9, the one-param-
eter group {Ti} is strongly continuous at #{==0, thus for all real {. Put
= Os<u£1[| T:||; from the STEINHAUs—BANACH theorem it follows that © < 4 co.

Let [¢] be the greatest integer = f; by [2], theorem 7, we have
I Tl = 0Tl N Tiall= o1 Tig| = e | 7 = w0 (B sup 141" =
=M"U(E1)<+°°, !

where v(E;) is a finite constant depending only on the spectral measure
Ei(0) of Ti. Thus, the one-parameter group {7} is uniformly bounded.

1) 1. e. there exists a K < =o such that ||E,(0)]| = K for all #>>0 and all Borel set
o on the real axis £ = (— o<, o0). .
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By B. Sz.-NAGY’s theorem mentioned above, there exists a regular self—-
adjoint operator A such that A™' T.A is unitary for all ¢; hence theorem 2:
is proved.

2. In the proof of theorem 1 we need also the “polar decomposition”
of a scalar type operator 7. Let o(T) be its spectrum, and E(o) the spectral’
measure of 7. Put

%)) r(A) =14}, u(i)==exp (iargd) for 2==0, and u(0)=1.
Then if o _
2) R= | r@E(dd), U= | u()E(dd),
a(n) : o (T)
we have by lemma 6 and theorem 16 of [2] that: (i) U is a circled scalar type:
operator, and R a positive scalar type operator (i.e. with the spectrum on.
the positive real semi-axis), (ii) U and R commute with 7, and
3) T=RU=UR
4) UE({0})=E({0) U= E({0)).

Lemma. R and U are uniquely defermined by (i), (ii), (3), and (4)
(R being uniquely determined already by the first three conditions).

Proof. Let T= U,R: be another decomposition of 7 with the prop-
erties (i), (i) and (3). Since U; and R, commute with 7, by theorem 5 of
[2] they commute also with U and R. By an obvious extension of a
theorem of J. WERMER ([5], theorem 1) from the case of two commuting
spectral measures to the case of four, there is a regular selfadjoint operator
A such that R°=A"'RA, Ri=A"'RiA, U'=A"UAand U'=A"UiA are

all normal; then U° U are unitary, and R°, R} positive selfadjoint oper---

ators ; hence from A

(R =R'U (U R =A""TAA ' TA) = RIUN(U) Rl= (R,
it results that R° —RY. Thus R—R;. To prove the uniqueness of {/ under
the additional condition (4), remark that for all f¢ § we have

TW—U)f=URU—-U)f=U(T—T)f=0,

so that E({0}) (U—U\) f=(U—U,)f. This relation gives U[/—E({0})]=
= U[I—E({0})]; so that if U, satisfies also (4), we obtain U== U, and
the lemma is proved.

3. We can now pass to the proof of theorem 1. Let {7,}(f >0) be a
strongly continuous semigroup of scalar type operators. Put

Ri= [ r)E@D), U= [u@E@d, V.= [ a@)E @),

o(Ty) AT olTy

'
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where E,(0) is the spectral measure of 7,. Remark that V,= U;", so that by
“the theorem 7 of [2] we have ||Ui|| = 4K and ||U;'|| = 4K. By theorem 5 of
{2], R and U, commute with R, and U, for all {, s>0. Applying WERMER's
‘theorem 1 [5] to R, and R;, resp. to U, and U, and using the fact that the
product of two permutable positive selfadjoint operators is positive, and the
‘product of two unitary operators is unitary, one obtains that R.R: is a
-—~positive and U,U; a circled scalar type operator. On the other hand
Tus=TTs=RUR,Us= R R, U, Us,
.and R, R., U.U, commute with 7,.,. Thus, by virtue of lemma 2, we have
Ru.=R/R., so that R: is a semigroup of positive scalar type operators.
“To such a semi-group we can apply the considerations given in [3], p. 73,
for the case of a semigroup of positive selfadjoint operators. To this aim,
let Gi(0) be the spectral measure of R;. If we put

1o
R¥ = [ &7 G (a¥)
{ U(Rl)

‘then by [2], lemma 6, Rf_ is a scalar type operator whose spectral measure
:G((—o0,4]) is Gi((—eo, #]). On the other hand applying lemma 5 of [2]
1

to R we obtain that Gi((— oo, u]) =G ((— oo, 1)), so that G((— o0, A]) =
) :

On on

=G ((—oo,4)); thus R{" and R; have the same spectral measure, and so

.are identical. By the semigroup prc;perty, and by the functional calculus for
:scalar type operators, we obtain that

) R= | 2Gidd

o(Ry)
-for all numbers ¢ in the set Q of the numbers of the form g(m=

=1,2,...;n=0,1,...). From this formula and again from lemma 5 of [2]
‘we obtain G;({0}) = G,({0}), hence in view of (3) and (4) we have E({0})=
== E({0}) for all t € Q. Consequently, we have for s,f € Q
U Us Evs({0}) = U U E\({0}) = Ui Us E«({0}) = U, [U:E.({0})] =

- = UE,({0}) = U E1({0}) = UL Ei({0}) = Ei({0}) = E1({0}) = E.. ({0})
-and in view of the lemma, ’
(6) UH-S - ljt l/s
for all s,f € Q. Let us put Uy=1, and U_,=U," for s€ Q. In virtue of (6),

.s— U, is an operator representation of the additive group Q" = QU {—Q} u {0}
«of all dyadically rational numbers. But, for all s >0, U, as a function of T,
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commutes with 7;, hence with R;, and consequently we have
N U; Gi(0) = G,(0) U,
for all Borel set o §2. Consider now the cartesian product I” of the family
of Borel sets ¢ in £, and of Q’. Define the ,product“
(0,8)0(d,8)=(end)Yu(on?d), s+5),
‘where the bar denotes complementation (i.e. 6=82-—o0); [ is then an
abelian group with unit element (£2,0) and with the inverse (g, )™ = (g, —s).
For all (0,5) € I" put
W (o, s) =[2Gi(o)— 1 U..
Using the fact that G,(o) is a spectral measure, and the relations (6) and
(T), one can easily verify that (o, s)— W(o, s) is an operator representation
-of our abelian group I". On the other hand the operators W (o, s) are uniformly
bounded [||W(g, s)|| = ||2G,(0)—1!||4K = (8K + 1) 4K], so that we can apply
'Sz.-NAGY’s theorem (in its form generalized to arbitrary abelian groups; see
for instance [1], p. 222) and obtfain a regular selfadjoint operator A, such
that A™ W (o, s) A are all unitary. For s—0 we obtain that A [2G,(6) — /] A
are unitary for all Borel sets o2, thus A™'Gi(g) A are orthogonal pro-
jections, and consequently, in virtue of (5), A'R.A is selfadjoint for all
teQ. On the other hand putting 6= and f¢ Q we get W(£2,H)=U,, so
that A U;A are also unitary for all #€ Q. But for all >0 we have R, U!
= T,=U:R,, and hence
(A'RA) (A U A) = A" T\ A= (A" U, A) (A" R A).
Since, for all ¢ Q, A R.A is selfadjoint and A™'U,A is unitary, their product
A7'T.A is a normal operator. But Q is dense on the positive semi-axis;

- using the strong continuity of 7; one obtains that- N;= A™'T,A is normal for.. ..

all 0<f< oo, so that {7} is similar to a semigroup of normal operators
{N.}, which finishes the proof of theorem 1.

I want to express my gratitude to Prof. BELA Sz.-NaGy for his valuable
remarks made during the preparation of this paper.
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