On strongly continuous semigroups of spectral operators in Hilbert space.

By CIPRIAN FOIAȘ in Bucharest.
It was proved by Béla Sz.-Nagy [4] that any uniformly bounded oneparameter group of linear operators $\left\{T_{i}\right\}$ on a Hilbert space \mathfrak{F} is similar to a oneparameter group of unitary operators $\left\{U_{t}\right\}$ (i. e. there exists a regular selfadjoint operator A, such that $T_{t}=A U_{t} A^{-1}$ for all $\left.-\infty<t<+\infty\right)$. Using especially this fact, we shall prove the following

Theorem 1. Any strongly continuous one-parameter. semigroup $\left\{T_{t}\right\}(t>0)$ of scalar type operators (in Dunford's sense [2]) on a Hilbert space \mathfrak{W}, having their spectral measures $E_{t}(\sigma)$ uniformly bounded for $t>0,{ }^{1}$) is similar to a semigroup $\left\{N_{t}\right\}$ of normal operators, i. e. there exists a regular selfadjoint operator A on $\sqrt[5]{5}$ such that $T_{t}=A N_{t} A^{-1}$ for all $t>0$.

1. We shall first consider a particular case. Let us call a scalar type operator T circled if its spectrum $\sigma(T)$ lies on the unit circle $\{\lambda:|\lambda|=1\}$. Then the condition of uniform boundedness with respect to t is unnecessary.

Theorem 2. Any strongly continuous one-parameter semigroup $\left\{T_{i}\right\}(t>0)$ of circled scalar type operators is similar to a semigroup of unitary operators.

Proof. Since T_{t} is circled, T_{t}^{-1} exists for all $t>0$; if we put $T_{0}=I$, and $T_{t}=T_{-t}^{-1}$ for $t<0$, we obtain a one-parameter group of operators $\left\{T_{t}\right\}$. Since $T_{t} f=T_{1+t} T_{1}^{-1} f \rightarrow T_{1} T_{1}^{-1} f=f$ for $t \rightarrow 0$ and $f \in \mathcal{E}$, the one-parameter group $\left\{T_{t}\right\}$ is strongly continuous at $t=0$, thus for all real t. Put $u=\sup _{0 \leq 1 \leq 1}\left\|T_{t}\right\|$; from the Steinhaus-Banach theorem it follows that $\mu<+\infty$. Let $[t]$ be the greatest integer $\leqq t$; by [2], theorem 7, we have

$$
\begin{gathered}
\left\|T_{t}\right\| \leqq\left\|T_{t-[t]}\right\| \cdot\left\|T_{[t]}\right\| \leqq \mu\left\|T_{[t]}\right\|=\mu\left\|T_{1}^{[t]}\right\| \leqq \mu \cdot v\left(E_{1}\right) \sup _{\lambda \in \sigma\left(T_{1}\right)}|\lambda|^{[t]}= \\
=\mu \cdot v\left(E_{1}\right)<+\infty
\end{gathered}
$$

where $v\left(E_{1}\right)$ is a finite constant depending only on the spectral measure $E_{1}(\sigma)$ of T_{1}. Thus, the one-parameter group $\left\{T_{t}\right\}$ is uniformly bounded.

[^0]By B. Sz.-NAGY's theorem mentioned above, there exists a regular selfadjoint operator A such that $A^{-1} T_{1} A$ is unitary for all t; hence theorem 2 is proved.
2. In the proof of theorem 1 we need also the "polar decomposition" of a scalar type operator T. Let $\sigma(T)$ be its spectrum, and $E(\sigma)$ the spectral ${ }^{\text {i }}$ measure of T. Put

$$
\begin{equation*}
r(\lambda)=|\lambda|, \quad u(\lambda)=\exp (i \arg \lambda) \quad \text { for } \quad \lambda \neq 0, \quad \text { and } \quad u(0)=1 \tag{1}
\end{equation*}
$$

Then if

$$
\begin{equation*}
R=\int_{\sigma(T)} r(\lambda) E(d \lambda), \quad U=\int_{\sigma(T)} u(\lambda) E(d \lambda) \tag{2}
\end{equation*}
$$

we have by lemma 6 and theorem 16 of [2] that: (i) U is a circled scalar type operator, and R a positive scalar type operator (i.e. with the spectrum on. the positive real semi-axis), (ii) U and R commute with T, and

$$
\begin{align*}
T & =R U=U R \tag{3}\\
U E(\{0\}) & =E(\{0\}) U=E(\{0\}) . \tag{4}
\end{align*}
$$

Lemma. R and U are uniquely determined by (i), (ii), (3), and (4) (R being uniquely determined already by the first three conditions).

Proof. Let $T=U_{1} R_{1}$ be another decomposition of T with the properties (i), (ii) and (3). Since U_{1} and R_{1} commute with T, by theorem 5 of [2] they commute also with U and R. By an obvious extension of a theorem of J. Wermer ([5], theorem 1) from the case of two commuting spectral measures to the case of four, there is a regular selfadjoint operator A such that $R^{0}=A^{-1} R A, R_{1}^{0}=A^{-1} R_{1} A, U^{0}=A^{-1} U A$ and $U_{1}^{0}=A^{-1} U_{1} A$ are all normal ; then U^{0}, U_{1}^{0} are unitary, and R^{0}, R_{1}^{0} positive selfadjoint operators; hence from

$$
\left(R^{0}\right)^{2}=R^{0} U^{0}\left(U^{0}\right)^{*} R^{0}=A^{-1} T A\left(A^{-1} T A\right)^{*}=R_{1}^{0} U_{1}^{0}\left(U_{1}^{0}\right)^{*} R_{1}^{0}=\left(R_{1}^{0}\right)^{2},
$$

it results that $R^{0}=R_{1}^{0}$. Thus $R=R_{1}$. To prove the uniqueness of U under the additional condition (4), remark that for all $f \in \mathscr{G}$ we have

$$
T\left(U-U_{1}\right) f=U R\left(U-U_{1}\right) f=U(T-T) f=0
$$

so that $E(\{0\})\left(U-U_{1}\right) f=\left(U-U_{1}\right) f$. This relation gives $U[I-E(\{0\})]=$ $=U_{1}[I-E(\{0\})]$; so that if U_{1} satisfies also (4), we obtain $U=U_{1}$, and the lemma is proved.
3. We can now pass to the proof of theorem 1. Let $\left\{T_{t}\right\}(t>0)$ be a. strongly continuous semigroup of scalar type operators. Put

$$
R_{t}=\int_{\sigma\left(T_{t}\right)} r(\lambda) E_{t}(d \lambda), \quad U_{t}=\int_{\sigma\left(T_{t}\right)} u(\lambda) E_{t}(d \lambda), \quad V_{t}=\int_{\sigma\left(T_{t}\right)} \overline{u(\lambda)} E_{t}(d \lambda)
$$

where $E_{t}(\sigma)$ is the spectral measure of T_{t}. Remark that $V_{t}=U_{t}^{-1}$, so that by the theorem 7 of [2] we have $\left\|U_{t}\right\| \leqq 4 K$ and $\left\|U_{t}^{-1}\right\| \leqq 4 K$. By theorem 5 of [2], R_{t} and U_{t} commute with R_{s} and U_{s} for all $t, s>0$. Applying Wermer's theorem 1 [5] to R_{t} and R_{s}, resp. to U_{t} and U_{s}, and using the fact that the product of two permutable positive selfadjoint operators is positive, and the product of two unitary operators is unitary, one obtains that $R_{s} R_{t}$ is a positive and $U_{s} U_{t}$ a circled scalar type operator. On the other hand

$$
T_{i+s}=T_{t} T_{s}=R_{t} U_{t} R_{s} U_{s}=R_{t} R_{s} U_{t} U_{s},
$$

and $R_{t} R_{s}, U_{t} U_{s}$ commute with T_{t+s}. Thus, by virtue of lemma 2 , we have $R_{t+s}=R_{t} R_{s}$, so that R_{t} is a semigroup of positive scalar type operators. To such a semi-group we can apply the considerations given in [3], p. 73, for the case of a semigroup of positive selfadjoint operators. To this aim, let $G_{t}(\sigma)$ be the spectral measure of R_{t}. If we put

$$
R_{1}^{\frac{1}{2 n}}=\int_{\sigma\left(R_{1}\right)} \lambda^{\frac{1}{2 n}} G_{1}(d \lambda)
$$

then by [2], lemma $6, R_{1}^{\frac{1}{2 n}}$ is a scalar type operator whose spectral measure $G((-\infty, \lambda])$ is $G_{1}\left(\left(-\infty, \lambda^{2 n}\right]\right)$. On the other hand applying lemma 5 of [2] to $R_{\frac{1}{2 n}}$ we obtain that $G_{1}((-\infty, \mu])=G_{\frac{1}{2 n}}\left(\left(-\infty, \mu^{\frac{1}{2 n}}\right]\right)$, so that $G((-\infty, \lambda])=$ $\left.=G_{\frac{1}{2 n}}^{\frac{\overline{3 n}}{2 n}}(-\infty, \lambda]\right)$; thus $R_{1}^{\frac{1}{2 n}}$ and $R_{\frac{1}{2 n}}$ have the same spectral measure, and so are identical. By the semigroup property, and by the functional calculus for :scalar type operators, we obtain that

$$
\begin{equation*}
R_{t}=\int_{\sigma\left(R_{1}\right)} \lambda^{t} G_{1}(d \lambda) \tag{5}
\end{equation*}
$$

for all numbers t in the set Q of the numbers of the form $\frac{m}{2^{n}}(m=$ $=1,2, \ldots ; n=0,1, \ldots)$. From this formula and again from lemma 5 of [2] 'we obtain $G_{t}(\{0\})=G_{1}(\{0\})$, hence in view of (3) and (4) we have $E_{t}(\{0\})=$ $=E_{1}(\{0\})$ for all $t \in Q$. Consequently, we have for $s, t \in Q$

$$
\begin{aligned}
& U_{t} U_{s} E_{t+s}(\{0\})=U_{t} U_{s} E_{1}(\{0\})=U_{t} U_{s} E_{s}(\{0\})=U_{t}\left[U_{s} E_{s}(\{0\})\right]= \\
= & U_{t} E_{s}(\{0\})=U_{t} E_{1}(\{0\})=U_{t} E_{t}(\{0\})=E_{t}(\{0\})=E_{1}(\{0\})=E_{t+s}(\{0\})
\end{aligned}
$$

.and in view of the lemma,

$$
\begin{equation*}
U_{t+s}=U_{t} U_{s} \tag{6}
\end{equation*}
$$

for all $s, t \in Q$. Let us put $U_{0}=I$, and $U_{-s}=U_{s}^{-1}$ for $s \in Q$. In virtue of (6), .$s \rightarrow U_{s}$ is an operator representation of the additive group $Q^{\prime}=Q \cup\{-Q\} \cup\{0\}$ of all dyadically rational numbers. But, for all $s>0, U_{s}$ as a function of T_{s}
commutes with T_{1}, hence with R_{1}, and consequently we have
(7)

$$
U_{s} G_{1}(\sigma)=G_{1}(\sigma) U_{s}
$$

for all Borel set $\sigma \subset \Omega$. Consider now the cartesian product Γ of the family of Borel sets σ in Ω, and of Q^{\prime}. Define the „product"

$$
(\sigma, s) \circ\left(\sigma^{\prime}, s^{\prime}\right)=\left(\left(\sigma \cap \sigma^{\prime}\right) \cup\left(\bar{\sigma} \cap \bar{\sigma}^{\prime}\right), s+s^{\prime}\right),
$$

where the bar denotes complementation (i.e. $\bar{\sigma}=\Omega-\sigma$); Γ is then an abelian group with unit element $(\Omega, 0)$ and with the inverse $(\sigma, s)^{-1}=(\sigma,-s)$. For all $(\sigma, s) \in \Gamma$ put

$$
W(\sigma, s)=\left[2 G_{1}(\sigma)-I\right] U_{s} .
$$

Using the fact that $G_{1}(\sigma)$ is a spectral measure, and the relations (6) and (7), one can easily verify that $(\sigma, s) \rightarrow W(\sigma, s)$ is an operator representation of our abelian group Γ. On the other hand the operators $W(\sigma, s)$ are uniformly bounded $\left[\|W(\sigma, s)\| \leqq\left\|2 G_{1}(\sigma)-I\right\| 4 K \leqq(8 K+1) 4 K\right]$, so that we can apply Sz.-NAGY's theorem (in its form generalized to arbitrary abelian groups; see for instance [1], p. 222) and obtain a regular selfadjoint operator A, such that $A^{-1} W(\sigma, s) A$ are all unitary. For $s=0$ we obtain that $A^{-1}\left[2 G_{1}(\sigma)-I\right] A$ are unitary for all Borel sets $\sigma \subset \Omega$, thus $A^{-1} G_{1}(\sigma) A$ are orthogonal projections, and consequently, in virtue of (5), $A^{-1} R_{t} A$ is selfadjoint for all $t \in Q$. On the other hand putting $\sigma=\Omega$ and $t \in Q$ we get $W(\Omega, t)=U_{t}$, so that $A^{-1} U_{t} A$ are also unitary for all $t \in Q$. But for all $t>0$ we have $R_{t} U_{t}=$ $=T_{t}=U_{t} R_{t}$, and hence

$$
\left(A^{-1} R_{t} A\right)\left(A^{-1} U_{t} A\right)=A^{-1} T_{t} A=\left(A^{-1} U_{t} A\right)\left(A^{-1} R_{t} A\right)
$$

Since, for all $t \in Q, A^{-1} R_{t} A$ is selfadjoint and $A^{-1} U_{t} A$ is unitary, their product $A^{-1} T_{t} A$ is a normal operator. But Q is dense on the positive semi-axis; using the strong continuity of T_{t} one obtains that. $N_{t}=A^{-1} T_{t} A$ is normal for all $0<t<\infty$, so that $\left\{T_{t}\right\}$ is similar to a semigroup of normal operators $\left\{N_{t}\right\}$, which finishes the proof of theorem 1 .

I want to express my gratitude to Prof. Béla Sz.-Nagy for his valuable remarks made during the preparation of this paper.

References.

[1] Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math., 12 A (1950), 213-227.
[2] N. Dunford, Spectral operators, Pacific Journal of Math., 4 (1954), 321-354.
[3] B. Sz.-Naay, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes (Berlin, 1942).
[4] B. Sz.-Naor, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math., 11 (1947), 152-157.
[5] J. Wermer, Commuting spectral measures on Hilbert space, Pacific Journal of Math., 4 (1954) 355-361; see also the review of this paper by Bela Sz.-Nagy in Zentralblatt f. Math., 56 (1955), p. 347.
(Received May 25, 1958.)

[^0]: ${ }^{1}$) I. e. there exists a $K<\infty$ such that $\left\|E_{t}(\sigma)\right\| \leqq K$ for all $t>0$ and all Borel set σ on the real axis $\Omega=(-\infty, \infty)$.

