Bounds for the principal frequency of a membrane and the torsional rigidity of a beam

By E. MAKAI in Budapest

1. We consider a simply connected or ring-shaped plane domain D of area A, its boundary C whose total length is L, its principal frequency A and its torsional rigidity P.

The quantities A and P^{-1} may be defined as the minima of the expressions

\[
(1a) \quad \left(\frac{\iint (\text{grad } u)^2 \, d\sigma}{\iint u^2 \, d\sigma} \right)^\frac{1}{2}, \quad (1b) \quad \frac{\iint (\text{grad } u)^2 \, d\sigma}{4(\iint u \, d\sigma)^2},
\]

respectively, where $d\sigma$ is the surface element of D, the integrations are extended over D; the function u is continuous in D, vanishes on C and has piecewise continuous first derivatives in D.\(^1\)

We state that for a simply connected or ring-shaped domain

\[
(2a) \quad A \leq \sqrt{3} \frac{L}{A}, \quad (2b) \quad P^{-1} \leq \frac{L^2}{A^3} \quad \text{\(18\)}
\]

It is enough to show the validity of these inequalities for polygonal domains no two sides of which are parallel.\(^2\) The total statement follows hence by an argument of continuity.

\(^1\) See e.g. G. Pólya—G. Szegő, *Isoperimetric Inequalities in Mathematical Physics* (Princeton, 1951), pp. 87 and 102—103.

\(^{18}\) (Note added on February 25, 1959.) The constants $\sqrt{3}$ and 1 on the right sides of (2a) and (2b), respectively, are not best possible. G. Pólya has shown that the precise upper bounds for ΔAL^{-1} and $P^{-1}A^3L^{-2}$ are $\frac{\pi}{2}$ and $\frac{3}{4}$, respectively; see his paper: Two more inequalities between physical and geometrical quantities (to be published in the *Journal of the Indian Math. Society*).

The inequalities (2) will be proved if one can find a particular function \(u \) for which the quantities (1a) and (1b) are less than (2a) resp. (2b). We shall see that such a function is the point function \(d(P) \) which is defined as the distance of the point \(P \) from the boundary \(C \). This function satisfies obviously the conditions imposed on the functions \(u \).

Let the vertices of \(C \) be \(A_1, A_2, \ldots, A_n \); the open line segment \(A_i A_{i+1} (A_{n+1} = A_1) \) will be denoted by \(a_i \). We may now define subdomains \(D_i \) and \(D'_i \) of \(D \) in the following way. The interior of \(D_i \) resp. \(D'_i \) contains those points of \(D \) the nearest point of the boundary to which lies on \(a_i \) resp. it is the point \(A_i \). The sum of the closures of the domains \(D_i \) and \(D'_i \) is \(D; D'_i \) is void if the inner angle at \(A_i \) is less than \(\pi \).

The level lines of \(d(P) \) are in \(D_i \) line segments parallel to \(a_i \), in \(D'_i \) circular arcs, whose centre is \(A_i \). In the interior of \(D_i \) or \(D'_i \) \(|\text{grad } d(P)| = 1\), and so

\[
\iint \left[\text{grad } d(P)\right]^2 d\sigma = A.
\]

Now the level line \(d(P) = \xi \) is identical with the boundary of an inner parallel point set of the domain \(D \). The length of this level line will be denoted by \(l(\xi) \). We may transform the double integral \(M_n = \iiint [d(P)]^n d\sigma \) into a simple one by dividing \(D \) into narrow stripes the boundaries of which are the level lines \(d(P) = \xi \) and the width of which is \(d\xi \):

\[
M_n = \iiint [d(P)]^n d\sigma = \int \frac{r^n}{\xi} l(\xi) d\xi
\]

where \(r \) is the radius of the greatest circle which can be inscribed in \(D \).

If \(n = 0 \) we have from (4) that

\[
\int_0^r l(\xi) d\xi = A.
\]

Let now the quantity \(b \) be defined by \(Lb = A \). As \(0 \leq l(\xi) \leq L \) for \(0 \leq \xi \leq r \),

\[
\int_0^r l(\xi) d\xi = A \leq \int_0^r L d\xi = Lr.
\]

So we have for \(n = 1, 2, \ldots \)

\[
\int_0^r \xi^n l(\xi) d\xi - \int_0^r \xi^n L d\xi = \int_0^r \xi^n l(\xi) d\xi - \int_0^r \{L - l(\xi)\} d\xi \geq 0
\]

\[
\geq b^n \int_0^r l(\xi) d\xi - b^n \int_0^r \{L - l(\xi)\} d\xi = b^n \{\int_0^r l(\xi) d\xi - \int_0^r L d\xi\} = 0
\]

\[3) \text{ A proof may be found in the paper by B. Sz.-NAGY, Über Parallelmengen nicht-}
by the definition of b. It follows that $M_n \geq \frac{b^{n+1}L}{n+1}$, hence

$$M_1 \geq \frac{A^2}{2L} \quad \text{and} \quad M_2 \geq \frac{A^3}{3L^3}$$

and from these

$$A \leq \left(\frac{\int \|\nabla d(P)\|^2 \, d\sigma}{\int \|d(P)\|^2 \, d\sigma} \right)^{1/2} \leq \left(\frac{A}{A^3/(3L^3)} \right)^{1/2} = \sqrt{3} \frac{L}{A}$$

resp.

$$P^{-1} \leq \frac{\int \|\nabla d(P)\|^2 \, d\sigma}{4 \left[\int \|d(P)\| \, d\sigma \right]^2} \leq \frac{A}{4(A^2/2L)^2} = \frac{L^3}{A^3}.$$

2. There exists another upper estimate of A and P^{-1} for star-shaped domains, namely that of Pólya and Szegő. We consider the quantity $B_a = \int h^{-1} \, ds$ where a is a point inside D with respect to which C is star-shaped, h is the length of the perpendicular drawn from a to the tangent at a variable point of C where ds is the line element. If a varies and $B = \min B_a$, then $A \leq j\sqrt{B/2A}$ with $j = 2.40\ldots$, and $P^{-1} \leq BA^{-2}$.

It seems that for convex domains the estimate of Pólya and Szegő gives better results than (2). Yet e.g. for the pentagonal domain whose consecutive vertices are $(1,0)$, $(1,1)$, $(0,\varepsilon)$, $(-1,1)$, $(-1,0)$, B tends to infinity as $\varepsilon \to 0$; on the other hand L and A remain bounded.

3. It may be noted that there does not exist a universal positive constant c such that for any simply connected domain $A \geq cL/A$. (Contrary to the case when D is convex.) For let us consider the domains

$$D_1(0 \leq x \leq 1, 0 \leq y \leq 1) \quad \text{and} \quad D_2(1 \leq x \leq 1 + \varepsilon^{-1}, 0 \leq y \leq \varepsilon).$$

In the case of the domain $D = D_1 + D_2$ we have $L/A = 2 + \varepsilon^{-1}$ and A is bounded, for it is less than the principal frequency of the unit square.

(Received August 22, 1958)

4) L. c. i) pp. 14—15 and 91—94.