Uber Parallelmengen nichtkonvexer ebener Bereiche
Von BELA SZ.-NAGY in Szeged

1. Einleitung .

Die klassischen Formeln von J. STEINER

A(=A0)+ L)+ =t L(t)—L(O)+2nt
tiber den Inhalt und die Randlinge der duBeren Parallelbereiche konvexer
ebener Bereiche im Abstand #>0 wurden neuerdings von H. HADWIGER')
auf den Fall der duBeren und der inneren Parallelbereiche solcher, nicht not-
‘wendigerweise zusammenhidngender, beschrankter ebener Bereiche ausgedehnt,
die ,unterkonvex“ vom Grade e bzw. ,iiberkonvex“ vom Grade g sind.  Ist
der Bereich durch n Randkurven von auBen und durch m Randkurven von
innen begrenzt, so gelten nach HADWIGER die Formeln

AM)=A0)+LO) +(n—m)f, L({)=LQO)+2x(n—m)t
flit den AuBeren Parallelbereich im Abstand ¢ (0={=e) und
. A(—t= A(Q)—LO)t+ n(n—m)f, L(—t)=L(0)—25(n—m)t

fiir den innerern Parallelbereich im Abstand ¢ (0 =¢=3).

In seinen” Untersuchungen iiber gewisse Variationsprobleme fiir ebene
Bereiche benstigte E. MAKAI Abschitzungen fiir die Randlinge der Parallel-
bereiche, die ohne Beschrinkungen in bezug auf ¢ gelten®). Er hat die fol-
genden Ungleichungen gefunden: a) fiir die duBeren Parallelbereiche - eines
zusammenhingenden beschrinkten Bereichs:

: Ly=LO)+2xt t=0),
b) fiir die inneren Parallelbereiche eines m+ 1-fach zusammenhangenden be-
schrankten Bereichs (m=0):
L(—H=LO)+27x(m—1)t (t=0).

1) H, Hapwicer, Die erweiterten Steinerschen Formeln fiir ebene und sphérische Be-
reiche, Commentarii Mgth. Helvetici, 18 (1945/46), 59—15.

2) E. Maxai, Bounds for the principal frequency of a membrane and the torsional
rigidity of a beam; Acta Sci. Math., 20 (1959), 33—35.
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Der Beweis, den Herr MaAkai urspriinglich gefunden und uns freund-
licherweise mitgeteilt hat, ist ziemlich kompliziert. Er geht von den Hadwiger-
schen Formeln aus und untersucht die Deformation des Randes bei Paralle!-
bildung in ihren Einzelheiten; dabei treten Schwierigkeiten von topologischer
Natur auf, auBerdem hat man a priori anzunehmen, daf die Randlingen etwa

im Minkowskischen Sinne L(f) = limo% [A(t4H)—A(#)] existieren. Aller-
>4

dings ist diese letzte Annahme im speziellen Fall der Polygonbereiche, den
Makal in seiner Arbeit nur benétigt, offenbar -erfiillt. '

In diesem Aufsatz wollen wir zeigen, daf diese Schwierigkeiten vollig
verschwinden, wenn man die Ungleichungen fiir die Randlinge in ihren
»integrierten“ Formen betrachtet, wobei diese als gewisse Konkavitatsaussagen
tiber den Flicheninhalt der Parallelbereiche erscheinen; man braucht dabei die
Existenz der Randldngen nicht vorauszusetzen: alles folgt nachtraglich aus
elementaren Differenzierbarkeitseigenschaften der konkaven Funktionen.

In der Beweisfiithrung wird kein Bezug auf frithere Literatur iiber Parallel-
bereiche genommen®). Unsere Methode scheint auch zur Untersuchung des
gleichen Problems fiir mehrdimensionale Bereiche geeignet zu sein, doch
wollen wir in diesem Aufsatz nur den Fall ebener Bereiche betrachten.

2. Definitionen und einfache Feststellungén

a) Parallelmengen. Fiir eine beliebige nichtleere ebene Punktmenge G,
deren abgeschlossene Hiille G nicht- mit der ganzen Ebene zusammenfillt;
definiert man die dufere Parallelmenge im. Abstand ¢ > O als die Vereinigungs-
menge G. aller derjenigen abgeschlossenen Kreisschreiben vom Radius ¢,
deren Mittelpunkt-in G liegt.

Es is leicht einzusehen, daB fiir eine abgeschlossene Menge G auch G,
abgeschlossen, und fiir eine offene Menge G auch G, offen ist. Es gxlt

(1) (Gf)s Gt (S, t >0),
G; ist eine nichtabnehmende Funktion von f und.man hat
@ NG.— lim G;=G,

>0 40

letztere Beziehung berechtigt uns, im Falle einer abgeschlossenen Menge G,

3) Es ist aber zu bemerken, da8 unsere Beweismethode-eine gewisse Verwandtschaft
mit der Methode aufweist, mit deren Hilfe G. Bov das Verhalten des sog. isoperimetrischen
Defizits fiir innere Parallelbereiche nichtkonvexer Bereiche untersucht hat. Vgl. G. Bor,
Isoperimetrische Ungleichungen fiir Bereiche auf Flachen Jahresbericht der Deutschen Math.-
Vereinigung, 51 (1941), 219—257.
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G, gleich G zu setzen und damit die Definition der duBeren Pé_rallclmengen
G: auch fiir £ =0 auszudehnen.

Da voraussetzungsgemif G nicht mit der ganzen Ebene zusammenfillt,
ist die. obere Grenze der Radien der in der Menge G'*) enthaltenen Kreis-
scheiben positiv und eventuell gleich 4 oo; wir wollen diese obere Grenze
mit o*(G) oder kurz'mit ¢* bezeichnen. Im Falle eines endlichen _o" st 5;
offenbar gleich der ganzen Ebene, und da, wie man leicht einsieht, G,» = U G:

ist, geniigt es immer nur die Parameterwerte f<o® in Betracht zu z:e<hen

Fiir eine beliebige ebene Punktmenge G, die nicht mit der ganzen Ebene
zusammenfalll und deren Innere G° nicht leer ist, wird fiir />0 die innere
Parallelmenge G., von G im Abstand ¢t durch die duBere Paralleimenge der
Menge G* folgendermaBen definiert: '

=((G"".
Aus den Gesagten iiber die auBeren Parallelmengen folgen sofort die Eigen-
schaften: Ist G abgeschlossen (offen), so ist auch G-, abgeschlossen (offen).
Es gilt immer (G-.)- s~G-¢ . (t, s>0). G ist eine nichtwachsende Funktion
von ¢ und man hat
3 U G.i= lim G-t: G
t>0 t—>+0 )

diese Beziehung perechtigt uns, im Falle einer offenen Menge G, G,= G zu
- setzen und damit die Definition der inneren Parallelmengen G_: auch fiir
=0 auszudehnen.

Da voraussetzungsgemd G° nicht leer ist, ist die obere Grenze der
Radien der in G enthaitenen Kreisscheiben positiv und eventuell gleich - oo;
wir bezeichnen diese obere Grenze mit 0(G) oder kurz mit ¢. Im Falle eines
endhchen o ist (G_?)°——(ﬂ G.,)° leer, also geniigt es nur die inneren Parallel-

mengen G_, mit Parameterwerten t<o in Betracht zu ziehen.

b) Kreisbereiche und Kreispolygone. Wir werden sagen, die ebene Punkt-
menge H sei ein Kreisbereich, falls 1° weder H noch H* leer sind, 2° H als
Vereinigungsmenge von endlich vielen abgeschlossenen Kreisscheiben K(My, i)
(M, ist der Mittelpunkt, r, der Radius) und von hochstens einer abgeschos-
senen ,uneigentlichen Kreisscheibe® K® (M, r) dargestelit werden kann;
K> (M,r) wird als Komplementirmenge der offenen Kreisscheibe mit dem
Mittelpunkt M und dem Radius r erklart.

~ Wir sagen, der Kreisbereich H sei reguldr, falls keine zwei der erzeu-
genden (eigentlichen und uneigentlichen) Kreisscheiben sich beriihren. Der

4) Fiir eine beliebige Punktmenge M soll M* die in"bezu'g auf .die ganze Ebene
genommene Komplementirmenge bezeichnen. )
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Rand C von H besteht dann offenbar aus endlich vielen, paarweise punkt-
fremden einfachen Kurven, die je aus endlich vielen Kreisbogen gebildet sind;
Kurven von dieser Art wollen wir Kreispolygone nennen.- Orientieren wir den
Rand des reguldren Kreisbereichs H derart, daB das Innere von H immer an
der linken Hand ist, so ist die Anzahl n der positiv orientierten Bestandteile
gleich der Anzahl der beschrinkten Komponenten der Menge H, und die
Anzahl m der negativ orientierten Bestandteile ist gleich der Anzahl der be-
schrinkten Komponenten der Komplementirmenge H*. Jedenfalls ist n=0,
m=0,n+m=1; enthdlt H eine uneigentliche Kreisscheibe, so ist m=1.
Es ist zweckmiBig, folgende Ausdrucksweise einzufiihren. Eine abge-
schlossene, nicht leere und nicht mit der ganzen Ebene zusammenfallende
ebene Punktmenge G soll vom Typus (n,v) genannt werden, wobei n eine
nichtnegative ganze Zahl und » gleich O oder 1 ist, falls G aus n beschrankten
und » unbeschriankten Komponenten besteht; die unbeschrinkte Komponente,
falls existiert (» =1), soll eine volle Umgebung des unendlichfernen Punktes,
d. h. eine uneigentliche Kreisscheibe enthalten. Ist G vom Typus (n, %), so ist
die dufiere Parallelmenge G, fir 0={f<¢" offenbar von einem Typus
(ne, v;) mit
(4) m=n, vi=v.

Fir die Zwecke unserer Arbeit sind die Kreisbereiche deswegen von
Bedeutung, weil ihre duBeren Parallelmengen ebenfalls Kreisbereiche sind. Fiir

H=L"JK(M)¢,I');) bzw. H=(lkJ K(Mk,~fk))UKm(M,f)

und fiir 0=¢<o*(H) ist ndmlich
Hi= y K(Mk, I +t) bzw., Hf=(l’;J K(Mk, fk—[—t))UKco (M’ f-—t);

- abgesehen von endlich vielen Werten von t ist G sogar reguldr.

3. Parallelkurven von Kreispolygonen

Ist C eine beliebige einfache geschlossene Kurve mit dem inneren
Gebiet G, so wird die duBere Parallelkurve Ce(f) von C .im Abstand ¢
(0 <t<oo) als der Rand des Parallelgebiets G:, und die innere Parallelkurve
Ci(t) von C im Abstand f (0<?<¢(G)) als der Rand des Parallelgebiets G_;
definiert. ' ,

Ist C insbesondere ein Kreispolygon, so sind ihre Parallelkurven aus
Kreisbogen zusammengesetzt, und fiir geniigend kleine Werte von ¢ sind sie
sogar einfache geschlossene Kurven, also wieder Kreispolygone.

Wir fiihren noch zwei Bezeichnungen ein: fiir eine (eventuell aus meh-
reren Ziigen bestehende) rektifizierbare Kurve C soll L[C] die Bogenlinge
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(bzw. die gesamte Bogenlinge), und fiir eine- meBbare Punktmenge G in der
Ebene wird A[G] den Fldcheninhalt (genauer gesagt, das zweidimensionale
Lebesguesche MaB) bedeuten.

Lemma 1. Fiir jedes Kreispolygon C existieren die beiden Grenzwerte
d— lim o (L[C*W]—LIC}, = lim—{L[C:m)—LIC]}
ey _ -y ,

und geniigen den Ungleichungen
d*=2n, d=—2n")

Beweis. Wir bezeichnen mit «; bzw.
g; die Offnungswinkel derjenigen Kreisbo-
genbestandteile von C, die von auBen gesehen
konvex bzw. konkav sind;. ferner seien z—7y;
die konvexen und s d; die konkaven
(inneren) Winkel von C O<pe=x, 0<
< 0, <7l')

Fiir kleine Werte von A entsteht C*(h)
aus C, indem man jeden Kreisbogen mit dem
konzentrischen, um he; ldngeren bzw. um
hg; kiirzeren Kreisbogen im Abstande A er-
setzt, an jedem konkaven Winkel sz+ 0, zwei

~ Stiicke von diesen von der Gésamtlange 2h tg % + O(h®*) wegnimmt’) und

an jedem konvexen Winkel -z—d. je einen Kreisbogen vom Radius /2 und
der Linge hy: hinzunimmt (vgl. Figur 1). Also ist

LIC (W) —LICl= 2 hai— 2 h+ 2 hye— 2.2k tg 5 — O(A).

Hieraus folgt, da der Grenzwert d“ existiert, und zwar ist

d"—Z“' ZMZn—ZZ tg
Nun “ist tg o= ¢ fiir 0§<p§7r/2, also gilt die Unglelchung

®) A= Z‘_,‘ai—]z.ls}-l-;yk—;'dz.

5) Herr Maxai teilte mir nachtriglich freundlicherweise mit, daB er in einem friiheren
Beweisansatz fiir seine in der Einleitung erwihnten Ungleichungen ebenfalls von diesem
Lemma ausgegangen ist.

6) Man beachte, da der Schmttpunkt der Parallelkreisbogen der beiden am Eckpunkt
des Winkels z-4-4, anstoBenden Kreisbogen sich auf einer Hyperbel bzw. Ellipse bewegt,
deren Brennpunkte die Mittelpunkte der entsprechenden Kreise sind. Man beniitze die
Winkelhalbierungseigenschaft der Tangenten der Hyperbeln und der Ellipsen.
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Wir durchlaufen die Kurve C im positiven Sinn und betrachten die
Richtungsvariation der nach auBen gerichteten Normalen. Lings dem Bogen
von der Offnung e; dreht sich die Normale stetig im positivem Sinne mit
dem Gesamtwinkel ;, und lings dem Bogen von.der Offnung g; dreht sich
sie stetig im negativen Sinne mit dem Gesamtwinkel 8;. Am Eckpunkte des
Winkels st—7v, erfdhrt sie eine Drehung um den Winkel y, im positiven
Sinne, und am Eckpunkte des Winkels 7z d; eine Drehung um den Winkel
d; im negativen Sinne (0<y: =7, 0<d;=). Die algebraische Summe dieser
Drehungswinkel ist also gleich der Summe an der rechten Seite von (5).
Nun ist aber diese Totaldrehung bekanntlich immer gleich 2sc. Damit haben
wir die Ungleichung d° =2 bewiesen.

Eine analoge Betrachtung fuhrt uns zum Ergebnis, daB auch d' existiert:

und gleich
—Za;—i—ZﬁJ—Zk‘Z tg%-}-;d:
t : J
ist, woraus dann die Ungleichung
d'<—za¢+zﬁa—27k+zdl—— —2n

folgt Damit haben wir Lemma 1 bewnesen

4. AuBere Parallelbereiche von Kreisbereichen

Zunichst sei H ein reguldrer Kreisbereich vom Typus (n,7). Sein
orientierter Rand C moge aus den im positiven Sinne orientierten Kreispolygo-
nen C,,...,C, und aus den im negativen Sinne orientierten Kreispolygonen
iC, ..., mC (m=v) bestehen (siehe Figur 2). Fiir geniigend kleine positive Werte
von t sind dann die duBeren bzw. inneren Parallelkurven Ci(9),..., Ca(t);
1Ci(t), ..., mCi(f) ebenfalls Kreispolygone und paarweise punktfremd (siehe
§3) Zusammen . bilden sie den Rand C(f) von H:. Auf Grund der Beziehung

" {LICr)— L[C]}—Z 7 {LIC ()] — L[Cp]}+2 7 {LLCWI—LLCl

folgt dann mit Anwendung von Lemma 1, daf der Grenzwert

N [ '

d=lim - {L[C(M]—LIC]}

existiert, endlich ist, und der Ungleichung

d=2n(n—m),
also wegen m=» um so mehr der Ungleichung
6) - d=2n(n—v)
geniigt. '
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Jetzt betrachten wir einen beliebigen Kreisbereich H, vom Typus (n,»).
Wie schon bemerkt (in §2), ist H, fiir jeden Wert von ¢ aus dem Intervall
0 =1<¢*, mit der Ausnahme von hbchstens endlich vielen ,singuliaren“ Werten,

vom Jgpus | _l,l)

Figur 2. =
ein iregulérer Kreisbereich. Bezeichnet man den Rand von H, mit C(f), wendet
man das soeben erhaltene Ergebnis (6) auf H, statt auf H an, und beachtet
die Beziehung (1), so erhdlt man das Ergebnis, deB die Funktion
. O =L[CW] (0=t<e’)
an jeder nichtsinguldren Stelle ¢ eine endliche rechtsseitige Ableitung
d@t)— tim [N,
h>t0 h
besitzt, und daB fiir diese die Ungleichung
: d(t) =2xa(n—wy),
“also wegen n¢=n, »=» um so mehr die Ungleichung
{7 dt)y=2a(n—»)
gilt. Andererseits ist I(f) offenbar eine im ganzen Intervall 0=f<o" stetige
Funktion von £7) Die Funktion
' O =1(O—2a(n—7)t "

7) Aus unserer Definition der Kreisbereiche folgt ja, daB bei stetiger Anderung des
Parameters f im Intervall 0 = f< ¢* (mit der eveniuellen Ausnahme der Falles #- ¢*) kein
Randstiick von H, in ein von einem einzigen Punkt verschiedenes entartetes Gebilde zu-
sammenschrumpfen kann.
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ist dann in diesem Intervall ebenfalls stetig und besitzt mit der Ausnahme

der endlich vielen singuldren Stellen iiberall eine rechtsseitige Ableitung

fi () =0. Hieraus aber folgt, daB f(f) im ganzen lntervall nichtwachsend ist.5)
Nun sieht man aber leicht ein, daf§ :

AlHuw—H] _ . A[Hi—H..1)
—_— = |lim——

h h—>+0 h
~ gilt (die erste Glelchung fur t>0 die zweite fiir £>0), folghch 1st

LIC(H)]= hm

) =S AH—H]—n(a—nf)  (0=t<e);

es handelt sich hier um den Inhalt von durch endlich viele Kreisbogen be-
randeten beschrinkten Bereichen. Somit haben wir folgendes bewieser :

Lemma 2. Fiir jeden Kreisbereich H, vom Typus (n,v) ist.
‘ AlH,— H)—7e(n—»)
eine im Intervall 0= t<o"(H,) stetige, konkave Funktion von t.

5. Bereiche von allgemeinerer Struktur

Wir konnen jetzt zum Beweis unseres Hauptergebnisses iibergehen :

Satz 1. Es sei G, eine beltebzge abgeschlossene ebene Punktmenge vom
Typus (n,v). Dann ist
A[Gi— G —z(n—»)F

eine stetige, konkave Funktion von t im Intervall 0=t<¢*(G,); A[G:—Gi]
bedeutet hierbei das Lebesguesche Map der beschrinkten, Borelschen Punkt-
menge G:— G,.

Beweis. Die abgeschlossene Menge G, moge aus den beschrankten
Komponenten G, ..., G" und im Falle =1 noch aus der unbeschrinkten
Komponente G bestehen, letztere enthilt definitionsgemaB eine uneigentliche

. 8 Wegen der Stetigkeit auch an den singuldren Stellen geniigt es zu beweisen, daB
fiir jedes abgeschlossene Intervall [a, b], welches keine singuldre- Stelle enthélt, f(a) = f(b)
ist. Wie im Beweis des gewShnlichen Mittelwertsatzes, betrachte’ man die Funktion

g0 =10 - TOTO _a;

t sei eine Minimumstelle fiir g(f) in [a, 8] Wegen g(a)— (b) kann man z#b wihlen.
Dann ist offenbar g% (£) =0, also

b -
TOD < rr =0,

woraus die Behauptung folgt.
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Kreisscheibe K®. Der minimale Abstand zwischen diesen Komponenten sei J
(6>0). Man wihle eine beliebige Zahl  mit 0<7<d/3, und konstruiere
fir jede Komponente je einen zusammenhédngenden Kreisbereich H'7, ..., H™7
bzw. H ™" derart, daB die Inklusionen

® G'SH""SG),...,G’"SH"SG,, G>SH”"CSG}

gelten; G, bedeutet dabei die duBere Parallelmenge von G' im Abstand 7,
usw. Fiir die kompakten Komponenten, etwa fir G, verfihrt man so, daB
man um jeden Punkt von G' als Mittelpunkt die offene Kreisscheibe vom
Radius 7 nimmt; laut dem Heine-Borelschen Satze kann man von diesen
Kreisscheiben endlich viele auswihlen, die schon die Menge . G' bedecken;
die abgeschlossene Hiille der Vereinigungsmenge der ausgewdhlten offenen
Kreisscheiben ist dann ein Kreisbereich H%7- mit den gewiinschten Eigen-
schaften. Im Falle von G* verfihrt man auf analoge Weise zuerst fiir die
kompakte Menge G’ = G® —(K®)° (wobei (K®)° das Innere der uneigent-
lichen Kreisscheibe K® bedeutet) und dann nimmt manzuden G’ bedecken-
den endlich vielen Kreisscheiben K® wieder hinzu. : :

Der minimale Abstand zwischen den Kreisbereichen K7, ..., H™" und -
(im Falle »=1) H™" ist =Jd—25>d/3. Diese Kreisbereiche sind also die
Komponenten eines Kreisbereichs H{ von demselben Typus (n,v) wie die
urspriingliche Menge G,, und man hat infolge (8) '

© G, EHIES G,

- Diese Beziehung tibertragt sich auf die duBeren Parallelbereiche im Abstand
- t, d. h. man hat (mit der Bezeichnung H) = (H{).)

_ . G.EH!S Gy (t=0)

und mithin auch ' A
Gt—‘GoCHt—'G Gz+q—‘ Go (t>0)

Diese Dxfferenzmengen sind alle Borelsch und beschrankt, und fiir 7} O strebt
die Menge Gu,—G, ‘abnehmend gegen die Menge - G;—G, (siehe (1) und

(2) in §1). Folglich gelten fiir die Lebesgueschen MaBe die folgenden
Beziehungen :

(10) A[Gi— Gl = A[H! — Gy = A[Grsy— Gi]
und ,
(11) ’ A[Gt—-Go]= lim A[Gz+n)_‘Go];

. 7>t

aus (10) und (11) folgt auch
’ AlGi— G} = lincl; [H— G}
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Nun ist nach Lemma 2
A[H!— H{}—n(n—»)f

~ fiir jedes feste >0 eine konkave Funktion von ¢ im Intervall 0 =t<¢*(H{);
wegen der Beziehung A[H{— G,) = A[H!—H{|+ A[H{—Go] ist auch die
Funktion
(12) ' A[H? —Gl—m (n—7)E
im Intervall 0=t<o*(H{) konkav. Da infolge (9) ¢*(H{) fiir n—0 . gegen
0°(G,) strebt, so ist die Limesfunktion von (12), d.h.
(13) A[Gi— G.,]——zr(n—v)t2
ebenfalls konkav im ganzen Intervalle 0=t¢<¢*(G,). Die Funktion (13) ist
- nach. (11) tberall stetig von rechts, und dann wegen ihrer Konkavitét not-
wendigerweise stetig auch von links.

Damit haben wir den Satz vollstindig bewiesen.

Satz 1 hat eine duale Form fiir innere Parallelmengen :

Satz 2. Es sei G, eine offene ebene Punktmenge, deren Komplementir-
menge Gy eine abgeschlossene Menge vom Typus (n*,»*) ist. Dann ist
A[Go—G.]—n(n*—»")
eine stetige, konkave Funktion von t im Intervall 0 =t<o(G,).

Beweis. Man wende Satz 1 auf die abgeschlossene Menge G; und
deren zuBeren Parallelmengen (G:). an, und man beachte die Beziehungen
(G):— G =(G.)'— Gy = G— G,
deren erste aus der Definition der inneren Paralielmengen folgt und deren

zweite eine Identitdt fir Mengendifferenzen ist.

Nach den elementaren Differenzierbarkeitseigenschaften .konkaver Funk-
tionen folgen nun aus diesen Sitzen die beiden, ebenfalls dualen Satze:

- Satz 1. Fir eine beliebige abgeschlossene ebene Punkimenge G, vom
Typus (n, v) exzstteren die Grenzwerte

Ld=lim o AlGu—Gl,  L-()= lim & A[G—Gi.]

fiir 0=t<0*(G,) bzw. 0<t<0*(G,); fiir alle t>0 sind sie endlich, L.(t)=
=L_(t), und fiir alle t>0 mit hichstens abzihlbar vielen Ausnahmewerten
ist sogar L,(ty=L_(t); L-(0) kann eventuell auch gleich 4 oo sein; und
fir 0=t <t,<0'(G,) gilt

Li(t)—2n(n—»)t, = L_(t)—2n(n—)t;.
Insbesondere gilt
(149 . - Li(0)= Lo ()—2n(n—)t
fir 0<i<o*(Gy). ’
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Satz 2. Fiir eine beliebige offene ebene Punktmenge G,, fiir die G,
vom Typus (n*, v*) ist, existieren die Grenzwerte

L(—f)=lim L A[G.—G.a)  Li(—t) =lim L~ A[G.n—G-]
' -y h-r40 F1

fir 0=t<0(G,) bzw. 0<t<o(Gy); fiir alle t>0 sind sie endlich, L _(—t)=
= L.(—1), und fiir alle t>0 mit hochstens abzdhlbar vielen Ausnahmewerten
ist sogar L_(—t)=L.,(—t); L_(0) kann eventuell auch gleich + oo sein ;
und fiir 0=t <t,<o(G,) gilt

L(—t)—2xn(n"—v), = L+(—tg) 27r(n — ).
Insbesondere hat man
(15) . L.(0)=Li(—)—2n(n"—»*)t
fiir 0<t<o(Gy).

Ist speziell G, ein beschrinktes Kontinuum (Fall n=1, v=40), so gilt
nach (14) L+()=L.+(0)+27xt fiir O0<f<eo. Ist aber G, ein m- 1-fach
zusammenhingendes offenes Gebiet (Fall n*=m, +*=1), so gilt nach (15)
Lo(—t =L (0)+2x(m—1)t- fir 0<t<o(G,). Somit haben wir die beiden
- Ungleichungen von MAKAI als spezielle Fille der Sitze 1,2, und zwar ohne
a priori Annahme der Existenz von L. (f) bzw. L.(—{), bewiesen.

Als Korollare erhdlt man :

Satz 1”. Fiir eine beliebige abgeschlossene ebene Punktmenge Go mit
kompaktem Rand existieren die Grenzwerte

Lot)— ’{ano% AlGw—Gl,  L.()=im, & A[Gi— G

fiir jedes t mit 0<t<0°(G,), beide sind endlich, L.(t)=L-(t), und mit der
eventuellen Ausnahme von abzdhlbar vielen Werten von t ist sogar L.(f) = L_(t)

Satz 2”. Fiir eine beliebige offene ebene Punktmenge G, mit kom-
paktem Rand existieren die Grenzwerte

.1 .1
L (—1) =}}LTOT AlG.+—G.a), Li(—0) =1}-1>T071— A[G-.n— Gy}

fiir jedes t mit 0 <t < o(Go), beide sind endlich, L(—t)= L+(—t), und mit
der eventuellen Ausnahme von abzdhlbar vielen Werten von t ist sogar
L. (—t)=L(—1).

Wegen der Dualitit dieser Behauptungen geniigt es nur Satz 1" zu
beweisen. Voraussetzungsgemdf ist der Rand von G, in einer Kreisscheibe
"~ K(M, r) enthalten; folglich ist der Rand von G. (a >0) enthalten in der
Kreisscheibe K(M, r+ a). Alle beschrinkten Komponenten von G, sind dann
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notwendigerweise ebenfalls in K(M, 7 +-a) enthalten, und da jede dieser Kom-
ponenten mindestens eine Kreisscheibe vom Radius a enthdlt und folglich
vom MaB = sa® ist, so ist die Anzahl n, der beschrankten Komponenten
r+a
a . .
nente von G, gibt, dann enthilt diese die ganze uneigentliche Kreisscheibe
K®(M, r+a). Folglich kann man Satz 1’ auf G, anwenden; wegen der Be-
ziechung G:=(G.)i-« (¢ > a) folgt somit die Giiltigkeit der Aussagen fiir t>a.
Da aber a beliebig klein positiv gewdhlt werden kann, ist damit Satz 1”
bewiesen. :

2
von G, notwendigerweise é( ) . Wenn es eine unbeschrinkte Kompo-

. . (Eingegangen am I. Dezember 1958)



