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Über Parallelmengen nichtkonvexer ebener Bereiche 
Von BELA SZ.-NAGY in Szeged 

1. Einleitung 

Die klassischen Formeln von J . STEINER 

A(t) = ¿ ( 0 ) + L(0)t + n f , ¿ ( 0 = ¿ ( 0 ) + 2nt, 
über den Inhalt und die Randlänge der äußeren Parallelbereiche konvexer 
ebener Bereiche im Abstand / > 0 wurden neuerdings von H. HADWIGER1) 
auf den Fall der äußeren und der inneren Parallelbereiche solcher, nicht not-
wendigerweise zusammenhängender, beschränkter ebener Bereiche ausgedehnt, 
die unterkonvex" vom Grade a bzw. „überkonvex" vom Grade ß sind. Ist 
der Bereich durch n Randkurven von außen und durch m Randkurven von 
innen begrenzt, so gelten nach HADWIGER die Formeln 

¿(f) = 4(0) + L(0)t + 7i(n—m)f, L (0 = ¿(0) + 2 rc(n — m)t 
füt den äußeren Parallelbereich im Abstand t ( 0 ^ t^a) und 

. A(—t)^A(0)—L(0)t + n(n—m)f, L(—t) = L(0)—27i(n — m)t 
für den innereri Parallelbereich im Abstand t (O^t^ß). 

In seinen Untersuchungen über gewisse Variationsprobleme für ebene 
Bereiche benötigte E. MAKAI Abschätzungen für die Randlänge der Parallel-
beieiche, die ohne Beschränkungen in bezug auf t gelten2). Er hat die fol-
genden Ungleichungen gefunden: a) für die äußeren Parallelbereiche eines 
zusammenhängenden beschränkten Bereichs: 

L(f)^L{0) + 2rct (/i= 0), 
b) für die inneren Parallelbereiche eines m + l-fach zusammenhängenden be-
schränkten Bereichs ( m ^ O ) : 

L(—t)^L(0) + 2fc(m—l)t (t^O). 

1 ) H. HADWIGER , Die erweiterten Steinerschen Formeln für ebene und sphärische Be-
reiche, Commentarii Math. Helvetici, 1 8 (1945/46), 59—"J 5. 

2 ) E . MAKAI , Bounds for the principal frequency of a membrane and the torsional 
rigidity of a beam, Acta Sei. Math., 2 0 (1959), 33—35. 
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Der Beweis, den Herr MAKAI ursprünglich gefunden und uns freund-
licherweise mitgeteilt hat, ist ziemlich kompliziert. Er geht von den Hadwiger-
schen Formeln aus und untersucht die Deformation des Randes bei Parallel-
bildung in ihren Einzelheiten; dabei treten Schwierigkeiten von topologischer 
Natur auf, außerdem hat man a priori anzunehmen, daß die Randlängen etwa 

im Minkowskischen Sinne L(t)= l i m - \ - [ A ( t + h ) — A ( t ) ] existieren. Aller-
h-M-0 H 

dings ist diese letzte Annahme im speziellen Fall der Polygonbereiche, den 
MAKAI in seiner Arbeit nur benötigt, offenbar erfüllt. ' 

In diesem Aufsatz wollen wir zeigen, daß diese Schwierigkeiten völlig 
verschwinden, wenn man die Ungleichungen für die Randlänge in ihren 
„integrierten" Formen betrachtet, wobei diese als gewisse Konkavitätsaussagen 
über den Flächeninhalt der Parallelbereiche erscheinen; man braucht dabei die 
Existenz der Randlängen nicht vorauszusetzen: alles folgt nachträglich aus 
elementaren Differenzierbarkeitseigenschaften der konkaven Funktionen. 

In der Beweisführung wird kein Bezug auf frühere Literatur über Parallel-
bereiche genommen3). Unsere Methode scheint auch zur Untersuchung des 
gleichen Problems für mehrdimensionale Bereiche geeignet zu sein, doch 
wollen wir in diesem Aufsatz nur den Fall ebener Bereiche betrachten. 

2. Definitionen und einfache Feststellungen 

a) Parallelmengen. Für eine beliebige nichtleere ebene Punktmenge G, 
deren abgeschlossene Hülle G nicht mit der ganzen Ebene zusammenfällt, 
definiert man die äußere Parallelmenge im Abstand t > 0 als die Vereinigungs-
menge Gt aller derjenigen abgeschlossenen Kreisschreiben vom Radius t, 
deren Mittelpunkt-in G liegt. 

Es is leicht einzusehen, daß für eine abgeschlossene Menge G auch Gt 
abgeschlossen, und für eine offene Menge G auch Gt offen ist. Es gilt 

(1) (Gt)s — Gs+t (s,t> 0); 

Gt ist eine nichtabnehmende Funktion von t und man hat 

( 2 ) f | O t = Um Gt = G, 
<> 0 . (->-+0 

letztere Beziehung berechtigt uns, im Fallé einer abgeschlossenen Menge G> 

3) Es ist aber zu bemerken, daß unsere Beweismethode eine gewisse Verwandtschaft 
mit der Methode aufweist, mit deren Hilfe G. BOL das Verhalten des sog. isoperimetrischen 
Defizits für innere Parallelbereiche nichtkonvexer Bereiche untersucht hat. Vgl. G. BOL, 
Isoperimetrische Ungleichungen für Bereiche auf Flächen, Jahresbericht der Deutschen Math.-
Vereinigung, 51 (1941), 219—257. 
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G0 gleich G zu setzen und damit die Definition der äußeren Parallel mengen 
Gt auch für f = 0 auszudehnen. 

Da voraussetzungsgemäß G nicht mit der ganzen Ebene zusammenfällt, 
ist die. obere Grenze der Radien der in der Menge G*4) enthaltenen Kreis-
scheiben positiv und eventuell gleich +<*>; wir wollen diese obere Grenze 
mit p*(G) oder kurz " mit g* bezeichnen. Im Falle eines endlichen p* ist Gp« 
offenbar gleich der ganzen Ebene, und da, wie man leicht einsieht, Gp. = U Gt 

Ke* 
ist, genügt es immer nur die Parameterwerte t<$* in Betracht zu ziehen. 

Für eine beliebige ebene Punktmenge G, die nicht mit der ganzen Ebene 
zusammenfällt und deren Innere G° nicht leer ist, wird für / > 0 die innere 
Parallelmenge G-t von G im Abstand t durch die äußere Paralleimenge der 
Menge G* folgendermaßen definiert: 

G- t = ((G*)t)*. 

Aus den Gesagten über die äußeren Parallelmengen folgen sofort die Eigen-
schaften: Ist G abgeschlossen (offen), so ist auch G-t abgeschlossen (offen). 
Es gilt immer (G-t)-s = G - t s (J, s> 0). G-t ist eine nichtwachsende Funktion 
von t und man hat 

(3) U G-t= lim G-t = G°; 
t> 0 (->-+0 

diese Beziehung oerechtigt uns, im Falle einer offenen Menge G, G 0 = G zu 
setzen und damit die Definition der inneren Parallelmengen G-t auch für 
> = 0 auszudehnen. 

Da voraussetzungsgemäß G° nicht leer ist, ist die obere Grenze der 
Radien der in G enthaltenen Kreisscheiben positiv und eventuell gleich + 
wir bezeichnen diese obere Grenze mit p(G) oder kurz mit p. Im Falle eines 
endlichen Q ist (G-9)° = (n G.<)° leer, also genügt es nur die inneren Parallel-

t<Q 
mengen G-t mit Parameterwerten t<o in Betracht zu ziehen. 

b) Kreisbereiche und Kreispolygone. Wir werden sagen, die ebene Punkt-
menge H sei ein Kreisbereich, falls 1° weder H noch H* leer sind, 2° H als 
Vereinigungsmenge von endlich vielen abgeschlossenen Kreisscheiben K(Mk,rk) 
(Mk ist der Mittelpunkt, rk der Radius) und von höchstens einer abgeschos-
senen „uneigentlichen Kreisscheibe" Ka (M, r) dargestellt werden kann; 
K<° (M, r) wird als Komplementärmenge der offenen Kreisscheibe mit dem 
Mittelpunkt M und dem Radius r erklärt. 

Wir sagen, der Kreisbereich H sei regulär, falls keine zwei der erzeu-
genden (eigentlichen und uneigentlichen) Kreisscheiben sich berühren. Der 

<) Für eine beliebige Punktmenge M soll M* die in bezug auf die ganze Ebene 
genommene Komplementärmenge bezeichnen. 
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Rand C von H besteht dann offenbar aus endlich vielen, paarweise punkt-
fremden einfachen Kurven, die je aus endlich vielen Kreisbogen gebildet sind; 
Kurven von dieser Art wollen wir Kreispolygone nennen. Orientieren wir den 
Rand des regulären Kreisbereichs H derart, daß das Innere von H immer an 
der linken Hand ist, so ist die Anzahl h der positiv orientierten Bestandteile 
gleich der Anzahl der beschränkten Komponenten der Menge H, und die 
Anzahl m der negativ orientierten Bestandteile ist gleich der Anzahl der be-
schränkten Komponenten der Komplementärmenge H*. Jedenfalls ist n^O, 
m i^O, n + m 1; enthält H eine uneigentliche Kreisscheibe, so ist m^ 1. 

Es ist zweckmäßig, folgende Ausdrucksweise einzuführen. Eine abge-
schlossene, nicht leere und nicht mit der ganzen Ebene zusammenfallende 
ebene Punktmenge G soll vom Typus (n, v) genannt werden, wobei n eine 
nichtnegative ganze Zahl und v gleich 0 öder 1 ist, falls G aus n beschränkten 
und v unbeschränkten Komponenten besteht; die unbeschränkte Komponente, 
falls existiert ( r = l ) , soll eine volle Umgebung des unendlichfernen Punktes, 
d.h. eine uneigentliche Kreisscheibe enthalten. Ist G vom Typus (n,v), so ist 
die äußere Parallelmenge Gf für offenbar von einem Typus 
(nt,vt) mit 
(4) nt ̂  n, vt = v. 

Für die Zwecke unserer Arbeit sind die Kreisbereiche deswegen von 
Bedeutung, weil ihre äußeren Parallelmengen ebenfalls Kreisbereiche sind. Für 

H=[}K{Mk,rk) bzw. // = (U K{Mk,rk))\lK°>(M,r) 
k k 

und für 0 ^ t < Q * ( H ) ist nämlich 
Ht = {JK(Mk,rk + t) bzw. H, = (U K(Mk, rk + 0) U K™ (M, r-t); 

k k 

abgesehen von endlich vielen Werten von t ist Gt sogar regulär. 

3. Parallelkurven von Kreispolygonen 

Ist C eine beliebige einfache geschlossene Kurve mit dem inneren 
Gebiet G, so wird die äußere Parallelkurve Ctt(t) von C im Abstand t 
(0 <t<oo) als der Rand des Parallelgebiets Gt, und die innere Parallelkurve 
C'(0 von C im Abstand t ( 0 < t < e ( G ) ) als der Rand des Parallelgebiets G-t 
definiert. 

Ist C insbesondere ein Kreispolygon, so sind ihre Parallelkurven aus 
Kreisbogen zusammengesetzt, und für genügend kleine Werte von t sind sie 
sogar einfache geschlossene Kurven, also wieder Kreispolygone. 

Wir führen noch zwei Bezeichnungen ein: für eine (eventuell aus meh-
reren Zügen bestehende) rektifizierbare Kurve C soll L[C] die Bogenlänge 
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(bzw. die gesamte Bogenlänge), und für eine meßbare Punktmenge G in der 
Ebene wird A [G] den Flächeninhalt (genauer gesagt, das zweidimensionale 
Lebesguesche Maß) bedeuten. 

L e m m a 1. Für jedes Kreispolygon C existieren die beiden Grenzwerte 

d°= lim — L [ C ] } , úf '= I im ^ {Z. [O (Ä)]—¿ [C] > Ä-m-0 n h-v+0 n 

und genügen den Ungleichungen 
d a ^ 2TI, d ' ^ — 2 t t . 6 ) 

B e w e i s . Wir bezeichnen mit a¡ bzw. 
ßj die Öffnungswinkel derjenigen Kreisbo-
genbestandteile von C, die von außen gesehen 
konvex bzw. konkav sind; ferner seien 71—yk 

die konvexen und TC + DT die konkaven 
(inneren) Winkel von C (0 < yk ^ TC, 0 < 
< öi ^ ri). 

Für kleine Werte von h entsteht C(h) 
aus C, indem man jeden Kreisbogen mit dem 
konzentrischen, um Aa¡ längeren bzw. um 

Figur l. hßj kürzeren Kreisbogen im Abstände h er-
setzt, an jedem konkaven Winkel 7r+d¿ zwei 

Stücke von diesen von der Gesamtlänge 2h tg ~ + 0 ( A 2 ) wegnimmt6) und 

an jedem konvexen Winkel n — ö k je einen Kreisbogen vom Radius h und 
der Länge hyk hinzunimmt (vgl. Figur 1). Also ist 

L[C«(A>]-L[C] = Z h a t - 2 + Zhyk~Z2h t g ^ - 0 ( A 2 ) . 
i j k í ^ 

Hieraus folgt, daß der Grenzwert da existiert, und zwar ist 

¡ j k 1 ¿ 
Nun ist tg<p^(p für also gilt die Ungleichung 

(5) Z ß j + Z n - Z b -
i j k- l 

s) Herr MAKAI teilte mir nachträglich freundlicherweise mit, daß er in einem früheren 
Beweisansatz für seine in der Einleitung erwähnten Ungleichungen ebenfalls von diesem 
Lemma ausgegangen ist. 

6) Man beachte, daß der Schnittpunkt der Parallelkreisbogen der beiden am Eckpunkt 
des Winkels anstoßenden Kreisbogen sich auf einer Hyperbel bzw. Ellipse bewegt, 
deren Brennpunkte die Mittelpunkte der entsprechenden Kreise sind. Man benütze die 
Winkelhalbierungseigenschaft der Tangenten der Hyperbeln und der Ellipsen. 



B. Sz.-Nagy: Über Parallelmengen nichtkonvexer ebener Bereiche 41 

Wir durchlaufen die Kurve C im positiven Sinn und betrachten die 
Richtungsvariation der nach außen gerichteten Normalen. Längs dem Bogen 
von der Öffnung a< dreht sich die Normale stetig im positivem Sinne mit 
dem Gesamtwinkel «,, und längs dem Bogen von der Öffnung # dreht sich 
sie stetig im negativen Sinne mit dem Gesamtwinkel ß,. Am Eckpunkte des 
Winkels Ji—Yk erfährt sie eine Drehung um den Winkel yk im positiven 
Sinne, und am Eckpunkte des Winkels n + öt eine Drehung um den Winkel 
di im negativen Sinne ( 0 < y k ^ 7 i , 0 < ^ TT). Die algebraische Summe dieser 
Drehungswinkel ist also gleich der Summe an der rechten Seite von (5). 
Nun ist aber diese Totaldrehung bekanntlich immer gleich 2JC. Damit haben 
wir die Ungleichung d a ^2Tc bewiesen. 

Eine analoge Betrachtung führt uns zum Ergebnis, daß auch di existiert 
und gleich 

- Z a t + z ß j - Z i t g ^ + i : * 
i 3 * ^ i 

ist, woraus dann die Ungleichung 

i j k ! 

folgt. Damit haben wir Lemma 1 bewiesen. 

4 . Äußere Parallelbereiche von Kreisbereichen 

Zunächst sei H ein regulärer Kreisbereich vom Typus (n,v). Sein 
orientierter Rand C möge aus den im positiven Sinne orientierten Kreispolygo-
nen C j , . . . , Cn und aus den im negativen Sinne orientierten Kreispolygonen 
i C , . . . , mC ( m ^ v ) bestehen (siehe Figur 2). Für genügend kleine positive Werte 
von t sind dann die äußeren bzw. inneren Parallelkurven C?( / ) , . . . , C«(0 ; 
, 0 ( 0 , • • - , mO(/) ebenfalls Kreispolygone und paarweise punktfremd (siehe 
§3) . Zusammen bilden sieden Rand C(t) von Ht. Auf Grund der Beziehung 

\ { ¿ [ C ( A ) ] - Z . [ C ] } = ± \ {L[CttP(h)]-L[CP)} + {L[fiim-LUC\} 

folgt dann mit Anwendung von Lemma 1, daß der Grenzwert 

d=\m±{L[C{h)]-L[C]} 
Ä-M-O « 

existiert, endlich ist, und der Ungleichung 

also wegen m ^ v um so mehr der Ungleichung 
( 6 ) d ^ 2 T i { n — v ) 

genügt. 
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jetzt betrachten wir einen beliebigen Kreisbereich H0 vom Typus (n, v). 
Wie schon bemerkt (in § 2 ) , ist Ht für jeden Wert von t aus dem Intervall 
0 ^ t<Q*, mit der Ausnahme von höchstens endlich vielen „singulären" Werten, 

Figur 2. 

•ein regulärer Kreisbereich. Bezeichnet man den Rand von Ht mit C[t), wendet 
man das soeben erhaltene Ergebnis (6) auf Ht statt auf H an, und beachtet 
die Beziehung (1), so erhält man das Ergebnis, daß die Funktion 

l{t)^L[C(t)] (Os/<?') 
an jeder nichtsingulären Stelle t eine endliche rechtsseitige Ableitung 

d « ) = lim 
Ä-+-+0 t l 

besitzt, und daß für diese die Ungleichung 

d(t)^2n(n,—vt), 
also wegen nt^kn, vt = v um so mehr die Ungleichung 
<7) d(t)^_2n(n — v) 
gilt. Andererseits ist l(t) offenbar eine im ganzen Intervall 0^t<e* stetige 
Funktion von t.7) Die Funktion 

f(t) = l(t)—2 JT(/Z—v)t ' 

7) Aus unserer Definition der Kreisbereiche folgt ja, daß bei stetiger Änderung des 
Parameters t im Intervall O i g / C f * (mit der eventuellen Ausnahme der Falles t->•$*) kein 
Randstück von Ht in ein von einem einzigen Punkt verschiedenes entartetes Gebilde zu-
sammenschrumpfen kann. 
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ist dann in diesem Intervall ebenfalls stetig und besitzt mit der Ausnahme 
der endlich vielen singulären Stellen überall eine rechtsseitige Ableitung 
/+(0 = 0- Hieraus aber folgt, daß f(t) im ganzen Intervall nichtwachsend ist.8) 

Nun sieht man aber leicht ein, daß 

¿[C(Q]=> lim = lim ^ t t - t t - » ] 
h-t-+0 » ft->+0 Ii 

gilt (die erste Gleichung für t ^ O , die zweite für />0), folglich ist 

m = ji{A[Hl-Hü]-n(n-v)f-} (0^<p*); 

es handelt sich hier um den Inhalt von durch endlich viele Kreisbogen be-
endeten beschränkten Bereichen. Somit haben wir folgendes bewiesen: 

L E M M A 2. Für jeden Kreisbereich H0 vom Typus (n, v) ist 

A[Ht—H0]—n(n—v)f 

eine im Intervall 0 ^ / < p*(HQ) stetige, konkave Funktion von t. 

5 . B e r e i c h e von a l l g e m e i n e r e r S t r u k t u r 

Wir können jetzt zum Beweis unseres Hauptergebnisses übergehen: 

S a t z 1. Es sei G0 eine beliebige abgeschlossene ebene Punktmenge vom 
Typus (n, v). Dann ist 

A[Gt — G 0 ] — ? i ( n — v ) f 

eine stetige, konkave Funktion von t im Intervall 0^t<Q'(Ga); A[Gt—G0] 
bedeutet hierbei das Lebesguesche Maß der beschränkten, Boreischen Punkt-
menge Gt—Go. 

B e w e i s . Die abgeschlossene Menge G0 möge aus den beschränkten 
Komponenten G\ . . . , Gn und im Falle v = 1 noch aus der unbeschränkten 
Komponente G00 bestehen, letztere enthält definitionsgemäß eine uneigentliche 

8) Wegen der Stetigkeit auch an den singulären Stellen genügt es zu beweisen, daß 
für jedes abgeschlossene Intervall [a, b\, welches keine singulare Stelle enthält, f(a) i=/(6) 
ist. Wie im Beweis des gewöhnlichen Mittelwertsatzes, betrachte man die Funktion 

b-^a 
i sei eine Minimumstelle für g(t) in [a, ft]. Wegen g(a)=g(b) kann man i^b wählen. 
Dann ist offenbar g'+ (i) ^ 0, also 

o — a 
woraus die Behauptung'folgt. 
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Kreisscheibe Ka. Der minimale Abstand zwischen diesen Komponenten sei d 
( d > 0 ) . Man wähle eine beliebige Zahl r\ mit 0<77<d/3, und konstruiere 
für jede Komponente je einen zusammenhängenden Kreisbereich Hl>1>,..., H"'i 
bzw. H(a'n derart, daß die Inklusionen 

( 8 ) G 1 Q H 1 ' v Q G l n , . . . , G n Q H n ' ' ! ^ G n n , G ^ ^ H ^ Q G " 

gelten; G j bedeutet dabei die äußere Parallelmenge von G1 im Abstand TJ, 
usw. Für die kompakten Komponenten, etwa für G1, verfährt man so, daß 
man um jeden Punkt von G1 als Mittelpunkt die offene Kreisscheibe vom 
Radius rj nimmt; laut dem Heine-Borelschen Satze kann man von diesen 
Kreisscheiben endlich viele auswählen, die schon die Menge G1 bedecken; 
die abgeschlossene Hülle der Vereinigungsmenge der ausgewählten offenen 
Kreisscheiben ist dann ein Kreisbereich Hl,i- mit den gewünschten Eigen-
schaften. Im Falle von G® verfährt man auf analoge Weise zuerst für die 
kompakte Menge G' = G 0 0 — ( O 0 (wobei ( K w f das Innere der uneigent-
lichen Kreisscheibe A"" bedeutet) und dann nimmt man zu den G' bedecken-
den endlich vielen Kreisscheiben Km wieder hinzu. 

Der minimale Abstand zwischen den Kreisbereichen Z/ 1 ' 7 , . . . , Hn'n und 
(im Falle r = l ) Hm r> ist sd—2/?>d/3 . Diese Kreisbereiche sind also die 
Komponenten eines Kreisbereichs HS von demselben Typus (n, v) wie die 
ursprüngliche Menge G0, und man hat infolge (8) 

(9) G 0 Ü / / 0 Q G,,. 

Diese Beziehung überträgt sich auf die äußeren Parallelbereiche im Abstand 
/, d. h. man hat (mit der Bezeichnung //t'7 = (//0 )t) 

G ( £ / / ? £ G i + , ( f s O ) 

und mithin auch 

Gt—G 0 £ W ? — G„ E Gi+, — G0 ( f ^ O ) . 

Diese Differenzmengen sind alle Borelsch und beschränkt, und für TJ j 0 strebt 
die Menge G t+n—G0 abnehmend gegen die Menge Gf — G0 (siehe (1) und 
(2) in § 1). Folglich gelten für die Lebesgueschen Maße die folgenden 
Beziehungen: 

(10) 4 [ G t — G0] 4 [ H l - G o ] /1 [Gh-,— G„] 

und 

(11) A[Gt—G0] = lim i4[G t + i ;—G0] ; 
rj-yl I 

aus (10) und (11) folgt auch 

A[Gt-G0}= lim [ / / , " - G o ] -
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Nun ist nach Lemma 2 
A[H?—rt{n — v)e 

für jedes feste r¡>0 eine konkave Funktion von t im Intervall 0 
wegen der Beziehung A[ffl— G0] = A [H?—№] + A[//g—Go] ist auch die 
Funktion 
(12) A[H? — G J — n ( n — v ) f 
im Intervall 0^t<Q*(H'¿) konkav. Da infolge (9) (>*(//?) für 7j->0 gegen 
p*(G0) strebt, so ist die Limesfunktion von (12), d. h. 
(13) A[GT— G J — n ( n — v ) t \ 
ebenfalls konkav im ganzen Intervalle 0^t<g'(G0). Die Funktion (13) ist 
nach (11) überall stetig von rechts, und dann wegen ihrer Konkavität not-
wendigerweise stetig auch von links. 

Damit haben wir den Satz vollständig bewiesen. 
Satz 1 hat eine duale Form für innere Parallelmengen: 

S a t z 2 . Es sei G0 eine offene ebene Punktmenge, deren Komplementär-
menge Gl eine abgeschlossene Menge vom Typus (n*, v*) ist. Dann ist 

A[G0—G-t]—7t(n*—v*)f 
eine stetige, konkave Funktion von t im Intervall O^Lt<Q(G0). 

B e w e i s . Man wende Satz 1 auf die abgeschlossene Menge G5 und 
deren äußeren Parallelmengen (GJ)< an, und man beachte die Beziehungen 

(GÓ)t—GÓ = (G-()*— GJ = G0—G-t, 
deren erste aus der Definition der inneren Parallelmengen folgt und deren 
zweite eine Identität für Mengendifferenzen ist. 

Nach den elementaren Differenzierbarkeitseigenschaften konkaver Funk-
tionen folgen nun aus diesen Sätzen die beiden, ebenfalls dualen Sätze: 

S a t z 1 . Für eine beliebige abgeschlossene ebene Punktmenge G0 vom 
Typus (n, v) existieren die Grenzwerte 

¿+(Ó = lim - 1 A [Gf+Ä — Gt], L-(t) = lim 4 - [ G , - Gf-„] 
ii-M-0 n n 

für 0^t<e\Go) bzw. 0<t<g*(G0); für alle t>0 sind sie endlich, L+(t 
^ L-(t), und für alle t >0 mit höchstens abzählbar vielen Ausnahmewerten 
ist sogar L+(t) = L-(t); L.(0) kann eventuell auch gleich + °c sein; und 
für O ^ A < U<Q'(G0) gilt 

U(t,)—2n(n — ;')/, g L-(t2)~2n(n—v)t2. 
Insbesondere gilt 
(14) L+(0)^L±(t)—2n(n—v)t 
für 0<t<Q*(Go)-
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S a t z 2'. Für eine beliebige offene ebene Punktmenge G„, für die G0 

vom Typus (n*, v*) ist, existieren die Grenzwerte 

¿-(-Q^lim-j^IG-t-G-i-*], L+{-f) = \\M\A[G.M-G-T) 

für 0^t<g(Go) bzw. 0<t<g(G0); für alle t>O sind sie endlich, L.(—t)^ 
^ L+(—t), und für alle t> O mit höchstens abzählbar vielen Ausnahmewerten 
ist sogar L-(—t) = L+(—t); L_(0) kann eventuell auch gleich + 0 0 sein ; 
und für O ̂ ti<t2< g(G0) gilt 

L- (— ti)—2?r(n*—v*) U ÍÉ ¿+(—12)—2n(n* — vm) t2. 
Insbesondere hat man 
(15) L.(0)^L±(— f)-27v{n*—v*)t 

für O <t <.g (Go). 
Ist speziell G0 ein beschränktes Kontinuum (Fall n=\, v = 0), so gilt 

nach (14) L±{t)^U(0)-\-2nt für 0 < / < ~ . Ist aber G0 ein /n + l-fach 
zusammenhängendes offenes Gebiet (Fall n* = m, v'=l), so gilt nach (15) 
£±(—t)^L-<P) + 2a(m—l)t- für O<t<g(G0) . Somit haben wir die beiden 
Ungleichungen von MAKAI als spezielle Fälle der Sätze 1 ' , 2 ' , und zwar ohne 
a priori Annahme der Existenz von L±(t) bzw. L±(—f), bewiesen. 

Als Korollare erhält man : 

Satz 1". Für eine beliebige abgeschlossene ebene Punktmenge G0 mit 
kompaktem Rand existieren die Grenzwerte 

U(t) = lim 1. A [ G ( + H — G Í ] , M O = Hm -h-A[Gt-Gt-n] 
O n h-K+O n 

für jedes t mit O<t<g'(G0), beide sind endlich, L+(t)^L-(t), und mit der 
eventuellen Ausnahme von abzählbar vielen Werten von t ist sogar L+(t) = L.(t) 

S a t z 2". Für eine beliebige offene ebene Punktmenge G0 mit kom-
paktem Rand existieren die Grenzwerte 

L-(-t) = \\m±-A[G-t-G-t-Ä], L+(-t) = \im±-A [G-** G-t] h-++0 n h-».+0 H 
für jedes t mit 0 <t<g(G0), beide sind endlich, L-(—t) ^ L+(— t), und mit 
der eventuellen Ausnahme von abzählbar vielen Werten von t ist sogar 
L-(-t) = L+(-t). 

Wegen der Dualität dieser Behauptungen genügt es nur Satz 1" zu 
beweisen. Voraussetzungsgemäß ist der Rand von G0 in einer Kreisscheibe 
K{M, r) enthalten; folglich ist der Rand von Ga (a > 0) enthalten in der 
Kreisscheibe K(M, r + a). Alle beschränkten Komponenten von Ga sind dann 
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notwendigerweise ebenfalls in K(M, r + a) enthalten, und da jede dieser Kom-
ponenten mindestens eine Kreisscheibe vom Radius a enthält und folglich 
vom Maß ü yra2 ist, so ist die Anzahl rta der beschränkten Komponenten 

nente von Ga gibt, dann enthält diese die ganze uneigentliche Kreisscheibe 
K^iM, r + a). Folglich kann man Satz 1' auf Ga anwenden; wegen der Be-
ziehung Gt = (Ga)t-o (t > a) folgt somit die Gültigkeit der Aussagen für t>a. 
Da aber a beliebig klein positiv gewählt werden kann, ist damit Satz 1" 
bewiesen. 

von Ga notwendigerweise Kompo-

(Eingegangen am 1. Dezember 1958) 


