Notes on vanishing polynomials

By MIKLÓS HOSSZÚ in Miskolc

To Professor László Rédei on his 60th birthday

It is known that there exist rings R in which a polynomial function

$$
f_{n}(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}
$$

can vanish identically even if not all coefficients a_{i} are equal to $0 .{ }^{1}$)
Example 1. Let R_{n} be the ring of a complete residue system of integer numbers modulo n. Then we have

$$
\prod_{k=1}^{n}(x-k)=a_{n} x^{n}+\cdots+a_{0} \equiv 0(\bmod n)
$$

for all $x \in R_{n}$, however, $a_{n}=1 \neq 0$. Observe that $n x \equiv 0(\bmod n)$ is true for all $x \in R_{n}$.

Example 2. Let R_{f} be the ring of a complete residue system of integer numbers modulo 6 . Then we have

$$
x(x-1)(x-2)(x-3)(x-5) \equiv x^{5}+x^{4}-x^{3}-x^{2} \equiv 0(\bmod 6)
$$

for all $x \in R_{6}$. This is evident for $x=0,1,2,3,5$ and also for $x=4$ since we have

$$
(4-2)(4-1)=6 \equiv 0(\bmod 6) .
$$

Observe that R_{6} contains non zero elements of order 2 resp. 3 for which $2 a \equiv 0$ resp $3 a \equiv 0(\bmod 6)$ holds such that $a \equiv 0(\bmod 6)$.

There arises the problem ${ }^{2}$) to give conditions necessary and sufficient in order that in a ring R an identity

$$
a_{n} x^{n}+\cdots+a_{1} x+a_{0}=b_{n} x^{n}+\cdots+b_{1} x+b_{0}
$$

[^0]implies that the respective coefficients of the polynomials are equal: $a_{k}=b_{k}$ $(k=0,1, \ldots, n)$. It is clear that this is equivalent with the uniqueness of the identically vanishing polynomial on R. The main result of the present paper is:

Theorem. Let R be a ring in which (1) R^{+}does not contain any element of order $r \leqq n$ (up to 0). Then R has a unique identically vanishing polynomial of degree n if and only if (2) the set of elements of the form x^{k} $(x \in R)$ possesses a unique left anullator for every fixed $k=1, \ldots, n$.

Proof. The necessity of (2) is evident. On the other hand, in order to prove the sufficiency, let us suppose (2) on a ring R satisfying (1) and introduce the difference operator $d_{z}^{k i}$ by

$$
d_{z}^{i}=d_{z}^{k-1} d_{z}, \quad d_{z}^{1} f(x)=f(x+z)-f(x) ; \quad x, y \in R .
$$

Then

$$
f_{n}(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \equiv 0
$$

implies

$$
d_{z}^{n} f_{n}(x)=n!a_{n} z^{n} \equiv 0
$$

Thus, by (2), we have $n!a_{n} z^{n}=0$. But (1) involves the cancellability by $n, n-1, \ldots, 2$ and so we have $a_{n}=0$. Now, applying the operator Δ_{z}^{n-1} for the identically vanishing polynomial $f_{n}(x)-a_{n} x^{n}$, in a similar way we get $a_{n-1}=0$ and, successively, $a_{n-2}=\cdots=a_{1}=0$. Finally, by putting $x=0$ into $f_{n}(x)$, we obtain also $a_{0}=0$.

The present proof makes use of the obvious fact that $\Delta_{z}^{k} x^{k}=k!z^{k}$ is true in an arbitrary ring R.

Remarks. I. Examples 1 and 2 show that without supposing (1) our theorem does not hold in general.
2. Since the order of an element is a divisor of the order of R, we have proved the

Corollary. Let denote the smallest prime divisor of n. Then R_{n} (see example 1) has exactly one identically vanishing polynomial of degree less than d.
3. The condition (1) in our theorem can be replaced by the following one:
(1') For every $a \neq 0$ element in R and for arbitrary $i<k=2, \ldots, n$ there exists at least one integer q such that for $p=q^{i}-q^{i}$ we have $p a \neq 0$.

Then the sufficiency of (2) can be proved by successive application of the operator

$$
\sigma_{g}^{k} f(x)=f(q x)-q^{k} f(x)
$$

for

$$
f_{n}(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \equiv 0 .
$$

In fact, then we have

$$
\begin{aligned}
& g_{0}(x)=f_{n}(x)-f_{n}(0)=a_{n} x^{n}+\cdots+a_{1} x \equiv 0, \\
& g_{1}(x)=\sigma_{l_{1}}^{1} g_{0}(x)=\left(q_{1}^{n}-q_{1}\right) a_{n} x^{n}+\cdots+\left(q_{1}^{2}-q_{1}\right) a_{2} x^{2} \equiv 0, \\
& \cdots \\
& g_{n-1}(x)=\sigma_{n_{n-1}}^{n-1} g_{n-2}(x)=\left(q_{1}^{n}-q_{1}\right)\left(q_{2}^{n}-q_{2}^{2}\right) \ldots a_{n} x^{n} \equiv 0
\end{aligned}
$$

for all $x \in R$ and for every integer q_{i}. But this implies that $a_{n} x^{n} \equiv 0$ and, consequently, $a_{n}=0$, further similarly, $a_{n-1}=\cdots=a_{1}=0$ are true.

Here (1^{\prime}), i. e., the cancellability of $p a=0$ by $p=q^{k}-q^{i}=q^{i}\left(q^{k-i}-1\right)$ was used at least for one $p=p(a)$. Observe that this condition $\left(1^{\prime}\right)$ is fulfilled e.g. if the cancellability by 2 and by $2^{k}-1(k=2, \ldots, n-1)$ is supposed on R.
4. Problem. Give necessary and sufficient conditions under which a ring R possesses a unique identically (for all $x \in R$) vanishing polynomial of the form

$$
f_{n}(x)=\sum_{k=1}^{n}\left(a_{k} x^{k}+x^{k} b_{k}\right)
$$

resp.

$$
g_{n}(x)=\sum_{k=1}^{n} \prod_{i=0}^{2 k} z_{i k}(x)
$$

of degree n, where a_{k}, b_{k} are fixed elements in R^{3}) and

$$
z_{i k}(x)=\left\{\begin{array}{l}
a_{i k} \in R \text { (constant), if } i \text { is even, } \\
x \in R, \text { otherwise. }
\end{array}\right.
$$

(Received August 27, 1959)
${ }^{3}$) Or, more generally, it may be allowed that some of $a_{k}, b_{k}, a_{i k}$ are integer numbers.

[^0]: ${ }^{1}$) Here $x \in R$, further, a_{k} is taken either from R or if $k \geqq 1$ from the integer numbers; e.g. $x^{3}-x^{2}+2 x+a_{0}$ is a polynomial. In the notation we shall take no distinction between the integer 0 and the zero element of R; this leads no to misunderstanding.
 ${ }^{2}$) Cf. J. Aczél, Über die Gleichheit der Polynomfunktionen auf Ringen, Acta Sci. Math., 21 (1960), 105-107. See also: Collected Math. Problems of the Inst. of Math. of Kossuth L. Univ. in Debrecen.

