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Semigroups in which every proper subideal is a group
‘ By STEFAN SCHWARZ in Bratislava (CSR)

To Professor L. Rédei on the occasion of his sixtieth birthday

Let S be a semigroup. A left ideal of S is a non-vacuous subset LcS
for which SL=L holds. A right ideal is a subset RcS with RScR. A sub-
set which is both a left and right ideal of S is called a two-sided ideal of S.

If L,, L, are left ideals of S, their union L,U L, and their intersection
Lin L,, if it is non-vacuous, is again a left ideal of S. A left ideal L of S
is called a minimal left ideal of S if there does not exist a left ideal L’ of
'S such that L& L-holds. The intersection of two minimal left ideals is the
empty set. Analogous statements hold for right ideals.

Every semigroup which is not a group contains at least one left or -
right proper subideal. :

Definition. A semigroup S is called to be an F-semigroup if it is not
a group, but every left and right proper subideal of S is a group.

The purpose of this paper is to describe the structure of all F-semi-
groups. This is a generalization of a problem treated by PoLLAK and REDEI
[4] who dealt with semigroups in which every proper subsemigroup is a group.

In section 1 we prove some preliminary lemmas needed in the follow-
ing. In section 2 we describe the construction of two classes of semigroups
that will turn out.to be F-semigroups. Section 3 is devoted to the proof of
the main Theorem 1. In section 4 we show that the result of [4] is a simple
consequence of Theorem 1.

1.
Lemma 1. Let L be a left ideal of the semigroup S and G a group
contained in S. If Ln G0, then Gc L.
Proof. Let be a¢ LnG. Then G=GacSLcL, q.e. d.
An analogous result holds for right ideals. ‘
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Every F-semigroup contains at least one minimal left ideal. For, if S
- does not contain any proper left subideal of S, then the semigroup S is-
itself a minimal left ideal of S. If S contains a proper left subideal LGS,
then, by -supposition, L is a group and since a group cannot contain as a
. proper subset an ideal of S, L is a minimal left ideal of S.

Lemma 2. Let S be an F-semigroup. Then only one of the following
cases can occur: '

A) either S has a unique minimal proper left subideal;

B) or S contains precisely two different minimal left ideals L,ZS, L,ZS
and S=L,U L, holds; ' }

C) or S does not contain any left ideal = S at all.

Proof. S cannot contain more then two distinct minimal left ideals.
For, if there were at least three distinct minimal left ideals, say L, L,,Ls,
we would have SoL,UL,UL2L,UL.ZL,. But then L,UL, would be a
proper subideal of S, which is not a group.

If S contains two different minimal left ideals, say L, and L,, then
SDLUL, 2L, implies S= L, U L,. This proves our Lemma.

Remark 1. We shall see that each of these possibilities really occurs.

Remark 2. Needless to say‘that an analogous result holds for minimal
right ideals.

We recall the following well known fact:

Lemma 3. If L is a minimal left ideal .of a semigroup S and ac€s,
then La is also a minimal left ideal of S.

Proof. Suppose that K is a left ideal of S with KcLa. Let be

={x|x€L,xacK}. If 2¢ S, we have zxa¢ K so that zx € L,. Hence L,

is a left ideal. Since L is minimal, we have L,—= 0L, hence La=K, and La
has no proper left subideal.

A left ideal L is called to be maximal if there is no left ideal L” such

that LZL'GS. Maximal right and two-sided ideals are defined analogously.

The following lemma will be useful:

Lemma 4. Let M be a maximal two-sided ideal of S which is not

contained as a proper subset in a left or right ideal of S and different from
S. Then

a) either S—M is a group; |
b) or S—M contains a unique element u, with u* € M.

Remark. Analogous theorems have been proved in the paper [6].
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Proof. a) Suppose first that S—M contains at least two elements.
Denote S—M = G and choose an element a € G. The left ideal MU {a} U Sa
contains M and a, hence MU {a} uSa=S. Since S—M contains more than
one element the left ideal M U Sa contains M as a proper subset, hence we
have also MUSa=3S. If x¢ M, we have MuSxcMuSMc M. Therefore
the set G is characterized by the property that G={x|x € S, MU Sx=S}.

We show first that G is a semigroup. To this end it is sufficient to
prove: If MUSa=S, MUSb=3_, then we have also MUSab=3S. This
follows in the following manner: Multiplying the first relation by & we get
MbuySab=_S8b. Hence MUMbuySab=MUSb, i.e. MU Sab=3_.

The relation MU Sa==S (which is true for every a € () can be written in
the following manner: MU[MUGla=MUG, i e. MuGa=MuUG. Since
MnG=¢, we have Ga> G. On the other side -G is a semigroup, hence
* Gac G*< G, Therefore Ga= G. Analogously we can prove aG=G. The
equations Ga=G,aG= G for every a € G imply that G is a group.

b) Suppose next that S—M contains a unique element, S—M = {u}.
If u# is an idempotent, {¢} forms itself a group. If u is not an idempotent,
we have necessarily u? € S—{u} =M. This proves Lemma 4.

2.

In this section we deal with the construction of two types of semi-
groups that will be needed in section 3. Analogous constructions (in entirely
other connections) have been studied previously by CL'FFORD [1], HEwITT
[2] and HEWITT—ZUCKERMAN [3].

Lemma 5. Let G, and G, be two disjoint groups. Let ¢, be a homo-
morphic mapping of the group G, into the group G,. Let further ¢q and ¢n
denote the identical automorphisms of the groups G,, G, respectively. Consider
the set S= G,u G, in which we introduce a multiplication & by the followmg
definition: If a€G;, b;€q; (,j=0,1) let be:

a: @ b;= @i (@) 9;,i;(b))- (1

Then S is a semigroup with the unit element eq[ial to the unit element of
the group G,.

Remark. The multiplication is defined in such a manner that inside
the groups G,, G;- it is identical with the original multiplication in these
groups. lf namely i=j=1,i.e. a, € G, b,€ G,, 0, ® b, = ¢, (a:)) 9., (b,)=a;b;.
If i=k=0, i.e. a,€G,, b, € G,, we have a,® b= ¢u,(a0) Poo(b0) = Ao b,.
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Proof. a) For l>j>k (z J, k==0,1) we have clearly
Pix = Pji: Pij- ' @)
b) Let be a; € G;, b; € Gj,c € G (i,j, k=0,1). Then we have
(:©b) @ .= [ (a:) 95,;;(b)] © .

Since the expression in the bracket on the right hand side is contained in
the group G; we can further write

(2:© b)) © e = @i iiu[1,5(a) 95, 15(0)] P i (€ 1)
Since ij = ijk @i is one of our three mappings ¢,;, @, ¢o. Further, accord-
ing to (2) we have :
Pigyiin Piis = Pirije,  Pig,ign Pjij == Piijte-
Therefore

(@®b) O =[P )(/’J,wk(b N @i (ce)- Q)
Analogously we prove
4:© (6O ) = 9iijn (@) [i5:(8)) ‘751:, i (cr)]- 4)

Since each of the factors on the right hand side of the equations (3) and
(4) is contained in the group Gy, and the multiplication in this group is
associative, we have really (a:© b)) @cr=a:®(b;®cx), i. e. S is a semigroup.

c) If e, is the unit - element of the group G,, we have for b.€ G,
(accordmg to (1))

e®b,= (Pl,/c(el) Prx: (blc) = (/)l,k(ej)bk .

For k=1 we have e®b, =, (e)b, =e,b, = 0b,. For k=0 (since g, (e,)=¢e,)
we have e, ® b, = p,(e))b,=¢,0,=">0,. Hence e,® b,=0b,. Analogously we
can prove b.©®e ==b:,i.e.e is the unit element of the semigroup S. This
proves our lemma.

Definition. The semigroup S obtained by means of the construction
from Lemma 5 will be denoted by S= S[G,, G,; ¢u]. :

The notation is chosen to emphasize the means needed for the con-
struction of S.-

Corollary 5. In the semigroup. S[G,, Go;- @) the homomorphism ¢,
is uniquely determined by the relation: For a€ G, we have ¢,(a)=a®e,.

Proof. For a, € G, we have [by (1)] _
a,®e,== ‘})10(01)9’00(50) = (Plo(a])eo-
Since ¢,(a;) € G,, we have a,®e;= @, (), q. . d.
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Lemma 6. Every semigroup of the type S[Gi, Go; 9] is an F-semi-
~ group in which G, is the unique proper two-sided subideal.

Proof. First, it is clear that G, is a two-sided subideal of S which
* being a group cannot contain as a proper subset a subideal of S. Next, any
ideal which contains an element - € G, contains the whole group G,, hence
it contains also e, and it is equal to S. Therefore our sem1group contains a
unique proper subideal which is a group.

Lemma 7. Let G a group and u an element non€ G. Let b be a
fixed chosen element, b¢ G. -Consider the set S= G U {u} with the multi-
plication & defined as follows:

a) for x,y€G let be x®y=xy;

b) u®u=10b* v

¢) for x¢€ G let be u®x=0bx and xOu=xb. Then S isa semigroup.'

Proof. Let be £¢ S. Define :

: £ for €@,
b for E=u.

In both cases we have £¢ G. For every couple & n€S we have clearly
E@n=_E. Therefore for arbitrary three elements & %, €S we have

ERMEY=Eah)=Enh=ENI=EI=Con oL
Hence S is a semigroup. ‘

Definition. The semigroup constructed in Lemma 7 will be denoted -
by §=S|G, u; b).

Corollary 7. In the semigroup S[G, u;b] the element b is uniquely
determined by the equation b=u@e=e®u, where e is the unit element .
of the group G.

Proof. Puting x=e we get [according to c)] qu—be e@®u=eb.
But since b€ G, we have eb—=be=10; hence b=u@Oe=c@u. -

Lemma 8. Every semigroup of the type S|G, u;b] is an F-semigroup.
Its unique proper (two-sided) ideal is the group G.

Proof. Clearly, G is a two-sided ideal of S. Since G is a group, it
is at the same time the minimal two-sided ideal of S. Every ‘ideal / of S
different from S must contain the element u. But then we have also w?€ [,
hence Gn/s0. By Lemma 1, we have then necessarily Gc/, hence
S=Gu{ujc/, i.e. S=I. Hence G is the unique proper subideal of S.
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Remark. If we choose in.Lenima 7 for & different elements € G the
semigroups thus obtained need not be isomorphic. This can be shown on
simple examples. Let G be the group of second order G ={e, a} and choose
first b=-e. Then S,= §,[G, u;¢] has the following multiplication table:

| e a u
el e a e
ala e a
ul|le a e

Choose next‘in the éame group b=a. Then S§,=S,[G, u;a] has the multi-
plication table: A .

| e a u

el e a a
a e e

uja e

The semigroups S, and S. are neither isomorphic nor antiisomorphic.

3.

The following theorem gives a solution of the problem mentioned in
the introduction.

Theorem 1. A semigréup is an F-semigroup if and only if it is iso-
~ morphic with a semigroup belonging to one of the following classes of semigroups:
a) the class of semigroups of the type S[G,, Gy; @] (see Lemma 5);
b) the class of semigroups of the type S[G, u;b] (see Lemma 7);
¢) the class of semigroups of the form GxH, where G is a group and
H=/{e,, e} is a semigroup in which e.e,—e; (i, k=1, 2);
d) the class of semigroups of the form GxH', where G is a group and
H' =/{e,, e,} is a semigroup in which e;e,—=e;. (i, k=1, 2).

Proof. According to Lemma 2 we have to consider three cases
A B C.

Case A. Let S be an F-semigroup and suppose that it has a unique
minimal proper left subideal L.

Let be a€S. Since La is a minimal left ideal of S (see Lemma 3),
we have La=1L, i. e. LS=L; hence L is a two-sided ideal of S. The ideal
L cannot be contained in a left (right) ideal L’ of § such that LGL'GS
holds. For, the ideal L’ would be a group and since O==Lc L' nL Lemma
1 would imply L'c L, i.e. L’=L, which is a contradiction. Hence L is a
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maximal two-sided ideal of S which is not properly contained in a left or
right ideal of S different from S.

By Lemma 4, there are two p0551b1htles which are necessary to inves-
tigate separately.

a) Let S—L=G, be a group Then S=LUG, is a union of two
disjoint groups.

Let ¢, and e, be the unit elements of the groups L and G1 If ac G,,
we- have ae, € al = /L. The mapping

Yy a€Gi—ae €L )

is a homomorphic mapping of the group G, into the group L. If namely
a€ Gy, beG, and a—ae,, b—be,, we have ab—»abeo——a(beo)—a[eo(beo)]—a

=(aey)(bey).
If further a€ G,, 6 €L, we have

ab=a(e,b) = (ae,)b = ,,(a)b,
ba=(be))a==>b(e,a)==[b(e,a)|e,= (b_eo)(aeu) =b(ae)) = byy(a).

Put — for a while — L= G, and denote by v, and v, the identical
automorphisms of the groups L= G, and G,. We then have for a, € G; and
b€ G;

Qi b5 = i,5(a:) 5,i5(05)
Hence, in the notations of Lemma 5, we have necessarily S=S[G,,L; ).
Hereby, in accordance with Corollary 5, v, is defined by the relation (5).

Conversely, we know from Lemma 6 that S[G,, L; vy, is an F-semi-
group. A '

' b) Let S—L= {u}, where u*€ L. Denote by e the unit element of the
group L. Denote further b=ue.

Since b€ul <L, we have b=eb=cue. Smce eu€ Lu=L we have
(eu)e=-eu. Hence we have also b=-cu.

Further «* € L implies u*=eu’e= (eu)(ue)=1"0".

Finally for x € L we have ux=u(ex) = (ue)x=>0x and xu==(xe)u=
= x(eu) = xb. Our semigroup is necessarily of the type S[G,u; 6], where,
in accordance with Corollary 7, we have b=ue.

Conversely, we know (see Lemma 8) that evely semigroup of the type
S[G, u; b] is an F-semigroup.

Case B. Let S be an F-semigroup. Suppose that it contains precisely
two minimal left ideals L;, L,. Then, by Lemma 2, we have necessarily
S=L,uL,. Denote by e,,e, the unit elements of the groups L, and L,.
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We show first that S cannot contain a proper right subideal R=£S.
If R is a right ideal of S, we have O RL,cRnL,. Since the group L,
has a non-empty intersection with the right ideal R, we have (by Lemma 1)
L,cR. Analogously L,cR. Hence S=L,UL,CR, i. e. S=R.

S is therefore a so called. right simple semigroup containing idem-
potents. . .

It is known (see f.i. [5]) that in every right simple semigroup 7' con-
taining idempotents every idempotent is a left unit and the semigroup itself
is a union of disjoint isomorphic groups. The set of left units H< T forms
clearly a subsemigroup of 7. Further it is known that the semigroup T is
isomorphic to the direct product GxH, where G is a group (namely the
abstract group isomorphic to the groups whose union is T itself).

In our case the right simple semigroup S contains two idempotents
e,,e, hence we have necessarily S~ GXxH, where G is a group and
H ={e,, e;} has the multiplication table

e e .
el e 6 ' (6)
ele e .

The left ideals L, L, of S are then isomorphic to the group G.

Conversely, if G is an arbitrary group and H a semigroup with the
multiplication table (6), then GXH is a semigroup without a proper right
subideal. It contains precisely two proper left subideals, namely G x{e,} and
G x {e,}, both being groups (and both isomorphic to G). Hence GXH is an
F-semigroup. A

Case C. Suppose that S is an F-semigroup which -does not contain a
proper left subideal. Hence Sa=S§ for every a ¢ S. .

Let R be a minimal right ideal of S. The set SR= | a, R is a two-

(U, €8

sided ideal of S, hence SR=S. Since, by Lemma 3, evergr summand a, R
is a minimal right ideal of S, we conclude that S is the union of its mini-
mal right ideals. By Lemma 2 (formulated for right ideals) we conclude
further that a) either S does not contain a proper right subideal at all, b) or
S is the sum of two minimal right ideals of S (each of which is a group).

a) The case that S does not contain a proper right subideal is impos-
_sible. For then we would have also aS=3S for every a€S. The relations
Sa=S, aS=S for every a€S imply that S is a group, contrary to the
supposition that S is an.F-semigroup. '

b) In the second case, if S=FR UR,, and R,, R, are two different
minimal right ideals of §, we can use the result proved sub B by inter-



Semigroups 133

changing the role of left and right ideals. If ¢, e, are the unit elements of
the groups R,, R,, we conclude that the semigroup is necessarily isomorphic
to the direct product GXxH’, where G is a group and H’ is a semigroup
with the multiplication table

e e
el ) €1 61 . (7)
el e 6

Conversely, every semigroup of the type GxH’, where G is a group
and A’ is a semigroup with the multiplication table (7), is an F-semigroup
without proper left subideals, containing precisely two proper right subideals
each of which is a group.

This completes the proof-of Theorem 1.

4.

In this section we show that the result of paper [4] is an immediate
consequence of Theorem 1.

We shall use the following notations.

Let S be a semigroup and a € S. The cyclic subsemlgroup of S gener-
ated by a will be denoted by [a). An element a € S is called to be of finite
order if [a] is contains only a finite number of different elements. If every ele-
ment of § is of finite order, S is called a torsion semigroup. If a is of finite
order, [a] is called to be of the type (m, n), if n is the least integer such that
there is an integer m < n with a”=a"*'. If [a] is of the type (m, n), [a] con-
tains exactly n different elements and it is well known that {a™, a™*, ..., a"}
is-the greatest group contained in [a].

Definition. A semngroup S is called to be an E-semigroup if every
proper subsemigroup of S is a group.

Theorem 2 (POLLAK—REDE! [4]). A semigroup_is an E—sengroup if
and only lf S belongs to one of the following types of semigroups:

a) S is a torsion group;

b) S isa cyclic semigroup [a] of the type (2, n) where n>2 isan integer;

c) S={e,, e}, where ¢} =e,e,=e,,—¢,, 6l =¢;

d) S={e,, e}, where e;e,=e; for i, k=1, 2;

-e) S={e,, e}, where e;e,=e; for i,k=1,2.

Proof. An E-semigroup is clearly a torsion semigroup. For if there

were an @ € S which is not of finite order, then [a]={a,a’, ...} would con-
tain the subsemigroup {a’, o’ ...} which is not a group:
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An E-semigroup is necessarily either a'group or an F-semigroup. Since
a torsion group is clearly an E-semigroup, we have only to discuss the four
cases of Theorem 1.

a) Let S=S[G,, Gy;¢:] and suppose that S is an E-semigroup. Let
e, e, be the unit elements of the groups G, and G,. The two-element set

T,=/{e,, e, =S with the multiplication table ;

| 6 &
el el eﬂ
€| € €

forms a semigroup which is not a group Hence S=T7,. Conversely, T, is
clearly an E-semigroup:

b) Let S=S[G, u; b] and suppose that S is an E-semigroup. Consider
the cyclic semigroup [u]< S. Since [u] is not a group (i.e. it is not of the-
type (1, n)), we have necessarily [u]=S. If [u] were of the type (m,n)
with m=3 the semigroup {u* u*,...u"}S[u] would be a proper subsemi-
group of S which is not a group. It remains the case that [u] is of the type
(2, n). Conversely, in this case S is obviously an E-semigroup.

c) Let be S=GxH. Denote by e the unit element of the group G.
The semigroup {e} X H is a subsemigroup of GxH which is not a group.
Hence S>> {e} X H. But {e}x H= H, thus S= H. Conversely, H is obviously
an E-semigroup.

d) The case S= GxH’ can be settled “analogously. “This completes the
proof of Theorem 2.
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