Semigroups in which every proper subideal is a group

By ŠTEFAN SCHWARZ in Bratislava (ČSR)
To Professor L. Rédei on the occasion of his sixtieth birthday

Let S be a semigroup. A left ideal of S is a non-vacuous subset $L \subset S$ for which $S L \subset L$ holds. A right ideal is a subset $R \subset S$ with $R S \subset R$. A subset which is both a left and right ideal of S is called a two-sided ideal of S.

If L_{1}, L_{2} are left ideals of S, their union $L_{1} \cup L_{2}$ and their intersection $L_{1} \cap L_{2}$, if it is non-vacuous, is again a left ideal of S. A left ideal L of S is called a minimal left ideal of S if there does not exist a left ideal L^{\prime} of S such that $L^{\prime} \varsubsetneqq L$ holds. The intersection of two minimal left ideals is the empty set. Analogous statements hold for right ideals.

Every semigroup which is not a group contains at least one left or right proper subideal.

Definition. A semigroup S is called to be an F-semigroup if it is not a group, but every left and right proper subideal of S is a group.

The purpose of this paper is to describe the structure of all F-semigroups. This is a generalization of a problem treated by Pollák and Rédei [4] who dealt with semigroups in which every proper subsemigroup is a group.

In section 1 we prove some preliminary lemmas needed in the following. In section 2 we describe the construction of two classes of semigroups that will turn out to be F-semigroups. Section 3 is devoted to the proof of the main Theorem 1. In section 4 we show that the result of [4] is a simple consequence of Theorem 1.

1.

Lemma 1. Let L be a left ideal of the semigroup S and G a group contained in S. If $L \cap G \neq \emptyset$, then $G \subset L$.

Proof. Let be $a \in L \cap G$. Then $G=G a \subset S L \subset L$, q. e. d.
An analogous result holds for right ideals.

Every F-semigroup contains at least one minimal left ideal. For, if S does not contain any proper left subideal of S, then the semigroup S is itself a minimal left ideal of S. If S contains a proper left subideal $L \nsubseteq S$, then, by supposition, L is a group and since a group cannot contain as a proper subset an ideal of S, L is a minimal left ideal of S.

Lemma 2. Let S be an F-semigroup. Then only one of the following cases can occur:
A) either S has a unique minimal proper left subideal;
B) or S contains precisely two different minimal left ideals $L_{1} \varsubsetneqq S, L_{2} \subsetneq S$ and $S=L_{1} \cup L_{2}$ holds;
C) or S does not contain any left ideal $\neq S$ at all.

Proof. S cannot contain more then two distinct minimal left ideals. For, if there were at least three distinct minimal left ideals, say L_{1}, L_{2}, L_{3}, we would have $S \supset L_{1} \cup L_{2} \cup L_{3} \supsetneqq L_{1} \cup L_{2} \supsetneqq L_{1}$. But then $L_{1} \cup L_{2}$ would be a proper subideal of S, which is not a group.

If S contains two different minimal left ideals, say L_{1} and L_{2}, then $S \supset L_{1} \cup L_{2} \supsetneqq L_{1}$ implies $S=L_{1} \cup L_{2}$. This proves our Lemma.

Remark 1 . We shall see that each of these possibilities really occurs.
Remark 2. Needless to say that an analogous result holds for minimal right ideals.

We recall the following well known fact:
Lemma 3. If L is a minimal left ideal of a semigroup S and $a \in S$, then La is also a minimal left ideal of S.

Proof. Suppose that K is a left ideal of S with $K \subset L a$. Let be $L_{1}=\{x \mid x \in L, x a \in K\}$. If $z \in S$, we have $z x a \in K$ so that $z x \in L_{1}$. Hence L_{1} is a left ideal. Since L is minimal, we have $L_{1}=L$, hence $L a=K$, and $L a$ has no proper left subideal.

A left ideal L is called to be maximal if there is no left ideal L^{\prime} such that $L \subsetneq L^{\prime} \subsetneq S$. Maximal right and two-sided ideals are defined analogously. The following lemma will be useful:
Lemma 4. Let M be a maximal two-sided ideal of S which is not contained as a proper subset in a left or right ideal of S and different from S. Then
a) either $S-M$ is a group;
b) or $S-M$ contains a unique element u, with $u^{2} \in M$.

Remark. Analogous theorems have been proved in the paper [6].

Proof. a) Suppose first that $S-M$ contains at least two elements. Denote $S-M=G$ and choose an element $a \in G$. The left ideal $M \cup\{a\} \cup S a$ contains M and a, hence $M \cup\{a\} \cup S a=S$. Since $S-M$ contains more than one element the left ideal $M \cup S a$ contains M as a proper subset, hence we have also $M \cup S a=S$. If $x \in M$, we have $M \cup S x \subset M \cup S M \subset M$. Therefore the set G is characterized by the property that $G=\{x \mid x \in S, M \cup S x=S\}$.

We show first that G is a semigroup. To this end it is sufficient to prove: If $M \cup S a=S, M \cup S b=S$, then we have also $M \cup S a b=S$. This follows in the following manner: Multiplying the first relation by b we get $M b \cup S a b=S b$. Hence $M \cup M b \cup S a b=M \cup S b$, i. е. $M \cup S a b=S$.

The relation $M \cup S a=S$ (which is true for every $a \in G$) can be written in the following manner: $M \cup[M \cup G] a=M \cup G$, i. e. $M \cup G a=M \cup G$. Since $M \cap G=\varnothing$, we have $G a \supset G$. On the other side G is a semigroup, hence $G a \subset G^{n} \subset G$. Therefore $G a=G$. Analogously we can prove $a G=G$. The equations $G a=G, a G=G$ for every $a \in G$ imply that G is a group.
b) Suppose next that $S-M$ contains a unique element, $S-M=\{u\}$. If u is an idempotent, $\{u\}$ forms itself a group. If u is not an idempotent, we have necessarily $u^{2} \in S-\{u\}=M$. This proves Lemma 4 .

2.

In this section we deal with the construction of two types of semigroups that will be needed in section 3 . Analogous constructions (in entirely other connections) have been studied previously by Clifford [1], Hewitt [2] and Hewitt-Zuckerman [3].

Lemma 5. Let G_{1} and G_{0} be two disjoint groups. Let φ_{10} be a homomorphic mapping of the group G_{1} into the group G_{0}. Let further φ_{00} and φ_{11} denote the identical automorphisms of the groups G_{0}, G_{1}, respectively. Consider the set $S=G_{0} \cup G_{1}$ in which we introduce a multiplication \odot by the following definition: If $a_{i} \in G_{i}, b_{j} \in G_{j}(i, j=0,1)$ let be:

$$
\begin{equation*}
a_{i} \odot b_{j}=\varphi_{i, i j}\left(a_{i}\right) \varphi_{j, i j}\left(b_{j}\right) \tag{1}
\end{equation*}
$$

Then S is a semigroup with the unit element equal to the unit element of the group G_{1}.

Remark. The multiplication is defined in such a manner that inside the groups G_{0}, G_{3} it is identical with the original multiplication in these groups. If namely $i=j=1$, i. e. $a_{1} \in G_{1}, b_{1} \in G_{1}, a_{1} \odot b_{1}=\varphi_{11}\left(a_{1}\right) \varphi_{11}\left(b_{1}\right)=a_{1} b_{1}$. If $i=k=0$, i. e. $a_{0} \in G_{11}, b_{0} \in G_{0}$, we have ${ }^{\circ} a_{0} \odot b_{0}=\varphi_{00}\left(a_{0}\right) \varphi_{00}\left(b_{0}\right)=a_{0} b_{0}$.

Proof. a) For $i \geqq j \geqq k(i, j, k=0,1)$ we have clearly

$$
\begin{equation*}
\varphi_{i l e}=\varphi_{j k} \varphi_{i j} . \tag{2}
\end{equation*}
$$

b) Let be $a_{i} \in G_{i}, b_{j} \in G_{j}, c_{k} \in G_{k}(i, j, k=0,1)$. Then we have

$$
\left(a_{i} \odot b_{j}\right) \odot c_{i}=\left[\varphi_{i, i j}\left(a_{i}\right) \varphi_{j, i j}\left(b_{j}\right)\right] \odot c_{k}
$$

Since the expression in the bracket on the right hand side is contained in the group $G_{i j}$ we can further write

$$
\left(a_{i} \odot b_{j}\right) \odot c_{k}=\varphi_{i, i, j k}\left[\varphi_{i, i j}\left(a_{i}\right) \varphi_{j, i j}\left(b_{j}\right)\right] \cdot \varphi_{k, i j k}\left(c_{k}\right) .
$$

Since $i j \geqq i j k \varphi_{i j, i j k}$ is one of our three mappings $\varphi_{11}, \varphi_{10}, \varphi_{00}$. Further, according to (2) we have

$$
\varphi_{i j, i j k} \varphi_{i, i j}=\varphi_{i, i j k}, \quad \varphi_{i j, i j k} \varphi_{j, i j}=\varphi_{j, i j k}
$$

Therefore

$$
\begin{equation*}
\left(a_{i} \odot b_{j}\right) \odot c_{k}=\left[\varphi_{i, j k k}\left(a_{i}\right) \varphi_{j, i j k}\left(b_{j}\right)\right] \varphi_{k_{i, i j k}}\left(c_{k}\right) . \tag{3}
\end{equation*}
$$

Analogously we prove

$$
\begin{equation*}
a_{i} \odot\left(b_{j} \odot c_{k}\right)=\varphi_{i, j j_{k}}\left(a_{i}\right)\left[\varphi_{j ; j j_{k}}\left(b_{i}\right) \dot{\varphi}_{k, j j_{k}}\left(c_{k}\right)\right] . \tag{4}
\end{equation*}
$$

Since each of the factors on the right hand side of the equations (3) and (4) is contained in the group $G_{i j k}$, and the multiplication in this group is associative, we have really $\left(a_{i} \odot b_{j}\right) \odot c_{k}=a_{i} \odot\left(b_{j} \odot c_{k}\right)$, i. e. S is a semigroup.
c) If e_{1} is the unit element of the group G_{1}, we have for $b_{k} \in G_{k}$ (according to (1))

$$
e_{1} \odot b_{k}=\varphi_{1, k}\left(e_{1}\right) \varphi_{k k}\left(b_{k}\right)=\varphi_{1, k}\left(e_{1}\right) b_{k i}
$$

For $k=1$ we have $e_{1} \odot b_{1}=\varphi_{11}\left(e_{1}\right) b_{1}=e_{1} b_{1}=b_{1}$. For $k=0$ (since $\varphi_{10}\left(e_{1}\right)=e_{0}$) we have $e_{1} \odot b_{0}=\varphi_{10}\left(e_{1}\right) b_{0}=e_{0} b_{0}=b_{1}$. Hence $e_{1} \odot b_{k}=b_{k}$. Analogously we can prove $b_{k} \odot e_{1}=b_{k}$, i. e. e_{1} is the unit element of the semigroup S. This proves our lemma.

Definition. The semigroup S obtained by means of the construction from Lemma 5 will be denoted by $S=S\left[G_{1}, G_{0} ; \varphi_{10}\right]$.

The notation is chosen to emphasize the means needed for the construction of S.

Corollary 5. In the semigroup. $S\left[G_{1}, G_{0} ; \varphi_{10}\right]$ the homomorphism φ_{10} is uniquely determined by the relation: For $a \in G_{1}$ we have $\varphi_{10}(a)=a \odot e_{0}$.

Proof. For $a_{1} \in G_{1}$ we have [by (1)]

$$
a_{1} \odot e_{0}=\varphi_{10}\left(a_{1}\right) \varphi_{00}\left(e_{0}\right)=\varphi_{10}\left(a_{1}\right) e_{0} .
$$

Since $\varphi_{10}\left(a_{1}\right) \in G_{0}$, we have $a_{1} \odot e_{0}^{3}=\varphi_{10}\left(a_{1}\right)$, q. e. d.

Lemma 6. Every semigroup of the type $S\left[G_{1}, G_{0} ; \varphi_{10}\right]$ is an F-semigroup in which G_{0} is the unique proper two-sided subideal.

Proof. First, it is clear that G_{0} is a two-sided subideal of S which being a group cannot contain as a proper subset a subideal of S. Next, any ideal which contains an element $\in G_{1}$ contains the whole group G_{1}, hence it contains also e_{1} and it is equal to S. Therefore our semigroup contains a unique proper subideal which is a group.

Lemma 7. Let G a group and u an element non $\in G$. Let b be a fixed chosen element, $b \in G$. Consider the set $S=G \cup\{u\}$ with the multiplication \odot defined as follows:
a) for $x, y \in G$ let be $x \odot y=x y$;
b) $u \odot u=b^{\prime}$;
c) for $x \in G$ let be $u \odot x=b x$ and $x \odot \cdot u=x b$. Then S is a semigroup.

Proof. Let be $\xi \in S$. Define

$$
\bar{\xi}= \begin{cases}\xi & \text { for } \xi \in G \\ b & \text { for } \xi=u\end{cases}
$$

In both cases we have $\bar{\xi} \in G$. For every couple $\underline{\xi}, \eta \in S$ we have clearly $\xi \odot \eta=\bar{\xi} \bar{\eta}$. Therefore for arbitrary three elements $\xi, \eta, \zeta \in S$ we have

$$
\xi \odot(\eta \odot \dot{\zeta})=\bar{\xi}(\bar{\eta})=\bar{\xi}(\bar{\eta} \bar{\zeta})=(\bar{\xi} \bar{\eta}) \bar{\zeta}=(\bar{\xi} \bar{\eta}) \bar{\zeta}=(\xi \odot \eta) \odot \zeta .
$$

Hence S is a semigroup.
Definition. The semigroup constructed in Lemma 7 will be denoted by $S=S[G, u ; b]$.

Corollary 7. In the semigroup $S[G, u ; b]$ the element b is uniquely determined by the equation $b=u \odot e=e \odot u$, where e is the unit element of the group G.

Proof. Puting $x=e$ we get [according to c$)] \quad u \odot e=b e, e \odot u=e b$. But since $b \in G$, we have $e b=b e=b$; hence $b=u \odot e=e \odot u$.

Lemma 8. Every semigroup of the type $S[G, u ; b]$ is an F-semigroup. Its unique proper (two-sided) ideal is the group G.

Proof. Clearly, G is a two-sided ideal of S. Since G is a group, it is at the same time the minimal two-sided ideal of S. Every ideal I of S different from S must contain the element u. But then we have also $u^{2} \in I$, hence $G \cap I \neq \varnothing$. By Lemma 1 , we have then necessarily $G \subset I$, hence $S=G \cup\{u\} \subset I$, i. e. $S=I$. Hence G is the unique proper subideal of S.

Remark. If we choose in.Lemma 7 for b different elements $\in G$ the semigroups thus obtained need not be isomorphic. This can be shown on simple examples. Let G be the group of second order $G=\{e, a\}$ and choose first $b=e$. Then $S_{1}=S_{1}[G, a ; e]$ has the following multiplication table:

	e	a	u
e	e	a	e
a	a	e	a
u	e	a	e

Choose next in the same group $b=a$. Then $S_{2}=S_{2}[G, u ; a]$ has the multiplication table:

	e	a	l
e	e	a	a
a	a	e	e
u	a	e	e

The semigroups S_{1} and S_{a} are neither isomorphic nor antiisomorphic.

3.

The following theorem gives a solution of the problem mentioned in the introduction.

Theorem 1. A semigroup is an F-semigronp if and only if it is isomorphic with a semigroup belonging to one of the following classes of semigroups:
a) the class of semigroups of the type $S\left[G_{1}, G_{0} ; \varphi_{10}\right]$ (see Lemma 5);
b) the class of semigroups of the type $S[G, u ; b]$ (see Lemma 7);
c) the class of semigroups of the form $G \times H$, where G is a group and $H=\left\{e_{1}, e_{2}\right\}$ is a semigroup in which $e_{i} e_{k}=e_{i}(i, k=1,2)$;
d) the class of semigroups of the form $G \times H^{\prime}$, where G is a group and $H^{\prime}=\left\{e_{1}, e_{4}\right\}$ is a semigroup in which $e_{i} e_{k}=e_{k}(i, k=1,2)$.

Proof. According to Lemma 2 we have to consider three cases A, B, C.

Case A. Let S be an F-semigroup and suppose that it has a unique minimal proper left subideal L.

Let be $a \in S$. Since $L a$ is a minimal left ideal of S (see Lemma 3), we have $L a=L$, i. e. $L S=L$; hence L is a two-sided ideal of S. The ideal L cannot be contained in a left (right) ideal L^{\prime} of S such that $L \nsubseteq L^{\prime} \varsubsetneqq S$ holds. For, the ideal L^{\prime} would be a group and since $\theta \neq L \subset L^{\prime} \cap L$ Lemma 1 would imply $L^{\prime} \subset L$, i.e. $L^{\prime}=L$, which is a contradiction. Hence L is a
maximal two-sided ideal of S which is not properly contained in a left or right ideal of S different from S.

By Lemma 4, there are two possibilities which are necessary to investigate separately.
a) Let $S-L=G_{1}$ be a group. Then $S=L \cup G_{1}$ is a union of two disjoint groups.

Let e_{0} and e_{1} be the unit elements of the groups L and G_{1}. If $a \in G_{1}$, we have $a e_{0} \in a L=L$. The mapping

$$
\begin{equation*}
\psi_{10}: a \in G_{1} \rightarrow a e_{0} \in L \tag{5}
\end{equation*}
$$

is a homomorphic mapping of the group G_{1} into the group L. If namely $a \in G_{1}, b \in G_{1}$ and $a \rightarrow a e_{0}, b \rightarrow b e_{0}$, we have $a b \rightarrow a b e_{0}=a\left(b e_{0}\right)=a\left[e_{0}\left(b e_{0}\right)\right]=$ $=\left(a e_{0}\right)\left(b e_{0}\right)$.

If further $a \in G_{1}, b \in L$, we have

$$
\begin{aligned}
& a b=a\left(e_{0} b\right)=\left(a e_{0}\right) b=\psi_{10}(a) b, \\
& b a=\left(b e_{0}\right) a=b\left(e_{0} a\right)=\left[b\left(e_{0} a\right)\right] e_{0}=\left(b e_{0}\right)\left(a e_{0}\right)=b\left(a e_{0}\right)=b \psi_{10}(a) .
\end{aligned}
$$

Put - for a while - $L=G_{0}$ and denote by ψ_{00} and ψ_{11} the identical automorphisms of the groups $L=G_{0}$ and G_{1}. We then have for $a_{i} \in G_{i}$ and $b_{j} \in G_{j}$

$$
a_{i} b_{j}=\psi_{i, i j}\left(a_{i}\right) \psi_{j, i j}\left(b_{j}\right)
$$

Hence, in the notations of Lemma 5 , we have necessarily $S=S\left[G_{1}, L ; \psi_{10}\right]$. Hereby, in accordance with Corollary 5, ψ_{10} is defined by the relation (5).

Conversely, we know from Lemma 6 that $S\left[G_{1}, L ; \psi_{10}\right]$ is an F-semigroup.
b) Let $S-L=\{u\}$, where $u^{2} \in L$. Denote by e the unit element of the group L. Denote further $b=u e$.

Since $b \in u L \subset L$, we have $b=e b=e u e$. Since $e u \in L u=L$ we have $(e u) e=e u$. Hence we have also $b=e u$.

Further $u^{2} \in L$ implies $u^{2}=e u^{2} e=(e u)(u e)=b^{2}$.
Finally for $x \in L$ we have $u x=u(e x)=(u e) x=b x$ and $x u=(x e) u=$ $=x(e u)=x b$. Our semigroup is necessarily of the type $S[G, u ; b]$, where, in accordance with Corollary 7, we have $b=u e$.

Conversely, we know (see Lemma 8) that every semigroup of the type $S[G, u ; b]$ is an F-semigroup.

Case B. Let S be an F-semigroup. Suppose that it contains precisely two minimal left ideals L_{1}, L_{2}. Then, by Lemma 2, we have necessarily $S=L_{1} \cup L_{2}$. Denote by e_{1}, e_{2} the unit elements of the groups L_{1} and L_{2}.

We show first that S cannot contain a proper right subideal $R \neq S$. If R is a right ideal of S, we have $\emptyset \neq R L_{1} \subset R \cap L_{1}$. Since the group L_{1} has a non-empty intersection with the right ideal R, we have (by Lemma 1) $L_{1} \subset R$. Analogously $L_{2} \subset R$. Hence $S=L_{1} \cup L_{2} \subset R$, i. e. $S=R$.
S is therefore a so called right simple semigroup containing idempotents.

It is known (see f. i. [5]) that in every right simple semigroup T containing idempotents every idempotent is a left unit and the semigroup itself is a union of disjoint isomorphic groups. The set of left units $H \subset T$ forms clearly a subsemigroup of T. Further it is known that the semigroup T is isomorphic to the direct product $G \times H$, where G is a group (namely the abstract group isomorphic to the groups whose union is T itself).

In our case the right simple semigroup S contains two idempotents e_{1}, e_{2}, hence we have necessarily $S \cong G \times H$, where G is a group and $H=\left\{e_{1}, e_{2}\right\}$ has the multiplication table

$$
\begin{array}{c|cc}
- & e_{1} & e_{2} \tag{6}\\
\hline e_{1} & e_{1} & e_{2} \\
e_{2} & e_{1} & e_{2}
\end{array} .
$$

The left ideals L_{1}, L_{2} of S are then isomorphic to the group G.
Conversely, if G is an arbitrary group and H a semigroup with the multiplication table (6), then $G \times H$ is a semigroup without a proper right subideal. It contains precisely two proper left subideals, namely $G \times\left\{e_{1}\right\}$ and $G \times\left\{e_{2}\right\}$, both being groups (and both isomorphic to G). Hence $G \times H$ is an F-semigroup.

Case C. Suppose that S is an F-semigroup which does not contain a proper left subideal. Hence $S a=S$ for every $a \in S$.

Let R be a minimal right ideal of S. The set $S R=\bigcup_{U_{\nu} \in S} a_{v} R$ is a twosided ideal of S, hence $S R=S$. Since, by Lemma 3, every summand $a_{v} R$ is a minimal right ideal of S, we conclude that S is the union of its minimal right ideals. By Lemma 2 (formulated for right ideals) we conclude further that a) either S does not contain a proper right subideal at all, b) or S is the sum of two minimal right ideals of S (each of which is a group).
a) The case that S does not contain a proper right subideal is impossible. For then we would have also $a S=S$ for every $a \in S$. The relations $S a=S, a S=S$ for every $a \in S$ imply that S is a group, contrary to the supposition that S is an F-semigroup.
b) In the second case, if $S=R_{1} \cup R_{2}$, and R_{1}, R_{2} are two different minimal right ideals of S, we can use the result proved sub B by inter-
changing the role of left and right ideals. If e_{1}, e_{2} are the unit elements of the groups R_{1}, R_{2}, we conclude that the semigroup is necessarily isomorphic to the direct product $G \times H^{\prime}$, where G is a group and H^{\prime} is a semigroup with the multiplication table

$$
\begin{array}{l|ll}
& e_{1} & e_{2} \tag{7}\\
\hline e_{1} & e_{1} & e_{1} \\
e_{2} & e_{2} & e_{2}
\end{array}
$$

Conversely, every semigroup of the type $G \times H^{\prime}$, where G is a group and H^{\prime} is a semigroup with the multiplication table (7), is an F-semigroup without proper left subideals, containing precisely two proper right subideals each of which is a group.

This completes the proof of Theorem 1.

4.

In this section we show that the result of paper [4] is an immediate consequence of Theorem 1.

We shall use the following notations.
Let S be a semigroup and $a \in S$. The cyclic subsemigroup of S generated by a will be denoted by [a]. An element $a \in S$ is called to be of finite order if $[a]$ is contains only a finite number of different elements. If every element of S is of finite order, S is called a torsion semigroup. If a is of finite order, [a] is called to be of the type ($(m, n$), if n is the least integer such that there is an integer $m<n$ with $a^{m}=a^{n+1}$. If $[a]$ is of the type (m, n), $[a]$ contains exactly n different elements and it is well known that $\left\{a^{m}, a^{m+1}, \ldots, a^{n}\right\}$ is the greatest group contained in [a].

Definition. A semigroup S is called to be an E-semigroup if every proper subsemigroup of S is a group.

Theorem 2 (Pollák-Rédei [4]). A semigroup is an E-semigroup if and only if S belongs to one of the following types of semigroups:
a) S is a torsion group;
b) S is a cyclic semigroup [a] of the type $(2, n)$, where $n>2$ is an integer;
c) $S=\left\{e_{1}, e_{0}\right\}$, where $e_{0}^{2}=e_{0} e_{1}=e_{1} e_{0}=e_{0}, e_{1}^{2}=e_{1}$;
d) $S=\left\{e_{1}, e_{2}\right\}$, where $e_{i} e_{k}=e_{i}$ for $i, k=1,2$;
e) $S=\left\{e_{1}, e_{2}\right\}$, where $e_{i} e_{k}=e_{k}$ for $i, k=1,2$.

Proof. An E-semigroup is clearly a torsion semigroup. For if there were an $a \in S$ which is not of finite order, then $[a]=\left\{a, a^{2}, \ldots\right\}$ would contain the subsemigroup $\left\{a^{2}, a^{3}, \ldots\right\}$ which is not a group.

An E-semigroup is necessarily either a group or an F-semigroup. Since a torsion group is clearly an E-semigroup, we have only to discuss the four cases of Theorem 1.
a) Let $S=S\left[G_{1}, G_{0} ; 千_{10}\right]$ and suppose that S is an E-semigroup. Let e_{1}, e_{0} be the unit elements of the groups G_{1} and G_{11}. The two-element set $T_{1}=\left\{e_{1}, e_{0}\right\} \subset S$ with the multiplication table

$$
\begin{array}{l|ll}
& e_{1} & e_{0} \\
\hline e_{1} & e_{1} & e_{0} \\
e_{0} & e_{0} & e_{0}
\end{array}
$$

forms a semigroup which is not a group. Hence $S=T_{1}$. Conversely, T_{1} is clearly an E-semigroup.
b) Let $S=S[G, u ; b]$ and suppose that S is an E-semigroup. Consider the cyclic semigroup $[u] \subset S$. Since $[u]$ is not a group (i. e. it is not of the type ($1, n$), we have necessarily $[u]=S$. If $[u]$ were of the type (m, n) with $m \geqq 3$ the semigroup $\left\{u^{2}, u^{3}, \ldots u^{\prime \prime}\right\} \nsubseteq[u]$ would be a proper subsemigroup of S which is not a group. It remains the case that $[u]$ is of the type $(2, n)$. Conversely, in this case S is obviously an E-semigroup.
c) Let be $S \cong G \times H$. Denote by e the unit element of the group G. The semigroup $\{e\} \times H$ is a subsemigroup of $G \times H$ which is not a group. Hence $S \cong\{e\} \times H$. But $\{e\} \times H \cong H$, thus $S \cong H$. Conversely, H is obviously an E-semigroup.
d) The case $S \cong G \times H^{\prime}$ can be settled analogously. This completes the proof of Theorem 2.

References

[1] A. H. Clifford, Semigroups admitting relative inverses, Annals of Math., 42 (1941), 1037-1049.
[2] E. Hewitt, Compact monothetic semigroups, Duke Math. Journal, 23 (1956), 447-458.
[3] E. Hewitt-S.H. Zuckerman, Finite dimensional convolution, algebras, Acta Mathematica, 93 (1955), 67-119.
[4] G. Pollák-L. Rédei, Die Halbgruppen, deren alle echte Teilhalbgruppen Gruppen sind, Publicationes Math. Debrecen, 6 (1959), 126-130.
[5] S. Schwarz, The structure of simple semigroups without zero, Czechoslovak Math. Journal, 1 (76) (1951), 41-53.
[6] Š. Schwarz, Maksimaljnyje idealy v teorii polugrupp. II, Czechoslovak Math. Journal, 3 (78) (1953), 365-383.

