A note on exponential sums*)

L. CARLITZ in Durham (N. C., U. S. A.)

To Professor L. Rédei on his sixtieth birthday

1. Let p be an odd prime and let ζ denote a primitive p-th root of 1 . Put

$$
\begin{equation*}
B=\sum_{s=1}^{n-1} c_{s} \zeta^{s} \quad\left(c_{s}= \pm 1\right) \tag{1.1}
\end{equation*}
$$

where the coefficients c_{s} independently take on the values ± 1. The number of sums B is evidently 2^{p-1}. Also put

$$
\begin{equation*}
B_{r}=\sum_{s=1}^{r} c_{s} s^{k_{s}} \quad\left(c_{s}= \pm 1\right) \tag{1.2}
\end{equation*}
$$

where $r \leqq p-1$ and

$$
1 \leqq k_{1}<k_{2}<\cdots<k_{r} \leqq p-1
$$

Rédei [1, Theorems 6, 7] has proved the following results.
Theorem A. The sum B satisfies

$$
\begin{equation*}
\left.(1-\zeta)^{\frac{1}{2}(p-1)}\right|_{B} \tag{1.3}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
B= \pm \sum_{s=1}^{p-1}\left(\frac{s}{p}\right) \zeta^{s} ; \tag{1.4}
\end{equation*}
$$

that is, if and only if B is a Gauss sum. If (1.3) does not hold, then B is. divisible by at most $(1-\zeta)^{\frac{1}{4}(\mu-1)}$; this will occur if and only if $p=4 m+1$ and

$$
B= \pm\left(\eta_{0}-\eta_{2}\right) \pm\left(\eta_{1}-\eta_{3}\right)
$$

where g is a primitive root $(\bmod p)$ and

$$
\eta_{j}=\sum_{s=0}^{m-1} \zeta^{g^{t s+j}} \quad(j=0,1,2,3) .
$$

[^0]Theorem B. If B r satisfies

$$
\begin{equation*}
(1-\zeta)^{n} \mid B_{r} \tag{1.5}
\end{equation*}
$$

then $e \leqq \frac{1}{2} r$.
The proof of these results depend upon some theorems concerning lacunary polynomials in the finite field $G F(p)$.

It may be of interest to note some corollaries of Reder's theorems. If B is defined by (1.1) we may ask when B satisfies

$$
\begin{equation*}
|B|^{2}=p \tag{1.6}
\end{equation*}
$$

Since

$$
|B|^{2}=B \dot{\bar{B}}, \quad \bar{B}=\sum_{s=1}^{p-1} c_{s} 5^{-s},
$$

it is evident that $|B|^{2}$ is an integer of the cyclotomic field $R(\zeta)$, where R denotes the rational field. Hence, in place of (1.6), we may ask when B satisfies the weaker condition

$$
\begin{equation*}
|B|^{2} \equiv 0 \quad(\bmod p) \tag{1.7}
\end{equation*}
$$

Since $p=(1-\zeta)$ is a prime ideal of $R(\zeta)$ such that $(p)=p^{p-1}$, (1.7) is equivalent to.

$$
\begin{equation*}
B \bar{B} \equiv 0 \quad\left(p^{\mu-1}\right) \tag{1.8}
\end{equation*}
$$

Now suppose that

$$
\begin{equation*}
\mathfrak{p}^{s} \mid B, \quad p^{c+1} \times B ; \tag{1.9}
\end{equation*}
$$

applying the automorphism $\zeta \rightarrow \zeta^{-1}$, it is clear that (1.9) implies

$$
p^{c} \mid \bar{B}, \quad p^{p+1} \times \bar{B} .
$$

It follows that
(1.10) $\quad p^{2 c} \mid B \bar{B}, \quad p^{1^{B+1}+1} \times B \bar{B}$.

Comparing (1.10) with (1.8), we infer that

$$
\begin{equation*}
2 e \geqq p-1 . \tag{1.11}
\end{equation*}
$$

Thus (1.8) implies (1.3) and therefore by the first of Rédel's results quoted. above it follows that (1.4) holds. We may accordingly state

Theorem 1. The sum B satisfies (1.7) if and only if (1.4) holds, that is if and only if B is a Gauss sum.

As an immediate corollary, we have
Theorem 2. The sum B satisfies (1.6) if and only is B if a Gauss sum.
2. If we use the fuller notation

$$
\begin{equation*}
B\left(\zeta^{k}\right)=\sum_{s=1}^{p-1} c_{s} \zeta^{s /} \quad(1 \leqq k \leqq p-1) \tag{2.1}
\end{equation*}
$$

where, as above, $c_{s}= \pm 1$, then we have

$$
\sum_{k=1}^{\mu-1}\left|B\left(\zeta^{k}\right)\right|^{2}=\sum_{k=1}^{p-1} \sum_{s=1}^{p-1} c_{s} \zeta^{s k} \sum_{t=1}^{p-1} c_{t} \zeta^{-t k}=\sum_{s, t=1}^{p-1} c_{s} c_{t} \sum_{k=1}^{p-1} \zeta^{(s-t) k} .
$$

We shall assume that the c_{s} satisfy the condition

$$
\begin{equation*}
\sum_{s=1}^{\mu-1} c_{s}=0 \tag{2:2}
\end{equation*}
$$

Then it is clear from the above that

$$
\sum_{k=1}^{p-1}\left|B\left(\zeta^{k}\right)\right|^{2}=\sum_{s, t=1}^{p-1} c_{s} c_{t} \sum_{k=0}^{p-1} \zeta^{(s-t) i}=p \sum_{s=1}^{p-1} c_{s}^{2}
$$

so that

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left|B\left(\zeta^{k}\right)\right|^{2}=p(p-1) \tag{2.3}
\end{equation*}
$$

According to (2.3), the number $\left|B\left(\zeta^{k}\right)\right|^{2}$ is on the average equal to p. In view of the restriction (2.2), the number of sums $B\left(\zeta^{k}\right)$, for fixed ζ^{k}, is $\binom{p-1}{m}$, where $p=2 m+1$; by Theorem 2 , only two of the sums satisfy (1.6). Hence if $B\left(\zeta^{k}\right)$ is not a Gauss sum but (2.2) is satisfied, it follows from (2.3) that both inequalities

$$
\left|B\left(\zeta^{h}\right)\right|^{2}>p, \quad\left|B\left(\zeta^{k}\right)\right|^{2}<p
$$

are satisfied for appropriate values of k. This suggests the problem of determining upper and lower bounds for $\left|B\left(\zeta^{k}\right)\right|$. However for $\zeta=e^{2 \pi r i / p}$,

$$
\begin{equation*}
c_{1}=\cdots=c_{m}=1, \quad c_{m+1}=\cdots=c_{m}=-1 \tag{2.4}
\end{equation*}
$$

where $p=2 m+1$, we have

$$
B=B(\zeta)=\sum_{s=1}^{m} \zeta^{s}-\sum_{s=m+1}^{2 m} \zeta^{s}=\zeta\left(1-\zeta^{n}\right) \sum_{s=0}^{m-1} \zeta^{s}=\frac{\zeta\left(1-\zeta^{m}\right)^{2}}{1-\zeta},
$$

so that

$$
|B|=\left|\frac{\left(1-\zeta^{m}\right)^{2}}{1-\zeta}\right|=2 \frac{\sin ^{2} \frac{m x}{p}}{\sin \frac{\pi}{p}}
$$

Therefore for large p we get

$$
|B| \sim \frac{2}{\pi t} p
$$

In particular, the statement

$$
\begin{equation*}
B=o(p) \tag{2.6}
\end{equation*}
$$

for all B satisfying (2.2), is false.
Again for the choice

$$
\begin{equation*}
c_{1}=c_{3}=\cdots=c_{2 m-1}=1, \quad c_{2}=c_{4}=\cdots=c_{2 m}=-1 \tag{2.7}
\end{equation*}
$$

we have

$$
B=B(\zeta)_{1}=\sum_{s=1}^{2 m}(-1)^{s-1} \zeta^{s}=\frac{\zeta\left(1-\zeta^{-m^{n}}\right)}{1+\zeta}
$$

so that

$$
|B|=\left|\frac{1-\zeta^{2 m}}{1+\zeta}\right|=\frac{\sin \frac{2 m \pi}{p}}{\cos \frac{\pi}{p}}=\frac{\sin \frac{\pi}{p}}{\cos \frac{\pi}{p}}
$$

For large p this implies

$$
\begin{equation*}
B \sim \frac{\pi}{p} \tag{2.8}
\end{equation*}
$$

Thus the statement

$$
\begin{equation*}
|B|>c>0 \tag{2.9}
\end{equation*}
$$

for all B satisfying (2.2) where c is independent of p, is also false. It seems plausible that

$$
\begin{equation*}
\frac{\pi}{p}<|B|<\frac{2 p}{\pi} \tag{2.10}
\end{equation*}
$$

for all B satisfying (2.2).
3. Turning now to B_{r} defined by (1.2) we may apply the argument used in the proof of Theorem 1 together with Theorem A of Rédel to prove the following result.

Theorem 3. If $r<p-1$, the congruence

$$
\begin{equation*}
\left|B_{r}\right|^{2} \equiv 0 \quad(\bmod p) \tag{3.1}
\end{equation*}
$$

holds for no

$$
B_{r}=\sum_{s=1}^{r} c_{s} \zeta^{k_{s}} \quad\left(c_{s}= \pm 1\right)
$$

where $1 \leqq k_{1}<k_{2}<\cdots<k_{r}<p-1$. A fortiori the equality

$$
\begin{equation*}
\left|B_{r}\right|^{2}=p \tag{3.2}
\end{equation*}
$$

holds for no B_{r}.

If we put

$$
\begin{equation*}
B_{r}\left(\zeta^{h}\right)=\sum_{s=1}^{r} c_{s} \zeta^{k_{s} s^{h}} \quad(1 \leqq h \leqq p-1) \tag{3.3}
\end{equation*}
$$

and in addition assume that

$$
\begin{equation*}
\sum_{s=1}^{r} c_{s}=0 \tag{3.4}
\end{equation*}
$$

then exactly as in the proof of (2.3), we have

$$
\begin{equation*}
\sum_{h=1}^{n-1}\left|B_{r}\left(\zeta^{h}\right)\right|^{2}=p r . \tag{3.5}
\end{equation*}
$$

Thus, when (3.4) is satisfied, $\left|B_{r}\left(\zeta^{n}\right)\right|^{2}$ is on the average equal to $p r /(p-1)$; for large p, the average is therefore r.

Clearly (3.4) requires that r be even. Put $r=2 t, \zeta=e^{9 \pi i / p}, p=2 m+1$, and consider

$$
\begin{equation*}
B_{r}=\sum_{s=1}^{t} \zeta^{s}=\sum_{s=m+1}^{m+t} \zeta^{s}=\frac{\zeta\left(1-\zeta^{m}\right)\left(1-\zeta^{t}\right)}{1-\zeta} \tag{3.6}
\end{equation*}
$$

Then

$$
\left|B_{r}\right|=\frac{2 \sin \frac{m \pi}{p} \sin \frac{t}{p}}{\sin \frac{\pi}{p}}
$$

For large p it follows that

$$
\begin{equation*}
\left|B_{r}\right| \sim \frac{2 p}{\pi} \sin \frac{t \pi}{p} \tag{3.7}
\end{equation*}
$$

In particular if $r=o(p)$, (3.7) yields

$$
\begin{equation*}
\left|B_{r}\right| \sim r \tag{3.8}
\end{equation*}
$$

In the next place, if we take

$$
\begin{equation*}
B_{r}=\sum_{s=1}^{r}(-1)^{s-1} \zeta^{s}=\frac{\zeta\left(1-\zeta^{r}\right)}{1+\zeta} \tag{3.9}
\end{equation*}
$$

then

$$
\left|B_{r}\right|=\frac{\sin \frac{t \pi}{p}}{\cos \frac{\pi}{p}}
$$

so that for large p it follows that

$$
\begin{equation*}
\left|B_{r}\right| \sim \sin \frac{t \pi}{p} \tag{3.10}
\end{equation*}
$$

In particular if $r=o(p)$, (3.10) becomes

$$
\begin{equation*}
\left|B_{r}\right| \sim \frac{r \pi}{2 p} \tag{3.11}
\end{equation*}
$$

4. We now give another proof of Redel's theorem that (1.3) holds only when B is a Gauss sum. In the first place (1.3) is equivalent to

$$
\begin{equation*}
\sum_{s=1}^{p-1} s^{j} c_{s} \equiv 0(\bmod p) \quad\left(1 \leqq j<\frac{1}{2}(p-1)\right) \tag{4.1}
\end{equation*}
$$

This is essentially the Lemma on p. 287 of [1]. Indeed, (4.1) follows easily from the identity

$$
B=\sum_{s=1}^{p-1} c_{s} \zeta^{s}=\sum_{s=1}^{p-1} c_{s}(1+(\zeta-1))^{s}=\sum_{j=0}^{p-1}(\zeta-1)^{j} \sum_{s=j}^{j-1}\binom{s}{j} c_{j}
$$

Now consider the polynomial $f(x)$ with coefficients in the $G F(p)$ such that

$$
f(0)=0, \quad f(s)=c_{s} \quad(s=1, \ldots, p-1)
$$

Clearly

$$
f(x)=-\sum_{s=1}^{p-1} c_{s} \frac{x^{p}-x}{x-s}=-\sum_{s=1}^{p-1} c_{s}(x-s)^{p-1}
$$

It follows from (4.1) that

$$
\begin{equation*}
\operatorname{deg} f(x) \leqq m=\frac{1}{2}(p-1) \tag{4.2}
\end{equation*}
$$

Since

$$
f^{2}(0)=0, \quad f^{2}(s)=1 \quad(s=1, \ldots, p-1)
$$

it follows at once that

$$
\begin{equation*}
f^{2}(x)=x^{p-1} \tag{4.3}
\end{equation*}
$$

in view of (4.2), it is clear that (4.3) is an identity (and not merely a congruence $\bmod \left(x^{p}-x\right)$). Now put

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \quad\left(a_{j} \in G F(p)\right)
$$

making use of (4.3) we get

$$
f(x)= \pm x^{\prime \prime \prime}= \pm\left(\frac{x}{p}\right)
$$

This evidently completes the proof of the theorem.
To prove the second half of Theorem A we require a little more. Suppose that B satisfies
(4.4) $\quad p^{t} \mid B, \quad p^{t+1} \nless B$
for some t in the range $1 \leqq t \leqq m$. As above we define the polynomial $f(x)$ such that

$$
f(0)=0, \quad f(s)=c_{s} \quad(s=1, \ldots, p \div 1) .
$$

Now (4.4) is equivalent to

$$
\sum_{s=1}^{p-1} s^{\prime} \mathcal{c}_{s}\left\{\begin{array}{lc}
\equiv 0 & (\bmod p) \tag{4.5}\\
\neq 0 & (1 \leqq j<t) \\
(\bmod p) & (j=t) ;
\end{array}\right.
$$

it follows that

$$
\begin{equation*}
\operatorname{deg} f(x)=p-1-t . \tag{4.6}
\end{equation*}
$$

Put

$$
U(x)=\prod_{c_{s}=1}(x-s), \quad V(x)=\prod_{c_{s}=-1}(x-s),
$$

so that

$$
\begin{equation*}
x^{2 n n}-1=U(x) V(x), \quad \operatorname{deg} U(x)=\operatorname{deg} V(x)=m . \tag{4.7}
\end{equation*}
$$

Thus $f(x)$ is uniquely determined by

$$
\left\{\begin{array}{l}
f(x) \equiv 1(\bmod U(x)), \tag{4.8}\\
f(x) \equiv-1 \quad(\bmod V(x)), \\
f(x) \equiv 0 \quad(\bmod x)
\end{array}\right.
$$

It is easily verified that the system (4.8) has the solution

$$
\begin{equation*}
f(\dot{x})=x\left(U(x) V^{\prime}(x)-U^{\prime}(x) V(x)\right) \tag{4.9}
\end{equation*}
$$

In the next place, it follows from (4.5) and (4.7) that

$$
\begin{equation*}
U(x)=x^{m}+a_{t} x^{m-t}+\cdots+a_{m}, \quad V(x)=x_{m}+b_{t} x^{m-t}+\cdots+b_{m}, \tag{4.10}
\end{equation*}
$$

where $b_{t}=-a_{t} \neq 0$. Substituting in (4.9) we get

$$
f(x)=2 t a_{t} x^{2 m-t}+\ldots
$$

so that

$$
\begin{equation*}
\operatorname{deg} f(x)=2 m-t . \tag{4.11}
\end{equation*}
$$

Now assume that

$$
\begin{equation*}
\frac{1}{2} m<t<m . \tag{4.12}
\end{equation*}
$$

Using (4.7) and (4.10) we get, since $2 m-2 t<m$,

$$
b_{j}=-a_{j} \quad(t \leqq j \leqq m) .
$$

However, the coefficient of $x^{2 n-2 t}$ in $U(x) V(x)$ is equal to $-a_{t}^{2} \neq 0$. Thus
(4.12) is not possible. Consequently, when $t<m$, we must have $t \leqq \frac{1}{2} m$.

For $t=\frac{1}{2} m$, the coefficient of x^{m-1} in $U(x) V(x)$ is

$$
-2 a_{i} a_{t+1}=0
$$

so that $a_{t+1}=0$. Similarly we find that

$$
a_{j}=0 \quad(t<j<m)
$$

Thus (4.7) becomes

$$
\left(x^{2 m}-1\right)=\left(x^{m}+a_{t} x^{t}+a_{m}\right)\left(x^{m}-a_{t} x^{t}+b_{m}\right),
$$

where

$$
a_{m}+b_{m}=a_{t}^{2}, \quad a_{m} b_{m}=-1, \quad a_{m}=b_{m}
$$

Put $a_{n}=\sigma$, where $\sigma^{2}=-1$, then

$$
a_{t}^{2}=2 \sigma=(\sigma+1)^{2}
$$

so that $a_{t}=\sigma+1$. Hence we have

$$
\begin{aligned}
& A(x)=x^{m}+(\sigma+1) x^{t}+\sigma=\left(x^{t}+1\right)\left(x^{t}+\sigma\right), \\
& B(x)=x^{m}-(\sigma+1) x^{t}+\sigma=\left(x^{t}-1\right)\left(x^{t}-\sigma\right) .
\end{aligned}
$$

The second half of Theorem A now follows immediately.
We have incidentally proved the following result.
Theorem 4. The sum B satisfies (4.4) for some t in the range $1 \leqq t \leqq m$ if and only if there exists a factorization

$$
\begin{equation*}
x^{9 m}-1=\left(x^{m}+a_{t} x^{m-t}+\cdots+a_{m}\right)\left(x^{m}+b_{t} x^{m-t}+\cdots+b_{t}\right) \tag{4.13}
\end{equation*}
$$

where $a_{i} b_{t} \neq 0$.
For $t=m$ or $\frac{1}{2} m$ the possible factorizations (4.13) are described by Theorems 1 and 2 of Redel's paper. It is easy to show that when $t \mid m$ such factorizations exist. Indeed, if $m=t k, k$ odd, we have

$$
\begin{aligned}
& x^{m}-1=\left(x^{t}-1\right)\left(x^{(k-1) t}+x^{(k-2) t}+\cdots+1\right), \\
& x^{m}+1=\left(x^{t}+1\right)\left(x^{(k-1) t}-x^{(k-2) t}+\cdots+1\right)
\end{aligned}
$$

and we get the factors

$$
U=x^{m}-2 x^{m-t}+\cdots-1, \quad V=x^{m}+2 x^{m-t}+\cdots+1
$$

For k even, let σ be an integer such that $\sigma^{k}=-1$; then

$$
x^{m}+1=x^{t h}-\sigma^{k}=\left(x^{t}-\sigma\right)\left(x^{(k-1) t}+\sigma x^{(k-2) t}+\cdots+\sigma^{k-1}\right)
$$

and we get the factors

$$
U=x^{m}+(\sigma-1) x^{m-t}+\cdots+\sigma^{k-1}, \quad V=x^{m}-(\sigma-1) x^{m-1}+\cdots+\sigma
$$

However the condition $t \mid m$ is not necessary. For example when $p=17$, $t=3$, a possible factor is

$$
\begin{gathered}
x^{8}-x^{5}+4 x^{3}-8 x^{2}+8 x-4= \\
(x-1)(x+2)(x+3)(x-4)(x+5)(x-6)(x-7)(x+8)
\end{gathered}
$$

For $p=19, t=4$, a factorization (4.13) is apparently not possible. Assume that

$$
\begin{gathered}
x^{18}-1=\left(x^{3}-x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e\right) . \\
\cdot\left(x^{3}+x^{5}+a^{\prime} x^{4}+b^{\prime} x^{3}+c^{\prime} x^{2}+d^{\prime} x+e^{\prime}\right)
\end{gathered}
$$

there is no loss in generalization in normalizing the coefficient of x^{5}. We find first that

$$
a^{\prime}=-a, \quad b^{\prime}=-b, \quad c^{\prime}=-c .
$$

Also we get the conditions

$$
\begin{aligned}
& a^{2}=2 b, \quad a b=c, \quad-2 b c-\left(e^{\prime}-e\right)+a\left(d^{\prime}-d\right)=0, \\
& -c^{2}+a\left(e^{\prime}-e\right)+b\left(d^{\prime}-d\right)=0, \quad b\left(e^{\prime}-e\right)+c\left(d^{\prime}-d\right)=0 .
\end{aligned}
$$

Now the last three equations imply

$$
\left|\begin{array}{rrr}
-2 b c & -1 & a \\
-c^{2} & a & b \\
0 & b & c
\end{array}\right|=c\left(2 b^{3}-c^{2}-3 a b c\right)=0
$$

Since $a b c \neq 0$, we get, using $a b=c$,

$$
b^{3}=2 c^{2}
$$

But $a^{2}=2 b, a b=c$ imply $c^{2}=2 b^{3}$, so that we have a contradiction.
Thus the question remains open what values of t is the range $1 \leqq t<\frac{1}{2} m$ can satisfy (4.4).

Reference

[1] L. Rédes, Zwei Lückensätze über Polynome in endlichen Primkörpern mit Anwendung auf die endlichen Abelschen Gruppen und die Gaubischen Summen, Acta Math., 79 (1947), 273-290.

[^0]: *) Research prepared under National Science Foundation grant NSF-G 9425.

