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A note on exponential sums®)
L. CARLITZ in Durham (N.C., U.S.A)

To Professor L. Rédei on his sixtieth birthday

1. Let p be an odd prime and let'g denote a primitive p-th root of 1. Put

p-1

(1.1) ‘ B= ¢l (cs== 1),
s=1

where the coefficients ¢, independently take on the values + 1. The number
of sums B is evidently 2°'. Also put

(1 2) Br: chgks (c.s': i 1);

where r = p—1 and
1 =kh<h<---<k=p—L

ReDEI [1, Theorems 6, 7] has proved the following results.

Theorem A. The sum B satisfies

w a—5°""]8
if and- only if :
ot s ). .
(1.4) | B=ts.:>.1(;)é, .

that is, if and only if B is a Gauss sum. If (1.3) does not hold, then B is
divisible by at most (1 —C)T("-l); this will occur if and only if p=4m+1 and
h B= = (y—mn) = (m—p),

where g is a primitive root (mod p) and

m-~1

=2 (j=0,1,23)

- $=0

*) Research prepared under National Science Fouhdation grant NSF—G 9425.
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Theorem B. If B, satisfies
(1.5) , (1—1y|B,,

1
then e = 5 r.

The proof -of these results depend upon seme theorems concerning
lacunary polynomials in the finite field GF(p).
It may be of interest to note some corollaries of REDE!'s theorems. If B
is defined by (1.1) we may ask when B satisfies

(1.6) |BI*=p.

Since
p-1

|Bf=BB, B=>cl"
s=1

it is evident that |BI> is an integer of the cyclotomic field R(C), where R
denotes the rational field. Hence, in place. of (1.6), we may ask when B
satisfies the weaker condition

(1.7) |B=0 (mod p).

Since p=(1—1%) is a prime ideal of R({) such that (p)==p?-!, (1.7)
is equivalent to.

(1.8) » BB=0 (3.
Now suppose that ' i
(1.9) ’r’”]Bx vl ¥ B;

applying the automorphism §— (7, it is clear that (1.9) implies
. p,;‘IB’ pc-{-l*E. .
It follows that

(1. 10) | ) . - p?EIBE, p"_’c+l * BE
Comparing (1.10) with (1.8), we infer that '
Q.11) 2e = p—1.

Thus (1.8) implies (1.3) and therefore by the first of REDEI's results quoted.
above it follows that (1.4) holds. We may accordingly state

Theorem 1. The sum B satisfies (1.7) if and 0/11y if (1.4) /zolds,
that is if and only if B is a Gauss sum.

As an immediate corollary, we have
Theorem 2. The sum B satisfies (1.6) if and only is B if a Gauss sum.
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2. If we use the fuller notation

p-1 ‘
@n BE)=2at™  (1=k=p—),

where, as above, ¢,= + 1, then we have

p-1 p-1 p-1

2|B(C)4 —;ch S’_z = 3o S

s, t=1 k=1

We shail assume that the c; satlsfy the condition

(2:2) | ' 2 ¢ —0.

Then it is clear from the above that

-1

9 3 o <
SiBe = Zea i —p S,

k= 8, t=1 - os=l1

—_

so that . ‘
p-1 '
@3 | 2 IBEF=p(p—1).
According to (2.3), the number |B(5*)]? is on the average equal to p.
In view of the restriction (2.2), the number of sums B(Z¥), for flxed gk, is
(p; ), where p—2m+-1; by Theorem 2, only two of the sums satisfy

(1.6). Hence if B(Z¥) is not a Gauss- sum but (2.2) is satisfied, it follows,
from (2. 3) that both inequalities '

|BE>p,  |BE<p
are satisfied for éppropriate values of k. This suggests the problem of deter-
mining upper and lower bounds for |B(£*¥)|. However for { = e¥@ir,
(24) E Cl="'=Cm:], Cm+l=_""=c‘_’m='—1,

where p—2m--1, we have

p=p@=3r— 3 r—ta—) 3= 20T
so that |

sin? M

=2

- (1 m)1
1Bl |

. T
Sin —

A1) -
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Therefore for large p we get
2
| B ~ P
In particular, the statement
(2.6) ‘ B=o(p)

for all B satisfying (2.2), is false.
Again for the choice

(2. 7) Cr=Cy=—=>=Cop1 =1, Co==Cy==++-=Cop=—1,
we have
:"_'x_n’ o1 e c(l_g‘lm)
B—B()= — )= 7
| O= 2 )7 =
so that o
. 2mot .7
2 smT sin >
B= 1= = -z
I+t cos - cos =
. . . P 14
For large p this implies
(2.8) | - ‘va%-.
Thuys the statement
(2.9 |B|>c>0

for a]l B satisfying (2.2) where c is independent of p, is also false. It seems
plausible that .

210 Z <1< 2L
P 7T
for all B satisfying (2. 2). .
3¢ Turning now to B, defined by (1.2) we may apply the argument

used in the proof of Theorem 1 together with Theorem A of REDEI to prove
the following result. v

Theorem 3. If r<p—1, the congruence

3.1 ‘ : |B,[=0 (modp)
holds for no '

r

Br=.>:c.,- s (ce=1),

s=1
where 1l =k <k <---<k.<p—1. A fbrtiOri the equality
32 . Bf=p
holds for no B,.
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If we put
(3.3) B,{") = ;1 ¢, & (I=h=p—1),
and in addition assume that
3.4) Zr,‘cs=0,

s=1 .

then exactly as in the proof of (2.3), we have

3.5) ' SB.@)P=pr

Thus, when (3.4) is satisfied, |B,(C")[* is on the average equal to pr/(p—1);
for large p, the average is therefore r.

Clearly (3.4) requires that r be even. Put r=2t {=e>lr, p=2m--1,
and consider

t -+t m
(3.6) B=2= ZHC — 0= )(g =8 |
Then ‘
2 sin L0 sin—t—
|B,| = ”ﬂ L.
sin—
p
For large p it follows that
. tx
3.7 ‘ B |~—* s n—.
(3.7) 8] 2
In particular if r=o0(p), (3.7) ylelds :
(3.8) |By|~r.
In the next pléce, if we take
. : _ rﬁ =138 C(l"_?_
(3.9) B,.—;Z_l.( )7 = s
then
.l
sin —
[ ——
€O0S —
p
so that for large p it follows that
tr

3.10) | B,| ~ sin — .
(3.10) |B| P
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In particular if r=o0(p), (3.10) becomes
rm
2p
. 4. We now give another proof of REDEN’s theorem that (1.3) holds only
when B is a Gauss sum. In the first place (1.3) is equivalent to

(3.11) - |B,| ~

p-1

(4. 1) Z si¢,=0 (mod p) (l =j< 7(/’_1)).'

s=1

This is essentially the Lemma on p. 287 of [1}]. lndeed (4. 1) follows easily
from the identity

B— 'ics@—ifcs(w(c—l»—zg—n?z( e

Now consider the polynomlal f(x) with coefficients in the GF(p)
such that

f©)=0, f(s)=c~ (s=1,...,p—1).

Clearly
R p-1 xP— p-1
fO=—2a —r=—2ax—9""
: s=1 - s=1
It follows from (4.1) that
.
4.2) degf(x)§m=?(p-—l).
Since

FO=0, FEO=1 (s=1,..,p—1)

it follows at once that ‘
4.3) : PP =xr1
" in view of (4.2), it is clear that (4.3) is an identity (and not merely a con-
gruence mod (x?—x)). Now put

. f(x)=ao+alx+"'+amxm (G,EGF(p)),
making use of (4.3) we get

fR=tx=+ (%]

This evidently completes the proof of the theorem.

To prove the second half of Theorem A we require a little more. Sup-
pose that B satisfies
(4.4) - pB, kB
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for some 7 in the range 1 =¢=m. As above we define the polynomial f(x)
such that )

| ' fO)=0, f(s)=c¢ (s=1,...,p=1).
Now (4. 4) is equivalent to '

24 =0 (mod p) (1=j<dh
*.5) 2V %0 (modp)  (I—1);
it follows that
(4.6) deg f(x)=p—1—t.
Put T o
b= 6=, V)= L=,
so that -
4.7) xin—1 = U(x) V(x), deg U(x)=deg V(x) =m

Thus f(x) is uniquely determined by

fx)= 1 (mod U(x)),
(4.8) f)=—1 (mod V(x)),
' ' f(x)= 0 (mod x).

It is easily verified that the system (4.8) has the solution
4.9 f@)=x(U) V' ()— U’ (x) V(x)).
In the next place, it follows from (4.5) and (4.7) that
(4.10) U(x)=x"+axmt 4 --- 4 a,, V(X) =X+ bx™t -« + by,
where b, ——a, 5 0. Substituting in (4 9) we get
J(x)=2ta;x*t ..

so that :
4.11) - deg f(x) =2m—t.
Now assume that A
‘(4.12) ]?m<t<m.

Using (4.7) and (4.10) we get, since 2m—2¢ < m,
- bj =—4qa; . (t é] = I‘TI)
However, the coefficient of x> in U(x)V(x) is equal to —aj==0. Thus

(4.12) is not possible. Consequently, when {<m, we must have f= %m.,

’
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For tz%m, the coefficient of x"-1 in U(x) V(x)'is
: —2a Ay = O,
so that a.-=0. Similarly we find that

a;=0 (t<j<m).
Thus (4.7) becomes

A(sz— 1) — (xm. + ﬂ)xt _)r_ am)(xm _a{xf + bm),
where
apy +bm=a;}, ambm = 1; . am:bm-

~ Put a,, =0, where ¢*=—1, then
| , a;=20=(0+1), |
so that a;=o--1. Hence we have ‘
A(X)y=x"+ (04 x4+ 0= (x*+ 1)(x' 4 0),
B(x)=x" — (0 + Dx'+ 0= (x'—1)(x*—0).

The second half of Theorem A now follows immediately.
We have incidentally proved the following result.

Theorem 4. The sum B satisfies (4.4) for some t in the range
1 =t=m if and only if there exists a factorization
4.13) X —1 = (X" f x4 - @) (X bt e - by),
- where a,b,#0.
For t=m or %m the possible factorizations .(4. 13) are described by

Theorems’ 1 and 2 of REDEl's paper. It is easy to show that when #/m such
factorizations exist. Indeed, if m =tk, k odd, we have

X — 1 = (Xt 1) (b= x -2l ]),
x4 1= (xt 4 1A)(x(r:-1)t'_x(/r-2)t+ sk 1)
“and we get the factors ' |
Usx"—2x""t o1, V=xm4 23 o - 1.
For k even, let o be an integer such that 0"=—1;'then
| X" 41 =x" — gF = (xt — o) (Xt~ V' - g x-D f- o oo | g7
and we get the factors =~ |

U;xm +(O-_ l)xm—f. + e _|_ ()"‘-',l, V=xm__(o-_ ])xm;( + vee + 0.
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However the condition ¢|m is not necessary. For example when p =17,
==3, a possible factor is

XB—x"4+4x*—8x*+8x—4 —
(x—1)(x 4 2)(x + 3)(x — 4) (x + 5) (x —6) (x — T)(x +-8).
For p=19, =4, a factorization (4. 13) is apparently nol possible.
Assume that : .
WBel=x"—x"+ax'+bx*+cx*+dx+e)-
(XXt I dx+€);
there is no loss in generalization in normalizing the coefficient of x°. We find

first that
a=—ua, b'=—b, ' =—"

Also we get the conditions
a*=20, ab=c, —2bc—(¢—e)+a(d—d)=0,
—c'ta(@—e)+b(d—d)=0,  b(e—e)+c(d—d)=0.

Now the last three equations imply

—2bc —1 a
—c a b|=cRbP—c—3abc)=0.
0 . b c

Since abc =0, we get, using ab%c,
o b =2¢".
But a*=2b, ab=c imply ¢*=2b% so that we have a contradiction.
Thus the question remains open what values of ¢ is the range 1 = 1< % m
can satisfy (4.4).
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