A note on exponential sums*)

L. CARLITZ in Durham (N. C., U. S. A.)

To Professor L. Rédei on his sixtieth birthday

1. Let p be an odd prime and let ζ denote a primitive p-th root of 1. Put

(1.1)
$$B = \sum_{s=1}^{p-1} c_s \zeta^s \qquad (c_s = \pm 1),$$

where the coefficients c_s independently take on the values ± 1 . The number of sums B is evidently 2^{p-1} . Also put

(1.2)
$$B_r = \sum_{s=1}^r c_s \zeta^{k_s} \qquad (c_s = \pm 1),$$

where $r \leq p-1$ and

$$1 \leq k_1 < k_2 < \dots < k_r \leq p-1.$$

REDEI [1, Theorems 6, 7] has proved the following results.

Theorem A. The sum B satisfies

$$(1.3) (1-\zeta)^{\frac{1}{2}(p-1)} |B|$$

if and only if

(1.4)
$$B = \pm \sum_{s=1}^{p-1} \left(\frac{s}{p}\right) \zeta^s;$$

that is, if and only if B is a Gauss sum. If (1.3) does not hold, then B is divisible by at most $(1-\zeta)^{\frac{1}{4}(p-1)}$; this will occur if and only if p=4m+1 and

$$B = \pm (\eta_0 - \eta_2) \pm (\eta_1 - \eta_3),$$

where g is a primitive root (mod p) and

$$\eta_j = \sum_{s=0}^{m-1} \zeta^{j^{4s+j}} \qquad (j=0,1,2,3).$$

^{*)} Research prepared under National Science Foundation grant NSF-G 9425.

Theorem B. If B_r satisfies

$$(1.5) (1-\zeta)^{e} | B_{r},$$
then $e \leq \frac{1}{2} r$.

The proof of these results depend upon some theorems concerning lacunary polynomials in the finite field GF(p).

It may be of interest to note some corollaries of REDEI's theorems. If B is defined by (1.1) we may ask when B satisfies

$$|B|^2 = p.$$

Since

$$|B|^2 = B\bar{B}, \qquad \bar{B} = \sum_{s=1}^{p-1} c_s \zeta^{-s},$$

it is evident that $|B|^2$ is an integer of the cyclotomic field $R(\zeta)$, where R denotes the rational field. Hence, in place of (1.6), we may ask when B satisfies the weaker condition

$$(1.7) |B|^2 \equiv 0 \pmod{p}.$$

Since $\mathfrak{p} = (1 - \zeta)$ is a prime ideal of $R(\zeta)$ such that $(p) = \mathfrak{p}^{p-1}$, (1.7) is equivalent to

$$(1.8) B\bar{B} \equiv 0 (\mathfrak{p}^{p-1}).$$

Now suppose that

$$\mathfrak{p}^e|B, \qquad \mathfrak{p}^{e+1} \not X B;$$

applying the automorphism $\zeta \rightarrow \zeta^{-1}$, it is clear that (1.9) implies

$$\mathfrak{p}^e | \bar{B}, \qquad \mathfrak{p}^{e+1} \not X \bar{B}.$$

It follows that

$$\mathfrak{p}^{2e}|B\overline{B}, \qquad \mathfrak{p}^{2e+1} \not\times B\overline{B}.$$

Comparing (1.10) with (1.8), we infer that

$$(1.11) 2e \ge p-1.$$

Thus (1.8) implies (1.3) and therefore by the first of REDEI's results quoted above it follows that (1.4) holds. We may accordingly state

Theorem 1. The sum B satisfies (1.7) if and only if (1.4) holds, that is if and only if B is a Gauss sum.

As an immediate corollary, we have

Theorem 2. The sum B satisfies (1.6) if and only is B if a Gauss sum.

2. If we use the fuller notation

(2.1)
$$B(\zeta^{k}) = \sum_{j=1}^{p-1} c_{s} \zeta^{sk} \qquad (1 \leq k \leq p-1),$$

where, as above, $c_s = \pm 1$, then we have

$$\sum_{k=1}^{p-1} |B(\zeta^k)|^2 = \sum_{k=1}^{p-1} \sum_{s=1}^{p-1} c_s \zeta^{sk} \sum_{s=1}^{p-1} c_t \zeta^{-tk} = \sum_{s=1}^{p-1} c_s c_t \sum_{s=1}^{p-1} \zeta^{(s-t)k}.$$

We shall assume that the c_s satisfy the condition

(2.2)
$$\sum_{s=1}^{p-1} c_s = 0.$$

Then it is clear from the above that

$$\sum_{k=1}^{p-1} |B(\zeta^k)|^2 = \sum_{s,t=1}^{p-1} c_s c_t \sum_{k=0}^{p-1} \zeta^{(s-t)k} = p \sum_{s=1}^{p-1} c_s^2,$$

so that

(2.3)
$$\sum_{k=1}^{p-1} |B(\zeta^k)|^2 = p(p-1).$$

According to (2.3), the number $|B(\zeta^k)|^2$ is on the average equal to p. In view of the restriction (2.2), the number of sums $B(\zeta^k)$, for fixed ζ^k , is $\binom{p-1}{m}$, where p=2m+1; by Theorem 2, only two of the sums satisfy (1.6). Hence if $B(\zeta^k)$ is not a Gauss sum but (2.2) is satisfied, it follows

$$|B(\zeta^k)|^2 > p$$
, $|B(\zeta^k)|^2 < p$

are satisfied for appropriate values of k. This suggests the problem of determining upper and lower bounds for $|B(\zeta^k)|$. However for $\zeta = e^{2\pi i/p}$,

 $c_1 = \cdots = c_m = 1, \qquad c_{m+1} = \cdots = c_{2m} = -1,$

where p = 2m + 1, we have

from (2.3) that both inequalities

$$B = B(\zeta) = \sum_{s=1}^{m} \zeta^{s} - \sum_{s=m+1}^{2m} \zeta^{s} = \zeta(1 - \zeta^{m}) \sum_{s=0}^{m-1} \zeta^{s} = \frac{\zeta(1 - \zeta^{m})^{2}}{1 - \zeta},$$

so that

$$|B| = \left| \frac{(1-\zeta^m)^2}{1-\zeta} \right| = 2 \frac{\sin^2 \frac{m\pi}{p}}{\sin \frac{\pi}{s}}.$$

Therefore for large p we get

$$|B| \sim \frac{2}{\pi} p$$
.

In particular, the statement

$$B = o(p)$$

for all B satisfying (2.2), is false.

Again for the choice

$$(2.7) c_1 = c_3 = \cdots = c_{2m-1} = 1, c_2 = c_4 = \cdots = c_{2m} = -1,$$

we have

$$B = B(\zeta) = \sum_{s=1}^{2m} (-1)^{s-1} \zeta^{s} = \frac{\zeta(1-\zeta^{2m})}{1+\zeta},$$

so that

$$|B| = \left| \frac{1 - \zeta^{2m}}{1 + \zeta} \right| = \frac{\sin \frac{2m\pi}{p}}{\cos \frac{\pi}{p}} = \frac{\sin \frac{\pi}{p}}{\cos \frac{\pi}{p}}.$$

For large p this implies

$$B \sim \frac{\pi}{p}$$
.

Thus the statement

for all B satisfying (2.2) where c is independent of p, is also false. It seems plausible that

$$\frac{\pi}{p} < |B| < \frac{2p}{\pi}$$

for all B satisfying (2.2).

3: Turning now to B_r defined by (1.2) we may apply the argument used in the proof of Theorem 1 together with Theorem A of REDEI to prove the following result.

Theorem 3. If r < p-1, the congruence

(3.1)

$$|B_r|^2 \equiv 0 \pmod{p}$$

holds for no

$$B_r = \sum_{s=1}^r c_s \zeta^{k_s}$$
 $(c_s = \pm 1),$

where $1 \le k_1 < k_2 < \cdots < k_r < p-1$. A fortiori the equality

(3.2)

$$|B_r|^2 = p$$

holds for no B_r .

If we put

(3.3)
$$B_r(\zeta^h) = \sum_{s=1}^r c_s \zeta^{k_s h} \qquad (1 \le h \le p-1),$$

and in addition assume that

(3.4)
$$\sum_{s=1}^{r} c_{s} = 0,$$

then exactly as in the proof of (2.3), we have

(3.5)
$$\sum_{r=1}^{p-1} |B_r(\zeta^h)|^2 = pr.$$

Thus, when (3.4) is satisfied, $|B_r(\zeta^h)|^2$ is on the average equal to pr/(p-1); for large p, the average is therefore r.

Clearly (3.4) requires that r be even. Put r=2t, $\zeta=e^{2\pi\epsilon i/p}$, p=2m+1,

and consider

(3.6)
$$B_r = \sum_{s=1}^t \zeta^s = \sum_{s=m+1}^{m+t} \zeta^s = \frac{\zeta(1-\zeta^m)(1-\zeta^t)}{1-\zeta}.$$

Then

$$|B_r| = \frac{2\sin\frac{m\pi}{p}\sin\frac{t}{p}}{\sin\frac{\pi}{p}}.$$

For large p it follows that

$$(3.7) |B_r| \sim \frac{2p}{\pi} \sin \frac{t\pi}{p}.$$

In particular if r = o(p), (3.7) yields

 $|B_r| \sim r$.

In the next place, if we take

(3.9)
$$B_r = \sum_{s=1}^r (-1)^{s-1} \zeta^s = \frac{\zeta(1-\zeta^r)}{1+\zeta},$$

then

(3.8)

$$|B_r| = \frac{\sin\frac{t\pi}{p}}{\cos\frac{\pi}{m}},$$

so that for large p it follows that

$$(3.10) |B_r| \sim \sin \frac{t\pi}{p}.$$

In particular if r = o(p), (3.10) becomes

$$(3.11) |B_r| \sim \frac{r\pi}{2n}.$$

4. We now give another proof of RÉDEI's theorem that (1.3) holds only when B is a Gauss sum. In the first place (1.3) is equivalent to

(4.1)
$$\sum_{s=1}^{p-1} s^{j} c_{s} \equiv 0 \pmod{p} \qquad \left(1 \leq j < \frac{1}{2} (p-1)\right).$$

This is essentially the Lemma on p. 287 of [1]. Indeed, (4.1) follows easily from the identity

$$B = \sum_{s=1}^{p-1} c_s \zeta^s = \sum_{s=1}^{p-1} c_s (1 + (\zeta - 1))^s = \sum_{j=0}^{p-1} (\zeta - 1)^j \sum_{s=j}^{p-1} {s \choose j} c_j.$$

Now consider the polynomial f(x) with coefficients in the GF(p)

such that

$$f(0) = 0, f(s) = c_s$$
 $(s = 1, ..., p-1).$

Clearly

$$f(x) = -\sum_{s=1}^{p-1} c_s \frac{x^p - x}{x - s} = -\sum_{s=1}^{p-1} c_s (x - s)^{p-1}.$$

It follows from (4.1) that

(4.2)
$$\deg f(x) \le m = \frac{1}{2}(p-1).$$

Since

$$f^2(0) = 0, \quad f^2(s) = 1 \qquad (s = 1, ..., p-1),$$

it follows at once that

$$(4.3) f^2(x) = x^{p-1};$$

in view of (4.2), it is clear that (4.3) is an identity (and not merely a congruence $mod(x^p-x)$). Now put

$$f(x) = a_0 + a_1 x + \cdots + a_m x^m$$
 $(a_i \in GF(p));$

making use of (4.3) we get

$$f(x) = \pm x^m = \pm \left(\frac{x}{p}\right).$$

This evidently completes the proof of the theorem.

To prove the second half of Theorem A we require a little more. Suppose that B satisfies

$$(4.4) $\mathfrak{p}^t | B, \mathfrak{p}^{t+1} \not \backslash B$$$

for some t in the range $1 \le t \le m$. As above we define the polynomial f(x)such that

$$f(0) = 0$$
, $f(s) = c_s$ $(s = 1, ..., p-1)$.

Now (4.4) is equivalent to

(4.5)
$$\sum_{s=1}^{p-1} s^{j} c_{s} \begin{cases} \equiv 0 \pmod{p} & (1 \leq j < t) \\ \neq 0 \pmod{p} & (j = t); \end{cases}$$
 it follows that

(4.6)Put

$$U(x) = \prod_{c_s=1} (x-s), \qquad V(x) = \prod_{c_s=-1} (x-s),$$

 $\deg f(x) = p-1-t.$

so that
(4.7)
$$x^{2m}-1 = U(x)V(x)$$
, $\deg U(x) = \deg V(x) = m$.

Thus f(x) is uniquely determined by

(4.8)
$$\begin{cases} f(x) \equiv 1 \pmod{U(x)}, \\ f(x) \equiv -1 \pmod{V(x)}, \\ f(x) \equiv 0 \pmod{x}. \end{cases}$$

It is easily verified that the system (4.8) has the solution

(4.9)
$$f(x) = x(U(x)V'(x) - U'(x)V(x)).$$

In the next place, it follows from (4.5) and (4.7) that

 $(4.10) \quad U(x) = x^m + a_t x^{m-t} + \cdots + a_m,$ $V(x) = x_m + b_t x^{m-t} + \cdots + b_m,$

4.10)
$$U(x) = x^m + a_t x^{m-t} + \cdots + a_m, \quad V(x) = x_m + b_t x^{m-t} + \cdots + b_m,$$

where $b_t = -a_t \neq 0$. Substituting in (4.9) we get

$$f(x) = 2ta_t x^{2m-t} + \ldots,$$

so that

(4.11)
$$\deg f(x) = 2m - t.$$

Now assume that

$$\frac{1}{2} m < t < m.$$

Using (4.7) and (4.10) we get, since 2m-2t < m,

$$b_i = -a_i \qquad (t \le j \le m).$$

However, the coefficient of x^{2m-2t} in U(x)V(x) is equal to $-a_i^2 \neq 0$. Thus (4.12) is not possible. Consequently, when t < m, we must have $t \le \frac{1}{2}m$. 142 L. Carlitz

For
$$t = \frac{1}{2}m$$
, the coefficient of x^{m-1} in $U(x)V(x)$ is $-2a_ta_{t+1} = 0$,

so that $a_{t+1} = 0$. Similarly we find that

$$a_i = 0$$
 $(t < j < m)$.

Thus (4.7) becomes

$$(x^{2m}-1)=(x^m+a_tx^t+a_m)(x^m-a_tx^t+b_m),$$

where

$$a_m + b_m = a_t^2$$
, $a_m b_m = -1$, $a_m = b_m$.

Put $a_m = \sigma$, where $\sigma^2 = -1$, then

$$a_t^2 = 2\sigma = (\sigma + 1)^2$$
,

so that $a_t = \sigma + 1$. Hence we have

$$A(x) = x^{m} + (\sigma + 1)x^{t} + \sigma = (x^{t} + 1)(x^{t} + \sigma),$$

$$B(x) = x^{m} - (\sigma + 1)x^{t} + \sigma = (x^{t} - 1)(x^{t} - \sigma).$$

The second half of Theorem A now follows immediately.

We have incidentally proved the following result.

Theorem 4. The sum B satisfies (4.4) for some t in the range $1 \le t \le m$ if and only if there exists a factorization

$$(4.13) x^{2m}-1=(x^m+a_tx^{m-t}+\cdots+a_m)(x^m+b_tx^{m-t}+\cdots+b_t),$$

where $a_t b_t \neq 0$.

For t = m or $\frac{1}{2}m$ the possible factorizations (4.13) are described by

Theorems 1 and 2 of RÉDEI's paper. It is easy to show that when t|m such factorizations exist. Indeed, if m = tk, k odd, we have

$$x^{m}-1=(x^{t}-1)(x^{(k-1)t}+x^{(k-2)t}+\cdots+1),$$

$$x^{m}+1=(x^{t}+1)(x^{(k-1)t}-x^{(k-2)t}+\cdots+1)$$

and we get the factors

$$U = x^m - 2x^{m-t} + \cdots - 1, \qquad V = x^m + 2x^{m-t} + \cdots + 1.$$

For k even, let σ be an integer such that $\sigma^k = -1$; then

$$x^{m} + 1 = x^{tk} - \sigma^{k} = (x^{t} - \sigma)(x^{(k-1)t} + \sigma x^{(k-2)t} + \dots + \sigma^{k-1})$$

and we get the factors

$$U = x^{m} + (\sigma - 1)x^{m-t} + \dots + \sigma^{k-1}, \qquad V = x^{m} - (\sigma - 1)x^{m-t} + \dots + \sigma.$$

However the condition t|m is not necessary. For example when p = 17, t = 3, a possible factor is

$$x^{8}-x^{5}+4x^{3}-8x^{2}+8x-4=$$

$$(x-1)(x+2)(x+3)(x-4)(x+5)(x-6)(x-7)(x+8).$$

For p = 19, t = 4, a factorization (4.13) is apparently not possible.

Assume that

$$x^{18}-1 = (x^9-x^5+ax^4+bx^3+cx^2+dx+e) \cdot (x^9+x^5+a'x^4+b'x^3+c'x^2+d'x+e');$$

there is no loss in generalization in normalizing the coefficient of x^5 . We find first that

$$a'=-a$$
, $b'=-b$, $c'=-c$.

Also we get the conditions

$$a^2 = 2b$$
, $ab = c$, $-2bc - (e'-e) + a(d'-d) = 0$, $-c^2 + a(e'-e) + b(d'-d) = 0$, $b(e'-e) + c(d'-d) = 0$.

Now the last three equations imply

$$\begin{vmatrix} -2bc & -1 & a \\ -c^2 & a & b \\ 0 & b & c \end{vmatrix} = c(2b^3 - c^2 - 3abc) = 0.$$

Since $abc \neq 0$, we get, using ab = c,

$$h^3 = 2c^2$$

But $a^2 = 2b$, ab = c imply $c^2 = 2b^3$, so that we have a contradiction.

Thus the question remains open what values of t is the range $1 \le t < \frac{1}{2}m$ can satisfy (4.4).

Reference -

[1] L. Rédel, Zwei Lückensätze über Polynome in endlichen Primkörpern mit Anwendung auf die endlichen Abelschen Gruppen und die Gaußischen Summen, Acta Math., 79 (1947), 273—290.

(Received September 7, 1959)