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A note on exponential sums*) 

L. CARL1TZ in Durham (N. C., U . S . A . ) 

To Professor L. R e d ei on his sixtieth birthday 

1 . Let p be an odd prime and let t denote a primitive p-ih root of 1. Put. 
P-I 

(1.1) ( c s = ± l ) , 
s=l 

where the coefficients c„ independently take on the values + 1 . The number 
of sums B is evidently 2 P _ I . Also put 

(1.2) Br=±c£* (c.,= + 1), 
S=1 

where r g; p — 1 and 

1 K <-k.2 < • • • < kr ^ p— 1. 

R£DEI [1, Theorems 6 , 7] has proved the following results. 

T h e o r e m A. The sum B satisfies 

(1.3) ( i — 

if and only if 

0 . 4 ) B = ± f ( i K 

that is, if and only if B is a Gauss sum. / / ( 1 . 3 ) does not hold, then B is 

divisible by at most (1 — 'C)T<1' 1}; this will occur if and only if p =4 m +1 and 

B=± (>l — nd ± (>h — >b), 

where g is a primitive root (mod p) and 
m-1 

n j = Z ^ 4 S + i ( / = 0 , 1 , 2 , 3 ) . 
s = 0 

*) Research prepared under National Science Foundation grant NSF—G 9425.. 
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Theorem B. If Br satisfies 

<1.5) ( l - 9 e | £ r , 

then e ^ y r . 

The proof of these results depend upon some theorems concerning 
lacunary polynomials in the finite field GF{p). 

It may be of interest to note some corollaries of R£DEI 'S theorems. If B 
is defined by (1.1) we may ask when B satisfies 

<1.6) \Bf = p. 

Since 

| B\- = BB, fl=Zcsr, 
S=1 

it is evident that |Z?f is an integer of the c'yclotomic field R(£), where R 
denotes the rational field. Hence, in place, of (1.6), we may ask when B 
satisfies the weaker condition 

(1 .7) |£|~ = 0 (mod/?). 

Since p = (l—•£) is a prime ideal of /?(£) such that ( p ) = p,'-\ (1 .7) 
is equivalent to. 
(1 .8) BB = 0 (p''-1). 
Now suppose that 
(1 .9) y\B, pc+1 X B; 

applying the automorphism »-C1, it is clear that (1.9) implies 

It follows that 

(1.10) f*\BB, f'-^XBB. 

Comparing (1.10) with (1.8), we infer that 

( 1 . 1 1 ) 2emp— 1. 

Thus ( 1 . 8 ) implies ( 1 . 3 ) and therefore by the first of R£DEI 'S results quoted 
above it follows that (1.4) holds. We may accordingly state 

T h e o r e m 1. The sum B satisfies (1.7) if and only if (1.4) holds, 
that is if and only if B is a Gauss sum. 

As an immediate corollary, we have 

T h e o r e m 2. The sum B satisfies (1. 6) if and only is B if a Gauss sum. 
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2 . If we use the fuller notation 

(2.1) 0 = ^ Si p — 1), 
0=1 

where, as above, cs = + 1, then we have 

;<-l JI-1 }>-l p-1 p-l p-1 

Z I B (1) f = Z Z Z * r t t . = Z Z k=l l;= 1 »=1 f= l t= 1 /c=l 

We shall assume that the cs satisfy the condition 
p-i 

( 2 . 2 ) 2 > . = 0 . 
S = 1 

Then it is clear from the above that 

!>-\ ]>-l - p-l p-1 

/.-=1 s, t=l fc=0 • «=1 
so that 

( 2 - 3 ) . 
a-=I 

According to (2.3), the number is on the average equal to p. 
In view of the restriction (2. 2), the number of sums B(Qk), for fixed is 

where /7 = 2/72+1; by Theorem 2, only two of the sums satisfy 

(1.6). Hence if £ (£ ' ) is not a Gauss sum but (2.2) is satisfied, it follows, 
from (2. 3) that both inequalities 

| B ( f f ) f > p , | B{?)f<p 

are satisfied for appropriate values of k. This suggests the problem of deter-
mining upper and lower bounds for |/?(£*) |. However for £ = e!3tilp, 

(2 .4) C\ = • • • = Cm = 1, C„1+i = • • • = C'lm = — 1 , 

where p = 2 m + 1, we have 
til 2m m-l T(\ Tm\-

b = B ( C ) = X r - z r = ? ( i - n Z c = > 
S — 1 .S '=J ) I<1 5 = 0 1 

so that 
. , m / c 

(1 - C " f s i n" 
1 — £ 

= 2 
. 71 sin — p 

A 10 
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Therefore for large p we get 

\B\ ~ — 
71 

In particular, the statement 
(2.6) B = o(p) 

for all B satisfying (2. 2), is false. 
Again for the choice 

( 2 . 7 ) C, =Ca='--=C->m-l = 1, C2 = C 4 = - " = C 2 m = — 1 , 

we have 

B = 5 ( 0 = Z ( - 0 s " 1 = , 

so that 
. 2 til :Y; . yi 

151 = 1 - Ê 
sin sin — 

p p 
7C 71 

COS — COS — 
P P 

Fo[ large p this implies 

(2.8) — . p 
Thus the statement 

(2.9) | f i | > c > 0 

for ajl B satisfying (2.2) where c is independent of p, is also false. It seems 
plausible that 

(2.10) £ < \ B \ < * £ V . / p I I 7C 

for all B satisfying (2. 2). 

3: Turning now to Br defined by (1.2) we may apply the argument 
used in the proof of Theorem 1 together with Theorem A of R £ D E I to prove 
the following result. 

T h e o r e m 3. If r<p—1, the congruence 

( 3 . 1 ) , | Br|2 = 0 (mod p) 
holds for no 

Br = Zc£"> ( c , = ± 1), 
»=1 

where 1 ^ kt < k2<-- •< k,< p — 1. A fortiori the equality 

(3.2) \Brf = p 
holds for no Br. 
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If we put 

(3. 3) Br{?) = 2 c s ( 1 ^ h si p-1), 
s' .- ! 

and in addition assume that 

(3.4) ¿cs = 0, 
*=i . 

then exactly as in the proof of (2. 3), we have 

(3-5) Z \ B S h ) f = p r . 
h—1 

Thus, when (3.4) is satisfied, |fi,-(£'')i" is on the average equal to pr!(p — 1); 
for large p, the average is therefore r. 

Clearly (3.4) requires that r be even. Put r = 2t, £ = p = 2m-\-\, 
and consider 

(3.6) B r = 2 ? = - 2 g ( i - O O - r ) _ 
s = l »=»1+1 1 S 

Then 
„ . myr . t 2 sin sin — 

P P I Br\ = — 
. 7C 

sin — p 
For large p it follows that 

(3.7) 
1 ' 7C P 

In particular if r = o(p), (3.7) yields 

(3.8) \Br\~r. 

In the next place, if we take 

(3.9) Br=± ( - 1 R 1 -c = , 

then 
tfC sin 
P 

I fir I = -
. 7 1 cos — p 

so that for large p it follows that 

(3.10) | f i r | ~ s i n — 
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In particular if r = o(p), (3.10) becomes 

( 3 . H ) 

4 . We now give another proof of RÉDEI 'S theorem that ( 1 . 3 ) holds only 
when B is a Gauss sum. In the first place (1.3) is equivalent to 

(4.1) s j c s = 0 (modp) ( l \ { p — 1))-

This is essentially the Lemma on p. 287 of [1]. Indeed, (4.1) follows easily 
from the identity 

p-1 p-l p-l f \ 

s = l s = l J = u *=j \ J J 

Now consider the polynomial f ( x ) with coefficients in the GF(p) 
such that 

/ ( 0 ) = 0, f(s) = cs ( 5 = 1 , . . . , p - l ) . 
Clearly 

p-i v ! , Y p - 1 

m = = - Z c s ( x - S y - 1 . 
s = l x — S S = 1 

It follows from (4.1) that 

lf>or f(v\<m = ^ (4 .2) d e g / ( x ) ^ / n = 4 - ( p - l ) . 

Since 
/ 2 ( 0 ) = 0, / 2 ( s ) = l (s = \ , . . . , p 1), 

it follows at once that 
(4.3) 'P(x) = x»-1; 

in view of (4. 2), it is clear that (4.3) is an identity (and not merely a con-
gruence mod (x1'—x)). Now put 

/(x) = flo + fl1x+---+amX'" (o, 6 GF(p)); 
making use of (4.3) we get 

/ ( x ) = ± x - = ± 

This evidently completes the proof of the theorem. 
To prove the second half of Theorem A we require a little more. Sup-

pose that B satisfies 
(4.4) f B 
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for some t in the range 1 ^ t ^ m. As above we define the polynomial / ( x ) 
such that 

/ ( 0 ) = 0, / ( s ) = cs ( s = l , . . . , / > - l ) . 

Now (4.4) is equivalent to 

. ^ ( m o d p ) ( \ ^ j < t ) 
{ 4 ' b ) (mod p) (y = 0 ; 
it follows that 
(4.6) d e g / ( x ) = p — 1 —t. 

Put 
U(x) = I I ( x - s ) , V(x) = n (x-s), 

t

"sF=
1 c

s = "
1 

so that 
(4 .7) x2 '"—1 = U(x)V(x), deg U(x) = deg V(x) = m. 

Thus / ( x ) is uniquely determined by 

( f ( x ) = 1 (mod U(x)), 
(4.8) j / ( x ) = — 1 (mod V(x)), 

[ f ( x ) = 0 (mod x). 

It is easily verified that the system (4.8) has the solution 

(4.9) f ( x ) = x(U(x)V'(x)-U'(x)V(x)). 

In the next place, it follows from (4.5) and (4. 7) that 

(4.10) U(x) = x'^ + flix»-4 + • • • + a„„ V(x) = xm + ba"^ -\ h b m , 

where bt =—at^= 0. Substituting in (4.9) we get 

/ (x ) = 2tatx-m~t +..., 
so that 
(4.11) deg f{x) = 2 m — t. 

Now assume that 

(4.12) ^ m < t < m. 

Using (4.7) and (4.10) we get, since 2m—2t<m, 

bj ——aJ (t =j = rn). 

However, the coefficient of x-'"--' in U(x)V(x) is equal to Thus 

(4.12) is not possible. Consequently, when t<m, we must have t^^-m. 
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For t = the coefficient of x'"-1 in U(x)V(x) is 

—2ataM = 0, 

so that a , + r = 0 . Similarly we find that 

dj — Q (t <j < m). 
Thus (4.7) becomes 

(x-m — 1) = (x™ + a,xl + am){xm—a,x> + bm), 
where 

fl.ii + bm = aj, a,„bm =—1, am = bm. 

Put am = o, where a 2 = — 1, then 

a; = 2o = (o + 1)-, 

so that at = a + 1 . Hence we have 

,4 ( x > = x>" + (a + l)x J + a = (x> + 1 )(xf + a), 

B(x) = x"' — (o-f-1)*'4-<7 = (xf— 1 )(*'•—o). 

The second half of Theorem A now follows immediately. 
We have incidentally proved the following result. 

T h e o r e m 4. The sum B satisfies (4 .4 ) for some t in the range 
1 ^ t ^ m if and only if there exists a factorization 

(4.13) x-"1 — 1 = (x'" + a,x'"'1 1- am){x"' + bfx'"-> H bt), 

where atbt=f= 0. 

For t = m or -^-m the possible factorizations (4.13) are described by 

Theorems" 1 and 2 of R S D E I ' S paper. It is easy to show that when t\m such 
factorizations exist. Indeed, if m = tk, k odd, we have 

x'" — 1 = (x f— 1 )(x('-')' + x№-2)' H h i ) , 

* > " + 1 = ( X ' + I ) ( x № - 1 ) « _ • • • + . 1 ) . 

and we get the factors 

U = xm—2x">-'+ 1, V = x"' + 2x'"-f 1-1. 

For k even, let a be an integer such that ak = —1; then 

xm + 1 = x'k — au = ( x l — o ) ( x ^ + ox<L-->< H h o1-1) 

and we get the factors 

U= x'" + (a— l)x'"- ' -| h V= x'" — (o— l)x'"-' H h o. 
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However the condition t\m is not necessary. For example when / 7 = 1 7 , 
t = 3, a possible factor is 

x 8 — x ' + 4x ! — 8x 2 + 8 x — 4 = 
( x - l ) ( x + 2 ) ( x - f - 3 ) ( x - 4 ) ( x + 5 ) ( x - 6 ) ( x - 7 ) ( x + 8 ) . 

For p = 19, / = 4, a factorization (4.13) is apparently not possible. 
Assume that 

x18 — 1 = (x"— x5 + ax4 + bxd + cx2 + dx + e) • 
• (x° + x' + a'x* + b'r + c'x2 + d'x + e') ; 

there is no loss in generalization in normalizing the coefficient of x5. We find 
first that 

a'=—a, b' =—b, c' ——c. 

Also we get the conditions 
a- = 2b, ab = c, —2bc—(e'—e) + a(d'—d) = 0, 

— c- + a(e'—e) + b(d'—d) = 0, b(e'—e)+.c(d'—d)= 0. 

Now the last three equations imply 

- 2 be —1 a 
-à a b 
0 b e 

= c(2b3—c-—3abc) = 0. 

Since abc=j= 0, we get, using ab = c, 

b?, = 2c~. 

But a2 = 2b, ab — c imply & = 2bz, so that we have a contradiction. 

Thus the question remains open what values of t is the range 1 ^ t< -^-m 
can satisfy (4. 4). 
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