On the ordering of quotient rings and quotient semigroups

By L. FUCHS in Budapest

Dedicated to L. Rédei on his 60th birthday

It is a rather familiar problem how to extend the ordering relation of a fully ordered ring R to a full order of a larger ring S, in particular, those cases are of great interest in which such an extension is uniquely possible. The most important special case of this problem is when R is a domain of integrity and S is its quotient field; this case is dealt with in most textbooks on algebra. Other important special cases have been considered by several authors. Albert [1] and Neumann [6] discussed the case in which S was the Ore quotient skewfield of R. Recently, Prof. Redei has been interested in this problem [7] when R was supposed to be a ring without divisors of zero and S its ring extension with identity containing no divisors of zero. Grätzer and Schmidt [4] considered the more general problem when R was an ideal of S and S was supposed to be free of divisors of zero. Here we wish to give a common generalization of these results. Our starting point is a rather general definition of quotient ring, one which includes the relationship of R and S in all above-mentioned cases.

Our main result can be carried over to semigroups. Because of the failure of a positive cone in semigroups by means of which it is easy to handle the ordering relation in rings, a certain amount of complication arises, but this is merely of technical character. Its effect appears in that the proof is somewhat longer. As corollaries we obtain well-known results of Tamari -Alimov-Nakada and Conrad, respectively.

By a fully ordered ring R we mean an associative (but not necessarily commutative) ring which is at the same time a fully ordered set satisfying: $a \leqq b$ implies $a \pm c \leqq b \pm c, a c \leqq b c$ and $c a \leqq c b$ for all $c>0$ in the ring. By the positive cone P of R we mean the set of all $x \in R$ with $x \geqq 0$. P has the characterizing properties: it is closed with respect to addition and multiplication, it contains 0 and for any $x \in R, x \neq 0$, exactly one of $x,-x$.

The positive cone P uniquely determines the ordering relation of R, since $a \leqq b$ if and only if $b-a \in P$.

Let R be an arbitrary ring and S an overring of R. Assume that to each $a \in S \backslash R$ there exist elements $a, b \in R$ such that (i) a is not a left divisor of zero in S, (ii) b is not a right divisor of zero in S, (iii) $a \alpha=c$ and $a b=d$ belong to R. In this case S will be called a quotient ring of R.

Our main result is the following theorem.
Theorem 1. A full order of an (associative) ring R can be uniquely extended to a full order of an arbitrary quotient ring S of R.

Let R be a fully ordered ring with the positive cone P and S a quotient ring of R. There is no loss of generality in assuming that in (i) and (ii) the elements a, b are >0. Then in (iii) the elements c and d have the same sign, for $c b=a c b=a d$, and so the sign of $a c$ and $a b$ does not depend on the special choice of a or b. We define the positive cone Q of S to consist of P and of all $a \in S \backslash R$ such that $a c($ (and so $a b$) lies in P. Then we see immediately that for any $a \neq 0$ in S, either a or $-a$ belongs to Q, but not both. If $a, \beta \in Q$, then there exist elements $a, b \in P$ with (i) and (ii) or $=1$ such that $a \alpha, \beta b \in P$. Hence $a(a+\beta) b=(a c) b+a(\beta b) \in P$, and so $\left.{ }^{1}\right)$ $\alpha+\beta \in Q$. Again, $a(\alpha \beta) b=(a c)(\beta b) \in P$ whence $\alpha \beta \in Q$. Consequently, Q defines a full order in S. The uniqueness is evident. Q.e.d.

We mention the following consequences of our theorem. ${ }^{2}$)

1. If R is a fully ordered ring having an Ore left quotient skewfield S, then S can be fully ordered uniquely so as to continue the ordering of R. (Albert [1], Neumann [6].)
2. Any full order of a domain of integrity can be uniquely extended to a full order of its quotient field.
3. Let R be an ideal of a ring S containing at least one element which is not a divisor of zero. Then any full order of R can be extended in a unique way to a full order of S. (Cp. Grätzer-Schmidt [4].)
4. Let R be a ring containing a non-divisor of zero and S a minimal ring with identity ${ }^{3}$) containing R. Every full order of R can be extended uniquely to a full order of S. (Cp. Redel [7].)

Let us turn to semigroups. By a fully ordered semigroup S is meant a

[^0]semigroup which is at the same time a fully ordered set satisfying: $a \leqq b$ implies $a c \leqq b c$ and $c a \leqq c b$ for all $c \in S$.

Let T be a semigroup containing the semigroup S. Assume that to any $a \in T \backslash S$ there exist elements $a, b \in S$ such that (i) a is left-cancellable ${ }^{4}$) in T, (ii) b is right-cancellable in T and (iii) $a c$, $a b$ belong to S. Then we shall say that T is a quotient semigroup of S.

We have the following analogue of Theorem 1 :
Theorem 2. A full order of a semigroup S can be extended, in one and only one way, to a full order of an arbitrary quotient semigroup T of S.

If T properly contains S, then there exist surely elements $a, b \in S$ which are left- resp. right-cancellable in T, and therefore in the above definition the case $a \in S$ need not be excluded. Now if $\alpha, \beta \in T(\alpha \neq \beta)$ and if a, b are left- resp. right-cancellable elements such that $a \alpha, \beta b \in S$, then $a c b$ and $a \beta b$ are different elements of S, and we define $a \geqslant \beta$ according as $a \alpha b \gtrless a \beta b$ in S. It is a trivial fact that for the elements of S this definition coincides with that originally given in S. The definition does not depend on the special choice of a, b. For, if a^{\prime}, b^{\prime} are again left- resp. right-cancellable elements with $a^{\prime} c, \beta b^{\prime} \in S$, then - taking a left- and a right-cancellable element $a^{\prime \prime}, b^{\prime \prime} \in S$ such that $a^{\prime \prime}\left(a^{\prime} \beta\right),(a b) b^{\prime \prime} \in S$ - we obtain e.g. from $a \alpha b<a \beta b$ in turn $a \alpha b b^{\prime \prime}<a \beta b b^{\prime \prime}, \quad a b b^{\prime \prime}<\beta b b^{\prime \prime}, \quad a^{\prime \prime} a^{\prime} a b b^{\prime \prime}<a^{\prime \prime} a^{\prime} \beta b b^{\prime \prime}$, $a^{\prime \prime} a^{\prime} c<a^{\prime \prime} a^{\prime} \beta, a^{\prime \prime} a^{\prime} c b^{\prime}<a^{\prime \prime} a^{\prime} \beta b^{\prime}, a^{\prime} c b^{\prime}<a^{\prime} \beta^{\prime} b^{\prime}$. A similar reasoning applies if a^{\prime}, b^{\prime} are determined so as to have $a^{\prime} \beta, a b^{\prime} \in S$. The transitivity of $<$ follows by a straightforward computation of similar kind. Finally, we show that $u \leqq \beta$ implies $\gamma u \leqq \gamma \beta$ for all $\gamma \in T$. If $a, b, b^{\prime \prime}$ are defined as before and $c \in S$ is left-cancellable such that $c \gamma \in S$, then we get successively $a c b \leqq a \beta b, a c b b^{\prime \prime} \leqq a \beta b b^{\prime \prime}, \alpha b b^{\prime \prime} \leqq \beta b b^{\prime \prime}, c \gamma c b b^{\prime \prime} \leqq c \gamma \beta b b^{\prime \prime}$. Hence, by multiplying by suitable elements we arrive at $\gamma^{\prime} c \leqq \gamma \beta$. The uniqueness of the extension is evident.

We obtain the following corollaries.

1. Let S be a cancellative fully ordered semigroup satisfying: ${ }^{5}$) for each pair $a, b \in S$ there is a pair $x, y \in S$ such that $a x=b y$. Then there exists a fully ordered group G containing S in such a way that every $g \in G$ has the form $g=a b^{-1}(a, b \in S)$ and $g>e$ if and only if $a>b$ in S. This G is unique within to order-isomorphism. (ConRad [3].)
2. A cancellative commutative fully ordered semigroup S has a quotient group which can be fully ordered in a unique manner. (Tamari [8], Alimov [2], NaKADA [5].)
[^1]
References

[1] A. A. Albert, A property of ordered rings, Proc. Amer. Math. Soc., 8 (1957), 128-129.
[2] Н. Г. Алимов, Об упорядоченных полугруппах, Изв. Акад. Наук СССР, 14 (1950), 569-576.
[3] P. F. Conrad, Ordered semigroups, Nagoya Math. Journ., 16 (1960), 51-64.
[4] G. Grätzer-E. T. Schmidt, Über die Anordnung von Ringen, Acta Math. Acad. Sci. Hung., 8 (1957), 259-260.
[5] O. Nakada, Partially ordered abelian semigroups. I-II, Journ. Fac. Sci. Hokkaido Univ., 11 (1951), 181-189; 12 (1952), 73-86.
[6] B. H. Neumann, On ordered groups, Amer. Journ. Math., 71 (1949), 1-18.
[7] L. Rédeı, Algebra, vol. I (Budapest, 1954).
[8] D. Tamari, Groupoïdes reliés et demi-groupes ordonnés, C. R. Acad. Sci. Paris, 228 (1949), 1184-1186.

[^0]: ${ }^{1}$) Here we make use of the fact that if $a, b>0$ and $c=a a b \in R$, then α and c have the same sign. In fact, if $d>0$ is chosen so that $d(a a)=f \in R$, then the elements $a, f, f b=d c, c$ are simultaneously positive or negative.
 ${ }^{2}$) The proofs are immediate and therefore may be left to the reader.
 ${ }^{3}$) If the ring contains elements which are not divisors of zero, then it has a ring extension with identity in which they remain non-divisors of zero. We understand this by "minimal".

[^1]: ${ }^{4}$) An element a is left-cancellable if $a x=a y$ implies $x=y$.
 ${ }^{5}$) This is just the Ore condition and ensures the existence of a quotient group of S.

