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Some sets of integers related to the Avfree integers 
By ECKFORD COHEN in Knoxville (Tennessee, U.S.A.) 

1. Introduction 

In this paper e, /2,/'and A will denote natural numbers, with k assumed >1 
throughout. Suppose that pi,...,pt are the. distinct prime divisors of n 
and write 
(1.1) n=pi...pt

l, 

with the convention that / = 0 in case /2 = 1. We shall say that n is uni-
tarily k-free, or simply k-skew, if ei^0 (mod k) for each exponent e ; 

(1 ^ki^t) appearing in the factorization (1.1). Further, we shall say that n 
is e-skew of rank r if e;=j=je for all /' (1 ^¡i^t) and all j (1 ^ f ^ r ) . 

Before proceeding further, it is convenient to introduce the following 
terminology. The characteristic function / . , ( ' 0 of a set S is defined by 
ys(n) == 1 or 0 according as n £ S or n$S. If x is real and =sl, the 
enumerative function of 5 is defined to be the number S(x) of integers ^ x 
contained in 5. The asymptotic density d(S) of 5 is the limit, lim S(x)/x, 

•x-*- cd 

whenever this limit exists. Finally, the generating function fs(s) is defined 
by the Dirichlet series, 

xM 
,,=1 n" 

fs(s) = > ; 

Let now Qk, QZ, and Q*,- denote respectively the sets of the k-free 
integers, the Ar-skew integers, and the e-skew integers of rank r. As to the 
relation between these sets, it is evident that Qk cz Q ; * c i Qt for all r. More-
over, the set Qt is the limiting case, as r—»• <», of the sets Q*.,- ( r = 1 , 2 , . . . ) . 
Finally, we note a striking structural analogy between Q,; and Q*. In parti-
cular, define of to be a unitary divisor of n if d>0, dd = n, and (d, r ) ' ) = l ; 
a A-skew integer may be defined than as an integer whose largest unitary 
A-th power divisor is 1. 

The principal aim of this paper is to determine the simplest asymptotic 
properties of the A-skew integers. In place of considering Qt directly, we 
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investigate the sets Qt-,r, and from the properties obtained, we deduce, in 
the limiting case of r, corresponding properties for Q*.. One will note in 
particular the following corollary of Theorem 3. 2. 

C o r o l l a r y . The asymptotic density c)'(Q*) of Qt satisfies 

where C(s) denotes the Riemann zeta function. 

Denote by Qk(x), Q*(x), and Q*,(x), x ^ l , the enunierative functions 
of Qk,Qk, and Q*,-, respectively. We shall use two different methods in 
treating Q*,,.(x). In the first method (§ 3) we proceed in a manner parallel to 
the classical treatment of Qk(x). Sums over ordinary divisors are now re-
placed/however, by unitary divisors. This method is elementary to the extent 
that it is not even necessary to introduce generating functions in the argument. 
By introducing such functions in § 4, we are able to refine the estimates 
proved in § 3. In the method of § 4, however, in place of proceeding by 
analogy with the ¿-free integers, we express Q*v (x) directly in terms of Qk{x), 
effectively reducing the problem under consideration to one whose solution 
is well known (cf. § 2). 

The final results obtained by the second method are contained in Theo-
rems 4. 1 and 4. 2. In particular, the remainder terms in the estimates for 
Q*, (x) and Qt(x) proved in § 3 are diminished by a logarithmic factor. 

Regarding previous work, we mention that the case k — 2 of the esti-
mate for Q*(x) proved in Theorem 3. 2 was obtained in [3, § 6] by the same 
method used to treat Q*,,(x) in § 3 of the present paper. As for Q*, (x), the 
case e=\ (excluded in this paper) was treated by E R D O S and S Z E K E R E S [ 4 ] 

by an elementary method, and recently, using more advanced methods, by 
B A T E M A N a n d G R O S S W A L D [ 1 ] . 

The material of this section is classical and is included for purposes 
of comparison and reference. Let qk(n) denote the characteristic function 
of Qk. The generating function of Qi is C(s)/C(/cs); that is [6, Theorem 

(1-2) < < J ( Q i ) = « * < 1, 

2. Preliminaries concerning Q/. 

303, p. 255], 

(2 .1) 

From (2. 1) we obtain the following representation of qk(n) as an arithmetical 
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integral, 

(2. 2) qk(n) = 2 u<lHn) = a(n), 
(16 = n 

where a(n) is the Möbius function, and 

I ft(m) if /z = m';, 
< 2 - 3 ) ^ " H 0 otherwise. 

We recall that 1/C(s) is the generating function of («). 
The principal elementary result for Qk(x) is contained in the following 

L e m m a . 2.1 ([5, p. 47], also cf. [6, § 18.6, A" = 2]). If x ^ l , then 

(2.4) = 

P r o o f . By (2.2) one obtains 

(2. 5) Qk(x) = Z = Z ,« (") = Z ," (« ) 
k 

. . s V i 
Hence by the boundedness of ,«(/?), 

< M * ) = Z , « ( « ) ( ^ + 0 ( i ) ) = x z 

1 
1 1 — k 

and (2.4) results, because the O-sum is O 
x 

C o r o l l a r y 2.1. The asymptotic density of Qk is <)(Qk) = 1 'C(A). 

3. Initial estimates 

We first introduce some notation. Let,«, (/?) denote the unique multiplica-
tive function of n defined as follows for n=p,:, p prime, e>0, 0».-(l) —1), 

i —1 ( i ^ e ^ r ) 

<3- '> " ^ H 0 ( e > r ) . 

Note that i"i(n) = /<(«). The function defined by ,«, («) as r->-oo will be 
denoted p*(n); that is, ,«*(«) = (—l)"Jl,,), where a>(n) denotes the number of 
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(distinct) prime divisors of n. Generalizing (2. 3), we define 

, , ,v <*), v j M ™ ) i f / ? = / " ' ' 
v ' { 0 otherwise. 

The Legendre totient, defined to be the number of positive integers ^ x t h a t 
are prime to n, will be denoted cp{x, n). We also write <f(n) = <p(n, ri), and 
define 6(n) to be the number of unitary divisors of n. 

As in [3], the unitary product (or convolution) of two arithmetical func-
tions ai(n),a2(n), is the function a<s(n) defined by 

(3 .3 ) Ö 3 ( « ) = I ö,(i/)fl2(()), 
(Id =ll 

(<j,d)=i 

where the summation is over all unitary divisors d of n. We recall three 
lemmas proved in [3]. 

L e m m a 3. 1 ([2, Lemma 6. 1]). If at(n) and a,(n) are multiplicative, 
then the unitary product (3. 3) of Oi(n) and a<(n) is also multiplicative. 

The next lemma is the "unitary" analogue of the Möbius inversion 
formula. 

L e m m a . 3 . 2 ([3, Theorem 2.3]). 

(3 .4 ) a , ( n ) = Z as(d)^a2(n)= £ ^(d)ai(Ö). 
ilfi — 'H tld = n 

(<M) = J (<*.•<>) = 1 

L e m m a 3 . 3 ([2,(1)], [3, Lemma 3.4]) . 

(3 .5 ) cP(x,n) = ^ ± + 0 ( d ( n ) ) , 

uniformly in x. 
Finally, we mention the following simple property of 6(n): 

( 3 . 6 ) #(x)=£0(n) = O(x logx) , 
itÄi; 

Let qlr(n) and ql(n) represent the characteristic functions of Q*,r and 
Q*, respectively. We prove first the following analogue of (2 .2) . 

L e m m a 3. 4. 

(3 .7 ) 2 t ^ ( d ) = qlA>0-
dö~v 

(<r,d)=i 

P r o o f . By Lemma 3 . 2 there exists a uniquely defined function b(n) 
such that 

(3 .8 ) ql,r(n)= 2 m> 
= i 
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and in fact. 

(3.9) 
(il,à) = I 

Evidently, tu*(n) and qt,r(n) are multiplicative in n; hence by (3.9) and 
Lemma 3.1 , b(n) is also multiplicative. It therefore suffices to evaluate b(n) 
in case n=p'. By (3.9) it is easily verified that b(pe) = —1 when e = k, 
2k,...,rk, otherwise b(p)=^0; that is, b{p) =.«' ' ' ( />') , which completes 
the proof. 

that the series is absolutely convergent is a consequence of the boundedness 
of f ' , (n) and the fact that cp (n )^n . 

L e m m a 3.5 . 

where the (absolutely convergent) product extends over the primes p. 

P r o o f . By (3.10), the multiplicativity of cp(n) and ^r(n), and the 
familiar fact, (p(p")=p'"l(p—1), one obtains (cf. [6, § 17.4]) 

Define 

(3.10) 

V 

so that on summing a progression, 

Factoring out £(£) = n ( \ — p ~ ' y l yields (3.11). 

R e m a r k 3.1. In case r=], (3. 11) simplifies to give 

(3.12) 

W e now prove the following estimate for Q*,, (x). 

T h e o r e m 3.1. If x^2, then 

(3.13) Qk,, (x) = ak,rx + 0(\fx log x) 

uniformly in r, «,.v. being defined by (3.11). 
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_ P r o o f . The proof is analogous to that of Lemma 2. 1 and [3, Theo-
rem 6. 1]. By (3. 7) and (3. 1), 

(3. 14) Qt;r(x) = 2 !',(d) = ' £ /<,(n)<p 
Ag.: V n J 

(<!,(') = 1 »Sfr.: 

Application of (3 .5) and (3 .6) yields, since | , « , ( n ) | ^ l for all r, 

!',(n)(p(n) 

= Sk,rx + o[x Z ^ ] + 0 ( f x l o g j c ) , 

v „>,,!/'•• n J 

uniformly in r. The theorem results by Lemma 3. 5. 

C o r o l l a r y 3. 1.1. The asymptotic density of Q*.r is 

(3.15) d(Qt, r) = a k y , 

in particular, <){Qt,t) = at-
An estimate for Qt(x) can now be deduced on the basis of Theorem 

3. 1 and the observation 
(3.16) Qt(x)= lim Qt,r(x). 

'/'—>• co 

T h e o r e m 3.2. If x^2, then 
k 

(3.17) Qt(x) = al;x + 00x log X), 

where 
2 . 1 

(3.18) = fc 1 nfc+l • p': p 

P r o o f . Denote the general factor of the product in (3.11) by 
1 + L„(k, r). We have for all r, 

| LP (k, r) | si —+ ^ + + - ¡ ^ < ^ . — + — | -

p1- • pk+1 pkr+k ' ^'•'•+'•+1 

Therefore, the series 2nLp(k,r) and hence the product in (3.11) converge 
uniformly with respect to r. It follows then that 

(3.19) lim «/.-,, — £(£) / 7 Him(1 +LP(k, r))l. = «,... 
) ' - > - c d p ( r - > - cd | 

The theorem now results by (3.16) and the fact that the remainder term in 
(3. 13) is uniform in r. 
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R e m a r k 3. 2,- We observe finally that the corollary stated in the Intro-
duction follows from Theorem 3. 2 by a simple computation similar to that 
in the case A = 2 [3, Lemma 3.6]. 

4. Improved estimates 

First we shall express the generating function fk:r(s) of Q*v i n terms of 
the generating function C(s)/£(ks) of Qk. To this purpose, put 

(4.1) 
11 = 1 n ,( = 1 n 

where 

(4.2) =/„ , , . (*) [ ^ M ] , s > l . 

R e m a r k 4.1. In the interest of clarity, we note that hk:,(s) is defined 
for s > l by (4.2) and for possibly smaller values of s by the sum of the 
Dirichlet series for hk,r(s), whose coefficients, denoted gk,r(n), are obtained 
from (4.2) by Dirichlet multiplication. 

R e m a r k 4 .2 . On the basis of (4.1) and (4. 2) and the multiplicativity 
of q*,r(n), it follows that gk,r(n) is a multiplicative function of n. 

L e m m a 4 .1 . (a) The series expansion (4.1) of hkr(s) converges abso-
lutely for s > 1 /(A + 1); (b) for s>\/k, 

2 , 1 , 1 1 
r | j _ 

V 
(4 .3) hkir(s) = P ( k s ) n \ \ - p k s - p s ( k + l ) , p k , ( r + l ) - p H k r + k + 1 ) 

(c) for s > 1 /(A + 1), hk!, (s) is represented in the form, 

(4 .4) hk>r(s) = Q(2ks)nk,r{s), 
•n=l it 

the series being absolutely convergent for s > 1 /(A + 1). The function (s) is 
determined by (4. 6). 

P r o o f . For s > 1, 

hr{s) = n ( Z zjj; - 2 i V \j=oP i=1 PJ 

n(- ' ' 1 

] _ 1 pks p2';s prks 

Ps 
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so that, on dividing out £(s) = / 7 ( l — p *)"', one obtains 

( 4 . 5 ) = 

By an easy computation, (4. 3) follows from (4. 5). 
Now the product on the right of (4 .3 ) converges absolutely for s>\/k. 

Hence the Dirichlet series with product representation (4. 3) must also converge 
absolutely for s>l/Ar. By the uniqueness theorem for Dirichlet series [6, p. 
245], the coefficients are therefore furnished by gkAn)> which proves Part (b). 

Another simple computation based on (4. 5) yields the relation on the 
left of (4.4), where 

?;,,..,(s) = . / J 11 + p ^ j — — p(oft+i)s H 

(4-6) 2 2 ] 1 1 j 
T prl.s p(rl;+1)» j p(r+j)/,'.v + p(rk+li+l)s | • 

Parts (c) and (a) result by the same type of argument used in the proof of 
Part (b). 

By Lemma 4. 1 (b) and (3. 11), it follows that 

L e m m a 4. 2. 

(4. 7) / M l ) = = «*.,£(*). 11 = 1 n 

L e m m a 4. 3. 

(4 .8 ) 9Mn)=Zq*(d)gtA<i), (Id = 11 
(4-9) 5 V ( " ) = ZokAd). 

,ld2k=n 

P r o o f . By virtue of (2. 1) and the rule for Dirichlet multiplication, 
(4 .8 ) is a consequence of (4. 1) and ( 4 . 2 ) ; ( 4 . 9 ) follows from (4 .4) . 

L e m m a 4 . 4 . / / s>\/(k+ 1), then there exists a quantity Ak(s), inde-
pendent of r, such that 

(4 .10) / - ^ 1 . 
n = I " 

P r o o f . By Lemma 4 .1 (a), the series in (4 .10) converges for 
s > l / ( A r + 1 ) . By (4 .6) , the factors in the infinite product representation of 
Z,(2ks)i}kAs) contain, except for an initial 1, only terms of the form 
bjp-J'* where and \bj\si2(y'+ 1) for all occurring j. Hence, by the 
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multiplicativity of \gk:, (n)|, (Remark 4.2), 

Д | + = г т д : 
¡ + 4 + 1 

• Я 1 
2 c, 

('• + ! ) 

where c* is independent of p and r. The convergence of the final product 
proves the theorem. 

L e m m a 4 .5 . If s>\/(k+\), then for all r 

n — 1 П 

where At(s) is independent of r. 

The proof is similar to that of the preceding lemma except that the 
details are simpler. 

L e m m a 4.6. If ft>\/(k-{-\), then 

(4.11) GtAx) = 2 \g*A")\^ At((i)x^, 

where Al((i) is independent of r and x. 

P r o o f . By (4 .9) and Lemma 4 .5 , 

GtAx) - - 2 " K r ( d ) l = 2 К - ( л ) 1 

nf 
SkAt(ii)xK 

The proof is complete. 
It is convenient to define 

(4.12) A(x) = Qi.(x)-
m ' 

We are now in a position to prove 

T h e o r e m 4. 1. 
I: 

(4. 13) QlAx) = ak,rx+ O ( f x ) 

uniformly with respect to r. 
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P r o o f . By (4. 8), 

QUx) = £ q<M)g^(d) = < 

and hence by (4.12), 

(4. 14) Q,' ,(x) = ~ Z + Vl;Ax, n), 

where 

(4-15) 14,. (x, = 

Application of Lemma 4. 2 gives 

( 4 . i 6 ) Z ^ ^ ^ M + Z ^ - . 
11 ~X n ft 

Let Gk,r(x) denote the summatory function of gi,.,(n); that is, G;„,(x) = 2gk)r(n) 
summed over n ^ x . Then, by partial summation and Lemma 4 . 6 with 
i<?= \jk, one deduces 

.. yrGiAn) , GUx) 
= & ^ X 

Hence 

(4-17) = uniformly in r. • 

We turn now to Vi-Ax, n) in (4.15). By Lemma 2.1, there exists a 
k 

constant bk>0, depending at most upon k, such that \dk(x)\^bk\fx. Hence 
by Lemma 4. 4, 

| VkAx, n)| g bkfx Z — ri— ^ bkAk{\/k)Yx. 
n^X ft 

That is, 
k 

(4.18) ' VkAx,n) = 0(Yx) uniformly in r. 

The theorem results on collecting (4. 14), (4. 16), (4. 17) and (4. 18). 

T h e o r e m 4 .2 . 

(4.19) Qt(x) = ui.x + 0( | /x ) . 

P r o o f . The theorem results from the application of (3.16) and (3.19) 
to (4.13), in conjunction with the fact that the latter estimate is uniform in r. 

z giM z GkAn) GkAx) 
U ( n + \ ) f x l + 1 
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