On unitary dilations of bounded operators

By HIDEGORO NAKANO in Kingston (Canada)

Sz.-NAGY's theorem on the unitary dilation of a linear operator T on Hilbert space with $||T|| \leq 1$ may be generalized so as that it applies simultaneously to any product of such operators. This was observed by Sz.-NAGY himself, as a consequence of the matrix construction, due to SCHAFFER, of the unitary dilations¹). We state this theorem in an equivalent form and give an alternative proof which does not make use of square roots of positive operators.

Theorem. Let H be a Hilbert space of infinite dimension and P a projection operator on H such that the dimension of (1-P)H is not less than that of PH. Corresponding to every bounded linear operator T on PH with $||T|| \leq 1$, we can find a unitary operator U_T on H such that

$$T_1 T_2 \ldots T_n P = P U_{T_1} U_{T_2} \ldots U_{T_n} P$$

for every finite number of operators T_1, T_2, \ldots, T_n on PH with $||T_{n'}|| \leq 1$ $(\nu = 1, 2, \ldots, n)$.

Proof. We can find easily projection operators P_1, P_2, P_3 on H such that $P+P_1+P_2+P_3=1$, the dimension of P_1H is the same as that of PH, and P_2H and P_3H have each the dimension infinite and not less than that of PH. Let T be a linear operator on PH with $||T|| \leq 1$, and z_{λ} ($\lambda \in \Lambda$) a complete orthonormal system in PH. Then we can find a system of elements $y_{\lambda} \in P_1H$ ($\lambda \in \Lambda$) such that $Tz_{\lambda} + y_{\lambda}$ ($\lambda \in \Lambda$) constitutes an orthonormal system, i. e.

$$(Tz_{\lambda} + y_{\lambda}, Tz_{\varrho} + y_{\varrho}) = \delta_{\lambda,\varrho} \qquad (\lambda, \varrho \in A)$$

with the Kronecker $\delta_{\lambda,\varrho}$. Because, putting.

$$\alpha_{\lambda,\varrho} = \delta_{\lambda,\varrho} - (Tz_{\lambda}, Tz_{\varrho}) \qquad (\lambda, \varrho \in A),$$

286

¹) See F. RIESZ-B. SZ.-NAGY, Vorlesungen über Funktionalanalysis (Berlin, 1956), Nachtrag (p. 460).

we see easily that $\sum_{\lambda,\varrho} \xi_{\lambda} \bar{\xi}_{\varrho} \alpha_{\lambda,\varrho} \ge 0$ for every finite number of complex numbers ξ_{λ} , and hence putting

$$((\xi_{\lambda}), (\eta_{\lambda})) = \sum_{\lambda, \varrho} \xi_{\lambda} \overline{\eta}_{\varrho} \alpha_{\lambda, \varrho},$$

we can introduce an inner product, not always proper, into the linear space of vectors $(\xi_{\lambda})_{\lambda \in A}$: $\xi_{\lambda} = 0$ except for a finite number of λ . As the dimension of P_1H is not less than the cardinal number of Λ we can find $y_{\lambda} \in P_1H$ such that $(y_{\lambda}, y_{\varrho}) = \alpha_{\lambda, \varrho}$ ($\lambda, \varrho \in \Lambda$) and hence, $Tz_{\lambda} + y_{\lambda}$ ($\lambda \in \Lambda$) is an orthonormal system. Then, putting $U_T z_{\lambda} = Tz_{\lambda} + y_{\lambda}$, we obtain an isometric operator U_T from *PH* into $(P+P_1)H$, and we have obviously $TP = PU_TP$. Now we extend U_T as follows. As the dimension of $(P_1 + P_2)H$ coincides with that of P_2H , we can extend U_T such that U_T is an isometric operator from $(P_1 + P_2)H$ onto P_2H . Denoting by Q the projection operator of U_TPH , the dimension of P_3H coincides with that of $(P+P_1-Q+P_3)H$, and hence we can extend U_T such that U_T is an isometric operator from P_3H onto $(P+P_1-Q+P_3)H$. Then U_T becomes a unitary operator on H and we have obviously

$$U_T(P+P_1+P_2) = (P+P_1+P_2)U_T(P+P_1+P_2),$$

$$PU_T(P_1+P_2) = 0,$$

$$TP = PU_TP.$$

For every finite number of linear operators T_r with $||T_r|| \leq 1$ (r = 1, 2, ..., n), we have then

$$A = PU_{T_1}, U_{T_2} \dots U_{T_n} P = PU_{T_1}(P + P_1 + P_2) U_{T_2}(P + P_1 + P_2) \dots$$
$$\dots (P + P_1 + P_2) U_{T_n} P$$

because $(P+P_1+P_2)P=P$,

$$A = PU_{T_1}PU_{T_2}P\cdots PU_{T_n}P$$

because $PU_T(P+P_1+P_2) = PU_TP + PU_T(P_1+P_2) = PU_TP$, and, finally

$$A = T_1 T_2 \dots T_n P$$

because $TP = PU_TP$.

Remark. When the dimension of H is finite and not less than n times that of PH, then we can find projection operators P_{ν} ($\nu = 1, 2, ..., n$) such that

$$P + \sum_{r=1}^{n} P_r = 1$$

and the dimension of each $P_{\nu}H$ for $\nu \leq n-1$ coincides with that of *PH*. Then, for any linear operator *T* on *PH* with $||T|| \leq 1$, we can find an isometric U_T from *PH* into $(P+P_1)H$ by the same way as above. If we extend U_T so that U_T is an isometric operator from $P_{\nu}H$ onto $P_{r+1}H$ for $\nu \leq n-2$, from $P_{n-1}H$ onto $(P+P_1-Q)H$, and from P_nH onto P_nH , then we see easily that

$$T_1 T_2 \dots T_{\nu} P = P U_{T_1} U_{T_2} \dots U_{T_n} P$$
 for $\nu \leq n-1$.

(Received November 29, 1960)