On unitary dilations of bounded operators

By HIDEGORO NAKANO in Kingston (Canada)

Sz.-Nagy's theorem on the unitary dilation of a linear operator T on Hilbert space with $\|T\| \leqq 1$ may be generalized so as that it applies simultaneously to any product of such operators. This was observed by Sz.-NaGY himself, as a consequence of the matrix construction, due to SCHÄFFER, of the unitary dilations ${ }^{1}$). We state this theorem in an equivalent form and give an alternative proof which does not make use of square roots of positive operators.

Theorem. Let H be a Hilbert space of infinite dimension and P a projection operator on H such that the dimension of $(1-P) H$ is not less than that of PH. Corresponding to every bounded linear operator T on $P H$ with $\|T\| \leqq 1$, we can find a unitary operator U_{T} on H such that

$$
T_{1} T_{2} \ldots T_{n} P=P U_{T_{1}} U_{T_{2}} \ldots U_{T_{n}} P
$$

for every finite number of operators $T_{1}, T_{2}, \ldots, T_{n}$ on $P H$ with $\left\|T_{n}\right\| \leqq 1$ $(\mu=1,2, \ldots, n)$.

Proof. We can find easily projection operators P_{1}, P_{2}, P_{3} on H such that $P+P_{1}+P_{2}+P_{3}=1$, the dimension of $P_{1} H$ is the same as that of $P H$, and $P_{2} H$ and $P_{s} H$ have each the dimension infinite and not less than that of $P H$. Let T be a linear operator on $P H$ with $\|T\| \leqq 1$, and $z_{\lambda}(\lambda \in A)$ a complete orthonormal system in $P H$. Then we can find a system of elements $y_{\lambda} \in P_{1} H(\lambda \in A)$ such that $T z_{\lambda}+y_{\lambda}(\lambda \in \Lambda)$ constitutes an orthonormal system, i. e.

$$
\left(T z_{\lambda}+y_{\lambda}, T z_{o}+y_{o}\right)=\delta_{\lambda, \rho} \quad(\lambda, o \in A)
$$

with the Kronecker $\delta_{\lambda, \boldsymbol{\rho}}$. Because, putting.

$$
c_{\lambda, \varrho}=\delta_{\lambda, \varrho}-\left(T z_{\lambda}, T z_{\varrho}\right) \quad(\lambda, \varrho \in A)
$$

[^0]we see easily that $\sum_{\lambda, \rho} \xi_{\lambda} \bar{\xi}_{\rho} \alpha_{\lambda, \rho} \geqq 0$ for every finite number of complex numbers ξ_{λ}, and hence putting
$$
\left(\left(\xi_{\lambda}\right),\left(\eta_{\lambda}\right)\right)=\sum_{\lambda, \underline{o}} \xi_{\lambda} \bar{\eta}_{\boldsymbol{\eta}} \alpha_{\lambda, \boldsymbol{g}},
$$
we can introduce an inner product, not always proper, into the linear space of vectors $\left(\xi_{\lambda}\right)_{\lambda \in \Lambda}: \xi_{\lambda}=0$ except for a finite number of λ. As the dimension of $P_{1} H$ is not less than the cardinal number of A we can find $y_{\lambda} \in P_{1} H$ such that $\left(y_{\lambda}, y_{\rho}\right)=\alpha_{\lambda, \mu}(\lambda, \varrho \in A)$ and hence, $T z_{\lambda}+y_{\lambda}(\lambda \in A)$ is an orthonormal system. Then, putting $U_{T} z_{\lambda}=T z_{\lambda}+y_{\lambda}$, we obtain an isometric operator U_{T} from $P H$ into $\left(P+P_{1}\right) H$, and we have obviously $T P=P U_{T} P$. Now we extend U_{T} as follows. As the dimension of $\left(P_{1}+P_{2}\right) H$ coincides with that of $P_{2} H$, we can extend U_{T} such that U_{T} is an isometric operator from $\left(P_{1}+P_{2}\right) H$ onto $P_{2} H$. Denoting by Q the projection operator of $U_{T} P H$, the dimension of $P_{3} H$ coincides with that of $\left(P+P_{1}-Q+P_{3}\right) H$, and hence we can extend U_{T} such that U_{T} is an isometric operator from $P_{3} H$ onto $\left(P+P_{1}-Q+P_{3}\right) H$. Then U_{T} becomes a unitary operator on H and we have obviously
\[

$$
\begin{aligned}
& U_{T}\left(P+P_{1}+P_{2}\right)=\left(P+P_{1}+P_{2}\right) U_{T}\left(P+P_{1}+P_{2}\right) \\
& P U_{T}\left(P_{1}+P_{2}\right)=0 \\
& T P=P U_{T} P
\end{aligned}
$$
\]

For every finite number of linear operators T_{r} with $\left\|T_{\nu}\right\| \leqq 1(\nu=1,2, \ldots, n)$, we have then

$$
\begin{gathered}
A=P U_{T_{1}}, U_{T_{2}} \ldots U_{T_{n}} P=P U_{T_{1}}\left(P+P_{1}+P_{2}\right) U_{T_{2}}\left(P+P_{1}+P_{2}\right) \ldots \\
\ldots\left(P+P_{1}+P_{2}\right) U_{T_{n}} P
\end{gathered}
$$

because $\left(P+P_{1}+P_{2}\right) P=P$,

$$
A=P U_{T_{1}} P U_{T_{2}} P \ldots P U_{T_{n}} P
$$

because $P U_{T}\left(P+P_{1}+P_{2}\right)=P U_{T} P+P U_{T}\left(P_{1}+P_{2}\right)=P U_{T} P$, and, finally

$$
A=T_{1} T_{2} \ldots T_{n} P
$$

because $T P=P U_{T} P$.
Remark. When the dimension of H is finite and not less than n times that of $P H$, then we can find projection operators $P_{\nu}(\nu=1,2, \ldots, n)$ such that

$$
P+\sum_{\nu=1}^{n} P_{\nu}=1
$$

and the dimension of each $P_{r} H$ for $v \leqq n-1$ coincides with that of $P H$. Then, for any linear operator T on $P H$ with $\|T\| \leqq 1$, we can find an isometric U_{T} from $P H$ into $\left(P+P_{1}\right) H$ by the same way as above. If we extend U_{T} so that U_{T} is an isometric operator from $P_{\nu} H$ onto $P_{v+1} H$ for $\nu \leqq n-2$, from $P_{n-1} H$ onto $\left(P+P_{1}-Q\right) H$, and from $P_{n} H$ onto $P_{n} H$, then we see easily that

$$
T_{1} T_{2} \ldots T_{\nu} P=P U_{T_{1}} U_{T_{2}} \ldots U_{T_{r}} P \text { for } r \leqq n-1
$$

(Received November 29, 1960)

[^0]: 1) See F. Rıesz-B. Sz.-Nagy, Vorlesungen über Funktionalanalysis (Berlin, 1956), Nachtrag (p. 460).
