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Slender Groups*) 
By R. J. N U N K E in Seattle (Washington, U. S. A.) 

Let P be the direct product of countably many copies of the integers Z, i. e., 
the group of all sequences x=(xi, x,, ...) of integers with termwise addition. For 
each natural number n let <5" be the element of P whose «-th coordinate is 1 and 
whose other coordinates are 0. J. i_o£ calls a torsion-free abelian group slender 
if every homomorphism of P into it sends all but a finite number of the 8" into 0. 
The concept first appeared in [3]. E. S^SIADA [8] has shown that all reduced coun-
table groups are slender. The purpose of this paper is to give a new description 
of the slender groups and to apply it to show that certain classes of groups are 
slender. All groups -in this paper are abelian. 

Our starting point is the observation that a group is slender if and only if every 
homomorphic image of P in it is slender. Our first task will be to describe the ho-
momorphic images of P (theorem 5). Once this is done it is easy to describe the 
slender groups (corollary 6). The proof of theorem 5 is preceded by four lemmas. 
The first two of these are extensions of two results contained in [6]. Some details 
of their proofs will therefore be omitted. Lemma 4 is a consequence of theorem 
1 o f BALCERZYK'S p a p e r [2]. 

Following J. J. ROTMAN we call a group G a B-group if Ext (G, T)= 0 for every 
torsion group T, and a W-group if Ext (G, Z) = 0. In [7] ROTMAN showed that every 
separable 5-group and every W-group is slender. His proof however requires the 
continuum hypothesis. We shall prove ROTMAN'S results assuming neither the 
separability of the 5-groups nor the continuum hypothesis. 

1. The dual of the group A is the group A* = H o m (A, Z). There is a natural 
homomorphism aA\ A-~A** defined by considering the elements of A as homo-
morphisms of A* into Z. Using the fact that P" is the free group generated by the 
coordinate projections, it is easy to show that o> is an isomorphism between P 
and P** so that P may be identified with its double dual. 

Suppose A is a subgroup of P. Taking duals gives an exact sequence 

(1) 0-+(P/A)* -*P* -*A*. 

Let A' be the image of (PIA)* in P*. It consists of all h in P" such that h(A)=0, 
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i. e., it is the annihilator of A in P*. Let B be the image of P* in A* so that the 
sequence 
(2) 

is exact. Taking duals again gives a commutative diagram 

0 - A.-r P - PI A - 0 
(3) I a |<rP l a 

0 - £ * - / > * * - ( ¿ > / , 4 ) * * 

with exact rows. In this diagram o=o^ P i A ) and X is induced by oy and a. We use 
<tp to identify P with P**. Then the image of B* in p** — p is the annihilator A" 
of A'. It consists of all x in P such that h(x) = 0 whenever h is in P* and h(A)= 0. 

L e m m a 1. If AczP, then P = A"®C. Both A" and C are direct products of 
at most count ably many copies of Z and (A"/A)*= 0. 

P r o ' o f . We refer to diagrams (1)—(3) preceding the lemma. Since A* can be 
embedded in a product (of copies of Z) and B~A*, B can also be embedded in 
a product. As an image of P*, B is countable. These two properties together imply 
that B is free. Hence the sequence (2) splits. It follows that the bottom row of (3) 
also splits so that P=A"@C with A" isomorphic to B* and C isomorphic to (PI A)**. 
Since B and (P/A )* are free of at most countable rank, their duals are products 
of at most countably many copies of Z. 

To show that (A"/A)*=0 suppose h\A" —Z is such that h(A)=0. Then h 
can be extended to P by annihilating C. From the definition of A", h(A")=0 so 
that h = 0 . 

Let Z be given the discrete topology and P the associated cartesian product 
topology. The statement that P* is free on the coordinate projections is equivalent 
to the statement that each homomorphism of P into Z is continuous. Hence every 
endomorphism of P is continuous and the product topology on P is independent 
of the way P is represented as a product of Z's . From lemma 1 we see that if 
P=A@C, then both A and C are products. Moreover this splitting is topological 
and the induced topologies on A and C are the product topologies. 

L e m m a 2. Let AczP and let S be the subgroup of finite sequences in P. 
(a) If A has finite rank, then A is dosed. 
(b) If A has infinite rank, there is an isomorphism of A with P which carries 

A onto a subgroup of P containing S. 
(c) If A is dense in P, there is an automorphism of P which carries A onto a sub-

group of P containing S. 

P r o o f . Let Pn={x^P\xi=Q for /<«} . Then P = PU P2, ... is a base at 0 for 
the topology on P. There are elements a" (n — 1, 2, ...) in A such that 

i) a1 = 0 for i < n; 
ii) cr" = 0 if and only if a" — 0; 
iii) a"„ divides x„ for all x in A f l P„. 

In view of (i), (ii) the an^0 are independent If A has finite rank the set of is fi-
nite and generates A (cf. [6]). Thus A = A in this case proving (a). 
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If A has infinite rank, the set of all n such that o V O is infinite. Let A: be a one-; 
to-one correspondence between the natural numbers and this set. There is an endo-
morphism h of P such that h(x)i=I,„ x„aY"\ The properties (i)—(iii) show that 
h is an isomorphism between P and A. If d" is the element of P whose /7-th coord-
inate is 1 and whose other coordinates are 0, then h(5n) = ak(n> and is in A. Thus 
hr1 is the isomorphism required to prove (b). 

To prove (c) we observe that if A is dense in P it has infinite rank and then 
apply (b). 

Suppose Ac:P. If h is in P * and h(A) = 0, then h(A)=Q because h is con-
tinuous. We therefore have Ac. A(zA" c:P. Moreover, in view of lemmas 1 and 2, 
A and A" are products and A" is a direct summand of P. 

L e m m a 3. Let AcP with A a product and (P/A)* — 0. Then the map P* -*A* 
induced by duality is amonomorphism. IfU = A*/P*, then U* = 0 and P/A %Ext (U, Z). 

P r o o f . The first statement is obvious. Since A is a product, A* is free and 
Ext (A*, Z) = 0. Dualizing the exact sequence 

gives the commutative diagram 

with exact rows. The map r is induced by aA and aP. Since A and P are products 
both aA and aP are isomorphisms. Thus T is an isomorphism and U* = 0. 

As stated in the introduction the next lemma is a consequence of theorem 
1 of [2]. We give here a direct proof using the theory of abelian group extensions. 
Moreover the" method of proof used here, together with the representation theorem 
for Boolean cr-algebras, can be used to prove BALCERZYK'S theorem. 

Le m m a 4. If Q is the additive group of rational numbers, then Ext (Q, P/S)=0. 

P r o o f . Let ti: P-*P/S be the natural projection. Since the sequence 

is exact, it is. enough to show that the image of n* is 0. In terms of extensions this 
means that, for each extension 

there is a homomorphism / : E - ^ P / S which extends 7i. 
For n= 1, 2, ... let e" be an element in E mapping onto 1/«! modulo P. Then 

E is generated by P and e\e2, ... with relations 

0 - . 4 - P - PI A - 0 
W i°p ! T 

0—U* -+A** -*P** — Ext(£/, Z ) - E x t ( ^ * , Z ) - 0 

E x t ( e , p ) = : E x t ( e J p / s ) - o 

(4) 

(5) (5) " e" = (n+l)en+i + an 

where the a" are in P. If / : {e1, e2, ...}— P/S satisfies the relations 

i" 

(6) f(e") = (n+ l)f(en+') + n(a") 
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for all n, then / c a n be extended to a homomorphism of E into P/S with the desired 
properties. We therefore want to define / on the e's so as to satisfy the relations (6). 

Each a" is in P. There are elements b" in S such that + = 0 for 
i<n. We set 

y" = Zk\(ak + bk)\ 
kSh 

the sum has meaning because it is finite on each coordinate. We also define 

x" = yn j n! = 2(k\/n l)(ak + bk). 
t i n 

Then 
y" = yn+1 + n\(a" + b") 

so that 

(7) xn = (n+ l)xn+1 + a" + bn. 

If we now define / ( e " ) = n(x") we see that (7) implies (6) because the b's are in 5. 
Thus the required homomorphism exists. 

A group C is a cotorsion g roup if it is reduced and if C c E and E/C torsion-
free imply that C is a direct summand of E. The group C is the direct sum of a div-
isible group and a cotorsion group if and only if Ext (Q, C)—0 (see HARRISON 
[4] § 2 or NUNKE [5] § 7). Since a pure subgroup of bounded order of a group is 
always a direct summand, every group of bounded order is cotorsion. 

T h e o r e m 5. Each homomorphic image of P is the direct sum of a divisible 
group, a cotorsion group, and the direct product of at most countably many copies ofZ. 

P r o o f . Let AczP. If A has finite rank, let B be the pure subgroup of P gener-
ated by A. The P=B@C where C is a product by lemma 1 and B is a finitely 
generated free group. Then PIA=B/A®C and B/A is finite, hence cotorsion. 

Suppose tha t A has infinite rank. By lemma 1 we have P — A"@C where A" 
and C are products and (A"/A)*= 0. Then P/A=A"/A®C so that the proof will 
be complete once we show that Ext (Q, A"/A) = Q. 

We have inclusions A<zAczA", hence an exact sequence 

(8) 0-~A/A-*A"IA-»A"/A-~Q. 

Since A has infinite rank both A and A" are isomorphic to P. F r o m (8) we get an 
exact sequence 

(9) E x t ( g , A/A) - E x t ( g , A"/A) - Ext (Q, A"/A). 

Since A" and A are both isomorphic to P, lemma 3 gives A"/A ^ Ext ( U , Z) 
for some group U. Applying the associative law for Ext and Tor ([5] p. 225) we get 

Ext(£>, Ext(¿7, Z ) ) % E x t ( T o r ( g , U), Z) = 0. 

The equality holds because Q is torsion-free which implies Tor (Q, U)=0. Thus 
Ext (Q, A" j A) = 0. 
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Since A has infinite rank, there is by lemma 2 an isomorphism of A with P 
such that the image A0 of A contains S. We have then A/A — P/Aq and, since 
SczA 0 czP, an exact sequence 

P/S^P/A^O. 
The sequence 

E x t ( e , p / s ) - E x t ( e , P M o ) - o 

is then exact. By lemma 4 Ext (Q , P/S) = 0 so that Ext (Q, P/A0)=0= Ext (Q, A/A). 
Since the two end groups in (8) are 0 and (8) is exact, the middle group is also 0. 

Thus Ext (Q, A"/A)=0 as desired. 

C o r o l l a r y 6. A torsion-free group is slender if and only if it is reduced, contains 
no copy of the p-adic integers for any prime p, and contains no copy of P. 

P r o o f . We note first that the group of p-adic integers is not slender for the 
homomorphism x — x , / ? ' sends each §" into p" ^ 0. Since a subgroup of a slender 
group is slender, the proof in the forward direction is then easy. 

According to [4] p. 371 a torsion-free cotorsion group C has the for,m 
H o r n { Q j Z , B ) where B is a divisible torsion group. If C is not 0, it contains a 
subgroup isomorphic to Horn (Z(p°°), Z(p°°)) for some prime p. This last group is 
isomorphic to the p-adic integers. Thus every nonzero torsion-free cotorsion 
group contains a copy of the p-adic integers for some p. 

Suppose G is a torsion-free group satisfying the second clause of the corollary. 
A group is slender if and only if every homomorphic image of P in it is slender. 
In view of theorem 5, the preceding paragraph, and the hypothesis on G, a homo-
morphic image of P in G is the product of a finite number of copies of Z and is 
therefore slender by [8]. 

A group is called i^-free if every at most countable subgroup is free. 

C o r o l l a r y 7. An Ht-free group is slender if and only if it contains no copy of P. 

2. In this section we apply corollary 7 to show that every 5-group and every 
PF-group is slender. Various people (see [5] or [7] for example) have shown that 
^-groups and PF-groups are ^ - f r e e . If Be A, then 

Ext (A, C ) - E x t ( 5 , C ) - 0 

is exact for every C. Hence every subgroup of a 5 : group (PF-group) is a 5-group 
( W-group). In view of corollary 7 slenderness will follow if we show that P is neither 
a fi-group nor a W-group. The first of these was shown by BAER in [1]. The second 
is Ext (P, Z) 0. The group structure of Ext (P, Z) is easily described. 

T h e o r e m 8. Let c= 2X°. Then Ext (P, Z) is the direct sum of 2C copies of Q 
and 2C copies of QjZ. 

P r o o f . Let p be a prime. \f.pA = Q, then A is a vector space over ZjpZ whose 
dimension we shall call the p-rank of A. It is the number of summands in any re-
presentation of A as the direct sum of copies of ZjpZ. If A is the direct product of 
b copies of ZjpZ and b is infinite, then the p-rank of A is 2b. 
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Since P/pZ is the direct product of K0 copies of Z/pZ, its p-rank is c = 2 s ° . 
Since Ext ( , Z ) carries direct sums into direct products, Ext (P/pP, Z) is the direct 
product of c copies of Z\pZ and therefore has p-rank 2C. The exact sequence 

0-i5 i f - P/pP-O 

gives an exact sequence 

Horn CP, Z ) - Ext ( P j p P , Z ) £ Ext (P, Z) -Z Ext (P, Z ) - 0 . 

The image of a* is Ext (P, Z) [p]. Moreover Horn (P, Z) has cardinal while 
Ext (P/pP, Z ) has cardinal 2C. Hence Ext (P, Z) [p] has /7-rank 2C. 

Now Ext (P, Z ) is divisible because P is torsion-free. Hence the ^-pr imary 
component of Ext (P, Z) is the direct sum of copies of Z(p~), the number of copies 
being the p-rank of Ext (P, Z) [p], i. e., 2C. Since this is true for all primes, the torsion 
subgroup of Ext (P, Z) is the direct sum of 2C copies of Q/Z. 

Since Ext (P, Z) is divisible, it is the direct sum of its torsion subgroup and 
the direct sum of copies of Q equal in number to its torsion-free rank. We shall 
therefore be finished when we show that the rank of Ext (P , Z ) is 2°. We have 
0—.P —.P® Q exact and rk (P® Q)=rk (P)=c. Thus P®Q is the direct sum of 
c copies of Q. Then 

Ext (P ® Q, Z) - Ext (P, Z) - 0 

is exact and Ext (P® Q, Z) is the direct product of c copies of Ext (Q , Z) . Moreover 
Ext (Q, Z) is torsion-free with rank c. Hence Ext (P<%>Q, Z) has rank 2C. Thus 
Ext (P, Z) has rank ^ 2 C . 

The group P has a sequence of subgroups TY, T2, ... each isomorphic to P 
such that the sum SnTn is direct. We, thus get an exact sequence 

Ext CP, Z ) - n „ E x t ( T „ , Z ) ~ 0 . 

Let pn be the n-th prime and let / be a set of cardinal 2°. There exists, for each n, 
a family O O . e / elements in Ext (T„, Z ) [/?„] independent modulo pn. Let be 
the element in H„ Ext (T„, X) whose n-th coordinate is yni. The family (y,)iei is 
independent so that H„ Ext (T„, Z) has r a n k s 2 c . Thus Ext (P, Z) has rank =?2C. 
Its rank is therefore exactly 2C as required to prove the theorem. 

The discussion at the beginning of this section now gives 

T h e o r e m 9. Every B-group and every W-group is slender. 
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