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Slender Groups*)

By R.J. NUNKE in Seattle (Washington, U.S. A))

Let P be the direct product of countably many copies of the integers Z, i. e.,
the group of all sequences x=(x,, x,, ...) of integers with termwise addition. For
each natural number » let 4" be the element of P whose n-th coordinate is 1 and
whose other coordinates are 0. J. £0§ calls a torsion-free abelian group slender
if every homomorphism of P into it sends all but a finite number of the 6" into 0.
The concept first appeared in [3]. E. SASIADA [8] has shown that all reduced coun-
table groups are slender. The purpose of this paper is to give a new description
of the slender groups and to apply it to show that certain classes of groups are
slender. All groups-in this paper are abelian,

Our starting point is the observation that a group is slender if and only if every
homomorphic image of P in it is slender. Qur first task will be to describe the ho-
momorphic images of P (theorem 5). Once this is done it is easy to describe the
slender groups (corollary 6). The proof of theorem 5 is preceded by four lemmas.
The first two of these are extensions of two results contained in [6]. Some details
of their proofs will therefore be omitted. Lemma 4 is a consequence of theorem
1 of BALCERZYK’s paper [2].

Following J. J. ROTMAN we call a group G a B-group if Ext (G, T) =0 for every
torsion group T, and a W-group if Ext (G, Z)=0. In [7] RoTMAN showed that every
separable B-group and every W-group is slender. His proof however requires the
continuum hypothesis. We shall prove ROTMAN’s results assuming neither the
separability of the B-groups nor the continuum hypothesis.

1. The dual of the group A is the group 4* =Hom (4, Z). There is a natural
homomorphism o,: A —~A4** defined by considering the elements of 4 as homo-
morphisms of 4* into Z. Using the fact that P* is the free group generated by the
coordinate projections, it is easy to show that ¢, is an isomorphism between P
and P** so that P may be identified with its double dual.

Suppose A is a subgroup of P. Taking duals gives an exact sequence
¢)) 0—(P/A)* —~ P+~ A*.

Let A’ be the image of (P/A)* in P*. It consists of all # in P* such that /(4)=0,
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i. e., it is the annihilator of A4 in P*. Let B be the image of P* in A* so that the
sequence
03] 0—~(P/A)* ~P*—~B—0

is exact. Taking duals again gives a commutative diagram

0~A-—+ P — PlA -0
3) la Jop o
0 — B¥ — P** — (P|A)**

with exact rows. In this diagram 6=0,,,, and 4 is induced by o, and 5. We use
ap to identify P with P**. Then the image of B* in P**=P is the annihilator 4”
of A’. It consists of all x in P such that #(x) =0 whenever & is in P* and h(4)=0.

Lemma 1. If ACP, then P=A"&C. Both A” and C are direct products of
at most countably many copies of Z and (A”/A)* =0.

Proof. We refer to diagrams (1)—(3) preceding the lemma. Since A* can be
embedded in a product (of copies of Z) and B=A*, B can also be embedded in
a product. As an image of P*, B is countable. These two properties together imply
that B is free. Hence the sequence (2) splits: It follows that the bottom row of (3)
also splits so that P=A" & C with 4” isomorphic to B* and C isomorphic to (P/4)**.
Since B and (P/A)* are free of at most countable rank, their duals are products
of at most countably many copies of Z.

To show that (A4”/4)*=0 suppose /h:A” -~ Z is such that A(A4)=0. Then A
can be extended to P by annihilating C. From the definition of A”, A(4")=0 so
that 4=0.

Let Z be given the discrete topology and P the associated cartesian product
topology. The statement that P* is free on the coordinate projections is equivalent
to the statement that each homomorphism of P into Z is continuous. Hence every
endomorphism of P is continuous and the product topology on P is independent
of the way P is represented as a product of Z’s. From lemma 1 we see that if
P=A®C, then both A and C are products. Moreover this splitting is topological
and the induced topologies on 4 and C are the product topologies.

Lemma 2. Let ACP and let S be the subgroup of finite sequences in P.

(@) If A has finite rank, then A is closed.

(b) If A has infinite rank, there is an isomorphism of A with P which carries
A onto a subgroup of P containing S.

(©) If A is dense in P, there is an automorphism of P which carries A onto a sub-
group of P containing S.

Proof. Let P,={x¢ P|x;=0 for i<n}. Then P=P, P,, ... is a base at 0 for
the topology on P. There are elements a” (n=1,2,...) in A such that

i) a}=0 for i<n;

i) a"=0 if and only if a"=0;

iii) a® divides x, for all x in ANP,.

In view of (i), (ii) the a"#0 are independent. If 4 has finite rank the set of a"#0 is fi-
nite and generates 4 (cf. [6]). Thus 4 =4 in this case proving (a).
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If A has infinite rank, the set of all n such that "0 is infinite. Let & be a one-
to-one correspondence between the natural numbers and this set. There is an endo-
morphism 4 of P such that h(x),=Z, x,a%™. The properties (i)—(iii) show that
h is an isomorphism between P and A4. If 6" is the element of P whose n-th coord-
inate is 1 and whose other coordinates are 0, then A(6")=da*") and is in 4. Thus
h~1 is the isomorphism required to prove (b).

To prove (c) we observe that if A is dense in P it has infinite rank and then
apply (b). _

Suppose A P. If h is in P* and h(A4)=0, then h(A) 0 because 4 is con-
tinuous. We therefore have A< AC A” c P. Moreover, in view of lemmas 1 and 2,
A and A4” are products and A4” is a direct summand of P,

Lemma 3. Let AC P with A a product and (P/|A)*=0. Then the map P";»A*
induced by duality is amonomorphism. [f U= A*|P*, then U* =0 and P|A ~ Ext (U, Z).

Proof., The first statement is obvious. Since A is a product, 4* is free and
Ext (4*, Z)=0. Dualizing the exact sequence

0Pt A*~U—-0

gives the commutative diagram

0- 4 -~P —~ PA -0
64 |op i7

0 U* — A** ~ Px* ~ Ext(U, Z) —Ext(4*, Z)~0

with exact rows. The map t is induced by ¢, and 6p. Since 4 and P are products
both ¢, and op are isomorphisms. Thus 7 is an isomorphism and U*=0.

As stated in the introduction the next lemma is a consequence of theorem
1 of [2]. We give here a direct proof using the theory of abelian group extensions.
Moreover the method of proof used here, together with the representation theorem
for Boolean o-algebras, can be used to prove BALCERZYK’s theorem.

Lemma 4. If Q is the additive group of rational numbers, then Ext (Q, P/S)=0.
Proof. Let n: P—P/S be the natural projection. Since the sequence
Ext(Q, P)  Ext(Q, P/S)—~0

is exact, it is. enough to show that the image of #n* is 0. In terms of extensions this
means that, for each extension

) 0—+P—E—~Q—0,

there is a homomorphism f: E—P/S which extends =.
For n=1, 2, ... let e" be an element in £ mapping onto 1/n! modulo P. Then
E is generated by P and e!, €2, ... with relations

%) : e" = (n+ e+l 4a"
where the a" are in P. If f: {e', €2, ...} —P/S satisfies the relations
(©) fe) = (n+ Dfe"* )+ n(a”)
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for all n, therifcan be extended to a homomorphism of F into P/S with the desired
properties. We therefore want to define f on the e’s so as to satisfy the relations (6).

Each a" is in P. There are elements " in S such that (a"+5"),=0 for
i<n. We set
¥y = 2 kl(d*+ b¥);

kzn

the sum has meaning because it is finite on each coordinate. We also define

Xt =y nt = 3 (k![nl)(a*+ b¥).

kzn
Then
Y=yt pl(an+ b
so that .
@) x" = (n+1)x"+t a4 b

If we now define f(e”) =n(x") we see that (7) implies (6) because the &’s are in S.
Thus the required homomorphism exists.

A group C is a cotorsion group if it is reduced and if C— E and E/C torsion-
free imply that C is a direct summand of E. The group C is the direct sum of a div-
isible group and a cotorsion group if and only if Ext (Q, C)=0 (see HARRISON
[4] § 2 or NUNKE [5] § 7). Since a pure subgroup of bounded order of a group is
always a direct summand, every group of bounded order is cotorsion.

Theorem 5. Each homomorphic image of P is the direct sum of a divisible
group, a cotorsion group, and the direct product of at most countably many copies of Z.

Proof. Let Ac P. If A has finite rank, let B be the pure subgroup of P gener-
ated by 4. The P=B&C where C is a product by lemma 1 and B is a finitely
generated free group. Then P/4 =B/A@® C and B/A is finite, hence cotorsion.

Suppose that 4 has infinite rank. By lemma 1 we have P=4"® C where 4”
and C are products and (4”/4)*=0. Then P/A=A"/A® C so that the proof will
be complete once we show that Ext (Q, 4”/4)=0.

We have inclusions A—Ac A”, hence an exact sequence
(8 0-+AjA—~A"|A~A"|A~0.

Since 4 has infinite rank both 4 and A” are isomorphic to P. From (8) we get an
exact sequence

) Ext(Q, A/4)~Ext(Q, A”]A)~Ext(Q, A”|4).

Since A” and A are both isomorphic to P, lemma 3 gives A”|A=~ Ext (U, Z)
for some group U. Applying the associative law for Ext and Tor ([5] p. 225) we get

Ext(Q, Ext(U, Z))~Ext(Tor(Q, U), Z)=0.

The equality holds because Q is torsion-free which implies Tor (Q, U)=0. Thus
Ext (Q, A7[/A4)=0.
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Since 4 has infinite rank, there is by lemma 2 an isomorphism of A with P
such that the image A, of 4 contains S. We have then A/4=~ P[4, and, since
Sc A, P, an exact sequence .

P[S—~P[4y—~0.
The sequence .
EXt(Q’ P/S) —’EXt(Q’ P/AO) -0

is then exact. By lemma 4 Ext (Q, P/S) =0 so that Ext (Q, P/4,)=0= Ext (Q, A/A).
Since the two end groups in (8) are 0 and (8) is exact, the middle group is also 0.
Thus Ext (Q, 4”/A)=0 as desired.

‘Corollary 6. A torsion-free group is slender if and only if it is reduced, contains
no copy of the p-adic integers for any prime p, and contains no copy of P. -

Proof. We note first that the group of p-adic integers is not slender for the
homomorphism x—X; x;p' sends each " into p" #0. Since a subgroup of a slender
group is slender, the proof in the forward direction is then easy.

According to [4] p. 371 a torsion-free cotorsion group C has the form
Hom(Q/Z, B) where B is a divisible torsion group. If C is not 0, it contains a
subgroup isomorphic to Hom (Z(p~), Z(p~)) for soime prime p. This last group is
isomorphic to the p-adic integers. Thus every nonzero torsion-free cotorsion
group contains a copy of the p-adic integers for some p.

Suppose G is a torsion-free group satisfying the second clause of the corollary.
A group is slender if and only if every homomorphic image of P in it is slender.
In view of theorem 5, the preceding paragraph, and the hypothesis on G, a homo-
morphic image of P in G is the product of a finite number of copies of Z and is
therefore slender by [8].

A group is called N,-free if every at most countable subgroup is free.

Corollary 7. An R,-free group is slender if and only if it contains no copy of P.

2. In this section we apply corollary 7 to show that every B-group and every
W-group is slender. Various people (see [5] or [7] for example) have shown that
B-groups and W-groups are ¥,-free. If Bc 4, then

Ext(4, C)—Ext(B, C)~0

is exact for every C. Hence every subgroup of a B-group (W-group) is a B-group
(W-group). In view of corollary 7 slenderness will follow if we show that P is neither
a B-group nor a W-group. The first of these was shown by BAEr in [1]. The second
is Ext (P, Z)#0. The group structure of Ext (P, Z) is easily described.

Theorem 8. Let ¢=2%, Then Ext (P, Z) is the direct sum of 2° copies of Q
and 2¢ copies of Q|Z.

Proof. Let p be a prime. If p4=0, then 4 is a vector space over Z/pZ whose
dimension we shall call the p-rank of A. It is the number of summands in any re-
presentation of A as the direct sum of copies of Z/pZ. If A is the direct product of
b copies of Z/pZ and b is infinite, then the p-rank of A is 2%,
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Since P/pZ is the direct product of &, copies of Z/pZ, its p-rank is ¢=2%e,
Since Ext ( , Z) carries direct sums into direct products, Ext (P/pP, Z) is the direct
product of ¢ copies of Z/pZ and therefore has p-rank 2¢, The exact sequence

0-P L P2 PpP-0
gives an exact sequence
Hom (P, Z) — Ext (PpP, Z) & Ext (P, Z) % Ext (P, Z)—0.

The image of o* is Ext (P, Z) [p]. Moreover Hom (P, Z) has cardinal &, while
Ext (P/pP, Z) has cardinal 2¢. Hence Ext (P, Z) [p] has p-rank 2¢.

Now Ext (P, Z) is divisible because P is torsion-free. Hence the p-primary
component of Ext (P, Z) is the direct sum of copies of Z(p~), the number of copies
being the p-rank of Ext (P, Z)[p], i. e., 2¢. Since this is true for all primes, the torsion
subgroup of Ext (P, Z) is the direct sum of 2¢ copies of Q/Z.

Since Ext (P, Z) is divisible, it is the direct sum of its torsion subgroup and
the direct sum of copies of Q equal in number to its torsion-free rank. We shall
therefore be finished when we show that the rank of Ext (P, Z) is 2°, We have
0—~P—~P®Q exact and rk (P® Q)=rk (P)=c. Thus P® Q is the direct sum of
¢ copies of Q. Then

Ext(P® Q, Z)—~Ext(P, Z)—-0

is exact and Ext (P® Q, Z) is the direct product of ¢ copies of Ext (Q, Z). Moreover
Ext(Q, Z) is torsion-free with rank c¢. Hence Ext (P& Q, Z) has rank 2¢. Thus
Ext (P, Z) has rank =2¢.

The group P has a sequence of subgroups T, T3, ... each isomorphic to P
such that the sum Z,7, is direct. We thus get an exact sequence

Ext(P, Z)—TII, Ext(T,, Z) 0.

Let p, be the n-th prime and let 7 be a set of cardinal 2¢, There exists, for each n,
a family (y,,):e; of elements in Ext(T,, Z) [p,] independent modulo p,. Let y; be
the element in IT, Ext (T,, X) whose n-th coordinate is y,;. The family (¥); is
independent so that IT, Ext (7,, Z) has rank=2°, Thus Ext (P, Z) has rank =2°.
Its rank is therefore exactly 2¢ as required to prove the theorem.

The discussion at the beginning of this section now gives

Theorem 9. Every B-group and every W-group is slender.
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