# Non-summable partial sums of orthogonal series 

By DAN J. EUSTICE in Urbana (Illinois, USA)

## Introduction

Let $\left\{\Phi_{n}(x)\right\}$ be an orthonormal system on $[0,1]$ and let $\left\{S_{n}(x)\right\}$ denote the sequence of partial sums of $\sum a_{n} \Phi_{n}(x)$, where $\sum a_{n}^{2}<\infty$. It will be shown that the Riesz summability, $R(\lambda, 1)$, almost everywhere of $\left\{S_{n}(x)\right\}$ does not necessarily imply the $R(\lambda, 1)$-summability of every subsequence of $\left\{S_{n}(x)\right\}$. A condition on the index set $\left\{n_{k}\right\}$ implying the $R(\lambda, 1)$-summability a. e. of $\left\{S_{n_{k}}(x)\right\}$ if $\left\{S_{n}(x)\right\}$ is $R(\lambda, 1)$ summable a. e. will also be demonstrated.

Let $\lambda_{n}$ be a positive, strictly increasing function with $\lambda_{0}=0$ and $\lambda_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$. Then $\left\{S_{n}\right\}$ is $R(\lambda, 1)$-summable if $\sigma_{n}$ converges, where

$$
\sigma_{n}=\frac{1}{\lambda_{n+1}} \sum_{k=0}^{n}\left(\lambda_{k+1}-\lambda_{k}\right) S_{k} .
$$

Zygmund [8] has shown that if the coefficients $\left\{a_{n}\right\}$ are such that

$$
\begin{equation*}
\sum a_{n}^{2}\left(\log \log \lambda_{n}\right)^{2}<\infty \tag{1}
\end{equation*}
$$

then $\left\{S_{n}(x)\right\}$ is $R(\lambda, 1)$-summable a. e. It was recently shown ([1], [4]) that condition (1) implies every subsequence of $\left\{S_{n}(x)\right\}$ is $R(\lambda, 1)$-summable a. e.

The following result is a generalization of a theorem of K . Tandori [6] for $(C, 1)$-summability.

Theorem 1. Let $R(\lambda, 1)$-summability be a Riesz method stronger than convergence. There exists an orthonormal system $\left\{\Phi_{n}(x)\right\}$, a sequence $\left\{a_{n}\right\}$ with $\sum a_{n}^{2}<\infty$, and an index set $v=\left\{v_{k}\right\}$ such that the sequence of partial sums $\left\{S_{n}(x)\right\}$ is $R(\lambda, 1)$ summable a. e. but $\left\{S_{v_{n}}(x)\right\}$ is nowhere $R(\lambda, 1)$-summable.

The existence of such an example was recently conjectured by J. Meder [4].
Theorem 2. Let the sequence of partial sums $\left\{S_{n}(x)\right\}$ of an orthogonal expansion with $\sum a_{n}^{2}<\infty$ be $R(\lambda, 1)$-summable a. e. Then, if $v=\left\{v_{k}\right\}$ is an index set such that

$$
\begin{equation*}
\lambda_{v_{j}}^{2} \sum_{k=j}^{\infty} \frac{\Delta \lambda_{k}}{\lambda_{k+1} \lambda_{v_{k}}^{2}}=O(1) \tag{2}
\end{equation*}
$$

as $j \rightarrow \infty$, where $\Delta \lambda_{k}=\lambda_{k+1}-\lambda_{k}$, the sequence of partial sums $\left\{S_{v_{k}}(x)\right\}$ is $R(\lambda, 1)$ summable a.e.

This is a generalization of a result of ZALCWASSER [7] for ( $C, 1$ )-summability.

## 1. Proof of Theorem 1

The proof of Theorem 1 depends on two lemmas. For any index set $v=\left\{v_{k}\right\}$, let

$$
\begin{equation*}
\sigma_{v, n}(x)=\frac{1}{\lambda_{n+1}} \sum_{k=1}^{n} \Delta \lambda_{k} \dot{S}_{v_{k}}(x) \tag{3}
\end{equation*}
$$

Also, let $\Lambda(x)$ denote the function inverse to a continuous, monotone extension of $\lambda_{n}$.
Lemma 1. For any index set $v=\left\{v_{k}\right\}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma_{v, n}(x)=f(x) \quad \text { a.e. } \tag{4}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} S_{v_{p_{k}}}(x)=f(x) \quad \text { a. e. } \tag{5}
\end{equation*}
$$

where $p_{k}=\left[\Lambda\left(2^{k}\right)\right]$. ( $[x]$ denotes greatest integer function.)
Proof. ([4], [1, Lemma 4. 2]).
Lemma 2. Let $R(\lambda, 1)$-summability be a Riesz method stronger than convergence. Then there exists a sequence $c_{v}$ of positive, non-increasing real numbers such that

$$
\begin{equation*}
\sum c_{v}^{2}\left(\log \log \lambda_{v}\right)^{2}<\infty \tag{6}
\end{equation*}
$$

but $\sum c_{v}^{2}(\log v)^{2}$ diverges.
Proof. It is clear that

$$
\begin{equation*}
\frac{\log n}{\log \log \lambda_{n}} \neq O(1) \tag{7}
\end{equation*}
$$

as $n \rightarrow \infty$, since if it were $O(1)$, any sequence of partial sums that is $R(\lambda, 1)$-summable would be convergent, for (6) would then imply

$$
\begin{equation*}
\sum c_{v}^{2} \log ^{2} v<\infty \tag{8}
\end{equation*}
$$

which, in turn, would imply convergence of $\sum c_{v} \Phi_{v}(x)$ by the theorem of Menchoff and Rademacher [3, p. 164].

A particular sequence $\left\{n_{k}\right\}$ of positive integers will now be defined. Let $n_{0}=1$ and let $n_{1}$ be the smallest integer such that

$$
\frac{\log n_{1}}{\log \log \lambda_{n_{1}}} \geqq 2 .
$$

Such an integer exists by (7). In general, if $n_{1}, \ldots, n_{k}$ have been defined, let $n_{k+1}$ be the smallest integer greater than $\left(n_{k}+1\right)^{2}-1$ and such that

$$
\frac{\log n_{k+1}}{\log \log \lambda_{n_{k+1}}} \geqq 2^{k+1}
$$

Now, let $\left\{c_{v}\right\}$ be defined such that

$$
c_{v}=v^{-1 / 2}\left(\log n_{k}\right)^{-3 / 2}
$$

when $n_{k-1}<v<n_{k}$. Then $\left\{c_{v}\right\}$ is a positive, non-increasing sequence and

$$
\begin{aligned}
\sum_{v=2}^{\infty} c_{v}^{2} \log ^{2} v & =\sum_{k=0}^{\infty} \frac{\sum_{v=n_{k}+1}^{n_{k+1}} c_{v}^{2} \log ^{2} v=\sum_{k=0}^{\infty}\left(\log n_{k+1}\right)^{-3} \sum_{v=n_{k}+1}^{n_{k+1}} \frac{\log ^{2} v}{v} \geqq}{} \\
& \geqq \sum_{k=0}^{\infty} \frac{1}{\log ^{3} n_{k+1}}\left[\frac{\log ^{3}\left(n_{k+1}+1\right)}{3}-\frac{\log ^{3}\left(n_{k}+1\right)}{3}\right] \geqq \\
& \geqq \sum_{k=0}^{\infty}\left[\frac{1}{3}-\frac{1}{3 \cdot 2^{3}}\right]=\infty .
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{v: \lambda_{v} \geqq 2} c_{v}^{2}\left(\log \log \lambda_{v}\right)^{2} & =\sum_{k=1}^{\infty} \sum_{v=n_{k}+1}^{n_{k+1}} c_{v}^{2}\left(\log \log \lambda_{v}\right)^{2} \leqq \\
& \leqq \sum_{k=1}^{\infty} \frac{1}{\log n_{k+1}} \sum_{v=n_{k+1}}^{n_{k+1}} \frac{1}{v \log ^{2} n_{k+1}}\left(\log \log \lambda_{n_{k+1}}\right)^{2} \leqq \\
& \leqq \sum_{k=1}^{\infty} \frac{1}{2^{k+1} \log n_{k+1}} \sum_{v=2}^{n_{k+1}} \frac{1}{v} \leqq \sum_{k=1}^{\infty} \frac{1}{2^{k+1}}<\infty .
\end{aligned}
$$

Proof of Theorem 1. Tandori [6] has shown that if $\left\{c_{v}\right\}$ is a sequence of positive, non-increasing real numbers then condition (8) is necessary and sufficient for the convergence a. e. of $\sum c_{v} \psi_{v}(x)$ for every orthonormal system $\left\{\psi_{v}(x)\right\}$. Moreover, if condition (8) is not satisfied, $\left\{\psi_{v}(x)\right\}$ can be determined such that for a suitably chosen index set $\left\{N_{k}\right\}$, the series $\sum c_{v} \psi_{v}(x)$ with the $N_{k}$-th terms deleted, diverges everywhere. This example of Tandori is a modification of an example of Menchoff [5]. By Lemma 2, the sequence $\left\{c_{v}\right\}$ can be chosen such that (8) does not hold but (6) does. Let $\sum c_{v}^{*} \psi_{v}^{*}(x)$ denote the orthogonal series formed by deleting the $N_{k}$-th terms and re-indexing. Denote its partial sums by $\left\{S_{n}^{*}(x)\right\}$. Condition (6) then implies that $\left\{S_{n}^{*}(x)\right\}$ is $R(\lambda, 1)$-summable a. e. Also, if $p_{v}=\left[\Lambda\left(2^{v}\right)\right]$, then $\left\{S_{p_{\nu}}^{*}(x)\right\}$ converges a. e. The theorem will be proved by constructing an orthonormal system $\left\{\Phi_{n}(x)\right\}$, a sequence $\left\{a_{v}\right\}$, and an index set $\left\{v_{k}\right\}$ such that

$$
\begin{equation*}
S_{p_{v}}(x)=S_{p_{w}}^{*}(x) \tag{9}
\end{equation*}
$$

where $w=w_{v}$ tends to $\infty$ as $v$ tends to $\infty$, and such also that

$$
\begin{equation*}
S_{v_{p_{k}}}(x)=S_{k}^{*}(x) \tag{10}
\end{equation*}
$$

Property (9) will show that $\left\{S_{n}(x)\right\}$ is $R(\lambda, 1)$-summable a. e. and (10) will show the divergence of $\sigma_{v, n}(x)$ by Lemma 1 .

The index set $\left\{v_{k}\right\}$ will now be constructed to have the property that for every $m \geqq M$,

$$
\begin{equation*}
\max \left\{k: v_{p_{k}} \leqq p_{m}\right\}=p_{w} \tag{11}
\end{equation*}
$$

for some $w$. Let $v_{i}=i$ for $i=1,2, \ldots, p_{p_{1}}$. Let $\mu$ be the smallest integer such that:

$$
p_{p_{\mu}+R+1}-p_{p_{\mu}+R}>p_{p_{2}}-p_{p_{1}}
$$

for some $R, 0 \leqq R \leqq p_{\mu+1}-p_{\mu}$. Such a value of $\mu$ exists since the sequence $\left\{p_{v+1}-p_{\nu}\right\}$, $v=0,1, \ldots$ cannot be bounded if $\cdot R(\lambda, 1)$-summability is stronger than convergence [2]. Now, let

$$
v_{p_{p_{1}}+i}=p_{p_{\mu}+R}+i, \quad i=1,2, \ldots, p_{p_{2}}-p_{p_{1}}
$$

In general, suppose $v_{i}$ has been defined for $i=1, \ldots p_{p_{k}}$; let $\mu^{\prime}$ be the smallest integer greater than $p_{k}$ such that

$$
p_{p_{\mu^{\prime}}+R+1}-p_{p_{\mu^{\prime}}+R}>p_{p_{k+1}}-p_{p_{k}}
$$

for some $R, 0 \leqq R \leqq p_{\mu^{\prime}+1}-p_{\mu^{\prime}}$. Now, define

$$
v_{p_{p_{k}}+i}=p_{p_{\mu^{\prime}}+R}+i, \quad i=1,2, \ldots, p_{p_{k+1}}-p_{p_{k}}
$$

This defines $\left\{v_{i}\right\}$ such that for every $m \geqq p_{p_{1}}$, property (11) holds.
Now, define

$$
a_{v}= \begin{cases}c_{n}, & v=v_{p n}  \tag{12}\\ 0, & \text { otherwise }\end{cases}
$$

and let $\Phi_{p_{n}}(x)=\psi_{n}^{*}(x)$. Complete the definition of the orthonormal system $\left\{\Phi_{n}(x)\right\}$ with sucessive members of $\psi_{N_{k}}(x)$. It. will be shown that properties (9) and (10); are satisfied for this system.

$$
S_{v_{p_{n}}}(x)=\sum_{k=1}^{v_{n}} a_{k} \Phi_{k}(x)=\sum_{k=1}^{n} a_{v_{p_{k}}} \Phi_{v_{p_{k}}}(x)=\sum_{k=1}^{n} c_{k}^{*} \psi_{k}^{*}(x)=S_{n}^{*}(x)
$$

Thus, (10) is proved.

$$
S_{p_{m}}(x)=\sum_{k=1}^{p_{m}} a_{k} \Phi_{k}(x)=\sum_{k: v_{p_{k}} \leq p_{m}} a_{v_{p_{k}}} \Phi_{v_{p_{k}}}(x)=\sum_{k=1}^{p_{w}} c_{k}^{*} \psi_{k}^{*}(x)=S_{p_{w}}^{*}(x)
$$

Thus, (9) holds and the proof the theorem is completed.

## 2. Proof of Theorem 2

Let $f(x)$ be a square-integrable function to which $\left\{S_{n}(x)\right\}$ is $R(\lambda, 1)$-summable a. e.

$$
\begin{gather*}
\frac{1}{\lambda_{n+1}} \sum_{k=j}^{n} \Delta \lambda_{k}\left[S_{v_{k}}(x)-f(x)\right]^{2} \leqq \\
\leqq \frac{2}{\lambda_{n+1}} \sum_{k=1}^{n} \Delta \lambda_{k}\left[S_{v_{k}}(x)-\sigma_{v_{k}}(x)\right]^{2}+\frac{2}{\lambda_{n+1}} \sum_{k=1}^{n} \Delta \lambda_{k}\left[\sigma_{v_{k}}(x)-f(x)\right]^{2} \tag{13}
\end{gather*}
$$

Since $\sigma_{v_{k}}(x)$ converges to $f(x)$ a. e., the last term on the right side of (13) converges to 0 a . e. The first term on the right side of (13) will converge to 0 a . e. if

$$
I_{n}(x)=\sum_{k=1}^{n} \frac{\Delta \lambda_{k}}{\lambda_{k+1}}\left[S_{v_{k}}(x)-\sigma_{v_{k}}(x)\right]^{2}
$$

is finite a. e. as $n \rightarrow \infty$. To show this it is seen that

$$
\begin{gathered}
\int_{0}^{1} I_{n}(x) d x=\sum_{k=1}^{n} \frac{\Delta \lambda_{k}}{\lambda_{k+1}} \int_{0}^{1}\left(\frac{1}{\lambda_{v_{k}+1}} \sum_{j=1}^{v_{k}} \lambda_{j} a_{j} \Phi_{j}(x)\right)^{2} d x= \\
=\sum_{k=1}^{n} \frac{\Delta \lambda_{k}}{\lambda_{k+1}} \cdot \frac{1}{\lambda_{v_{k}+1}^{2}} \sum_{i=1}^{k} \sum_{j=v_{i}-1+1}^{v_{i}} \lambda_{j}^{2} a_{j}^{2} \leqq \sum_{k=1}^{n} \frac{\Delta \lambda_{k}}{\lambda_{k+1}} \cdot \frac{1}{\lambda_{v_{k}+1}^{2}} \sum_{i=0}^{k} \lambda_{v_{i}}^{2} \sum_{j=v_{i}-1+1}^{v_{i}} a_{j}^{2} .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty_{0}} \int_{0}^{1} I_{n}(x) d x \leqq \sum_{j=1}^{\infty} \lambda_{v_{j}}^{2} \sum_{i=v_{j-1}+1}^{v_{j}} a_{i}^{2} \sum_{k=j}^{\infty} \frac{\Delta \lambda_{k}}{\lambda_{k+1} \lambda_{v_{k}}^{2}}= \\
& \quad=O(1) \sum_{j=1}^{\infty} \sum_{i=v_{j-1}+1}^{v_{j}} a_{i}^{2}=O(1) \sum_{j=1}^{\infty} a_{j}^{2}<\infty .
\end{aligned}
$$

This completes the proof of the theorem.

## Bibliography

[1] D. Eustice, Summability of orthogonal series, Thesis, Purdue University, 1960.
(2) G. H. HARDY and M. Riesz, The general theory of Dirichlet series (Cambridge, 1952).
[3] S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen (Warszawa-Lwdw, 1935).
[ [4] J. Meder, On very strong Riesz-summability of orthogonal series, Studia Math., 20 (1961), 285-300.
[5] D. Menchoff, Sur les séries de fonctions orthogonales (Deuxième Partie), Fund. Math., 8 (1926). 56-108.
[6] K. Tandori, Uber die orthogonalen Funktionen I, IV, VI, Acta Sci. Math., 18 (1957), 57-130; 19 (1958), 18-25; 20 (1959), 14-18.
:[7] Z. Zalcwasser, Sur la sommabilité des séries de Fourier, Studia Math., 6 (1936), 82-88.
[18] A. Zygmund, Sur l'application de la première moyenne arithmetique dans la théorie des séries de fonctions orthogonales, Fund. Math., 10 (1927), 356-362.

