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On a problem of L. Fuchs 

By JÓZSEF DÉNES in Budapest 

Introduction 

In his book [2] L . F U C H S raised the following problem: "Delete k. elements at 
random in the Cayley table of a finite group G of order n. Determine the greatest 
k = k(ri) for which 

(a) the rest ,of the table always determines G up to isomorphism; 
(b) the table can be reconstructed uniquely f rom the rest." 
The aim of this paper is to solve problem (b) without the restriction that the 

group is Abelian. 
It will be shown that for any given group G of order n^ 4 we have 

k(n) = 2 « - l . 

Thus k(n) unexpectedly does not depend on the structure of the group, it depends 
only on the order of the group (Theorem 1). In the case n = 4 we get k(ri) = 3 (Theorem 

L thank for the useful help of Prof. L . F U C H S . 

§ 1 . Definitions, notations 

An abstract group is completely known if each of its elements is represented by 
a symbol and the product of any two symbols in any given order is exhibited. In 
finite groups the multiplication rule is given conveniently by a square table (called 
the Cayley table of the group) in which the products in a row have the same left 
factor and the products in a column have the same right factor. 

Here we shall deal with finite groups, therefore we may assume that the elements 
of the groups are natural numbers 1,2, ...,/?. Then the Cayley table of a group G is 
(1) a Latin square, i. e. a quadratic matrix ll«i/tll each of whose rows and columns is 
a permutation of 1,2, . . . , « ; and (2) the quadrangle criterion1) holds, i.e., for all 
indices /,'./', ..., the equalities aik = ailkt, an = ahh, aJk = ajlki imply aj} = aJlh . 

Conversely, any matrix \\alk\\ with properties ( l ) ' and (2) is a Cayley table of a 
group G; moreover, we may choose an arbitrary row and a column, say the /-th row 
and the /-th column, and consider them as the products of the elements by the group 

') The quadrangle criterion was at first pointed out by FROLOV in [1] . 
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identity f rom the left and f rom the right, respectively. Then aJl will be the identity 
of the arising system GJh and necessarily anajk = aik. Now (1) ensures that GJt is a 
loop and (2) implies associativity, thus G j l is a group. Clearly, any group with the 
same Cayley table arises in this way. 

All these G}1 are isomorphic, for a transition f rom Gj, to Grs means simply that 
we take three permutat ions Q, a, x such that aX b = c i n G „ i f and only if Q(a)a(b) = 
= T(c) in Gj,, i. e., the Gjt and G r , are isotopic, and hence isomorphic groups. 

Note that different multiplication tables of a group can be transformed into one 
another by row and column interchanges.2) 

If | |a i t | | and II 1̂1 are two Cayles tables, with the same number of rows, then 
we call the i-th rows corresponding rows, the A>th columns corresponding columns, 
and alk and bik corresponding elements. 

Any permutat ion may be written as product of disjoint cycles. If all these cycles 
have the same length, the permutat ion is called regular. If for the permutations 
a, x we have a{a) ^T(G) exactly for k letters a, then we say that they differ in k places. 

Deleting k arbitrary elements in the Cayley table of a finite group G of order n, 
let k(G) denote the greatest number of elements for which the table can be recon-
structed uniquely from the rest. 

§ 2. Determination of k(G) 

Lemma 1. Let N and Q denote two distinct regular permutations of degree n 
and of order I, m (m^l^n), respectively. If n is even and n, Q are of the form 

N = ( / , i2... /„), Q = (7, i2... i^) ( / „ . . . in), 
2 2 

then they differ in two places. In all other cases they differ at least in three places. 

P r o o f . Let us • suppose that IT and Q differ in two places. Then there is a 
transposition r such that N = QT. Both N and Q are products of disjoint cycles. If the 
letters of r belong to the same cycle of Q, then in the product nx this cycle splits 
into two, while in the other case the converse situation holds3). As n and q are regular, 
they must have the indicated form. 

L e m m a 2. Two different Cayley tables, A and A', of a group G differ from 
each other at least in 2n places. ° 

P r o o f . If all the corresponding rows of the two Cayley tables are different, 
then every row differs f rom the corresponding one at least in two places, and the two 
Cayley tables differ at least in 2n places. The same argument applies if the corres-
ponding columns are different. 

For the rest of the proof we may assume that t he / - th rows and the g-th columns 
of the two Cayley tables are equal. By the quadrangle criterion afg=a}g, a f j = a ' f j . 
aig = a'ig imply a,-,- =a!j for all indices i, j whence A=A'. Thus this case cannot occur. 

L e m m a 3. If G and G' are different groups of the same order n (n ^4), then 
their arbitrary Cayley tables, A and A' differ from each other at least in 2n places. 

2) Similar transformations of Latin squares are described in S C H O N H A R D T [4] . 
3) The same statement, is in SERRET [5], p. 230. 
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P r o o f . We may suppose that at least one pair of corresponding rows of A and 
A' is equal. Otherwise we could use the same inference as that in the proof of Lemma 2 
t o obtain the desired conclusion. 

Every finite group may be represented as a group of regular permutations (see 
•e. g. J O R D A N [3]). Such representations4) of G and G' are 

and 

where we may suppose that x varies over the elements of the equal row. 
Let P, P' denote the regular permutation groups corresponding to G, G'. They 

are different, thus their intersection 

H = PH P' 

( a subgroup of the symmetric group of degree n) is of order Clearly n—s rows 

•of the Cayley tables of G and G' are different, n—s— 

n At first we consider the case when s^ — and the set (P\J P')\H does not 

contain both permutations of the form 

T = Q = (ili2---in)(i!L •••'„)• 
2 2 

Then we have 3 (n — s) £ 2n. 
By Lemma 1, the Cayley tables of G and G' are different at least in 3 ( n — s ) 

places, so at least in 2n places. 
n 

If i = — and the set ( P U P ' ) \ H does not contain n and g, then we show that 

the unequal corresponding rows differ f rom each other at least in four places. We 
verify that ip and <T(Ip £P\H, o£P'\H) differ f rom each other at least in four 
places. If they differed f rom each other only in three places, then there would be a 
cycle tp of order 3 such that o(p = \jj. Taking into consideration the regularity of ip 
and cr and the fact that p is a product at least two transpositions, the difference be-
tween the numbers of cycles of ip and a is 2, or 0. Then ip and a must have the form 
1), or 2): 

1) ip = (ili2...i„), a = (/,... i±)(in_ .../2«) (/2»,.•••'„), 
3 3 3 3 

2) ip = (/.,...ij iJ+ ,...ij+k iJ+k+ ,.../„)(...)(...)..., 
<T = (/, ...ij ' j + t+i iJ+i...ij + k)(...)(...).... 

As H is a subgroup of index 2 in P and P', the powers of ij/ and a of even expo- . 
nents are in H. Now we restrict ourselves to the case «=>6. In the first alternative 

4) Latin squares may be represented by permutations, if the Latin square is a Cayley table, then 
it may be represented by regular permutations. Further details may be found in S C H O N H A R D T [ 4 ] . 
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ip"-2<j2£H and ip"-2o2 (i,,) = /„. Since is regular, i¡/n~2a2 must be equal to the 
2 

identical permutation. But because of \p"~2o2 (/.. + 2) = i2 this is impossible. In the 

second case we may suppose that \j/ and a do not consist of a single cycle, for other-
wise {ijj}'=P and [<j} = P' are cyclic groups and our statement is trivial. We may 
assume j S 3 . As o 2 £ H , \jjm~2(j2 is regular and ^m"2cr2(/'3) = /'3, so it is the iden-
tical permutation. But because of \jim~2a2{i2) ¥=• i2, this is impossible. 

n 
Finally if .s S — and n, g£(PU P')\ H then P = {n}, P' = {a, j?} where <r is an 

arbitrary element of P' not in {p} = R. Clearly PC) R = e (the identical permutation) 
n 

as every cycle of a power ^ ( ^ s ) contains letters both larger and smaller than —;. 

and this is impossible for the elements of R. So H(~)R = e. Therefore the products 
a/? (a £ / / , /?€/?) are different; As the index of R is 2, the order of H is at most 2. 
Therefore we may have only two equal rows in arbitrary Cayley tables of G and G'. 

Let us suppose that among the elements of P\H and P'\H there are pairs, other 
than n and g and their inverses whose letters differ from each other in two places. 
If 7TK, g' (NK Q g ) is such a pair, then Q' would not be an element of {¿)}, O' $ {g}, 
Q'Q would not be regular. 

As the elements of the sets P\H and P\H differ at least in three places from 
each other, except for n and g, arbitrary Cayley tables of G and G' differ at least in 
3(n — 4 ) + 2-2 places from each other. This number is n when « > 7 . 

It remains to consider the cases when n ^ 7 . If n is a prime number, then all 
groups of order n are cyclic groups and so our statement is trivial. 

The only case that remained is n = 6. In view of Lemma 2, we may without 
loss of generality suppose that G and G' are not isomorphic, and so the groups in 
question are the cyclic and the dihedral groups of order six. Now 

P - {(123456)}, P' = {(123) (456), (16) (25) (34)}. 
H cannot contain the only permutation (14) (25) (36) of order 2 because g(l 4) (25) 
(36) = (I 23) (456) (14) (25) (36) = (153426) and ( 1 5 3 4 2 6 ) ^ ' . Thus ¿ = 1 and 
therefore arbitrary Cayley tables of G and G' differ from each other in 3(n — 3)+-
+ 2-2 = 3/7 — 5 = 13 > 2 - 6 places. This finishes the.proof of Lemma 3. 

Theorem 1. For a group G of order n we have 

k(G) = 2 / 7 - 1 

P r o o f . Let us delete 2n—l arbitrary elements in a Cayley table A of the 
group G of order n(nj±4). Suppose that there is a Cayley table A' (A ^ A') of G 
having the property that the rest of A may be completed to A'. Then clearly, A and 
A' differ in 2/7 — I places, which is impossible because of Lemmas 2 and 3. 

We have to prove now that we can delete 2n elements of a Cayley table A. of a 
group G of order /7, such that the rest of the table may be completed to a Cayley 
table A' different from A. If we exchange arbitrary symbols, a and b, throughout in 
A, then we obtain a new Cayley table differing from A exactly in 2/7 places. So the 
proof of our statement is completed. 

C o r o l l a r y . Two different Cayley tables of arbitrary groups of order n (n ^ 4) 
are different from each other at least in In places. 
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T h e o r e m 2. An arbitrary Cayley table of the cyclic group of order 4 differs~ 
at least in four places from an arbitrary Cayley table of Klein s group. 

P r o o f . The two Cayley tables given below are different in four places. 

a b c d 

b c d a 
c d a b 
d a b c 

a b c d 

b a d c 
c d a b 

d c b a 

(cyclic group of order 4) 

( K L E I N ' S g r o u p ) 

In order to complete our proof we have to show that all distinct Latin squares. 
are different from each other in at least four places. 

This follows from the fact that if two corresponding rows (columns) are unequal, 
then they differ at least in two places. Thus if there is a pair of unequal corresponding 
rows, then there are at least two pairs of unequal columns, and therefore at least 
four different places. 

§ 3. Remarks 

The following statements are immediate consequences of our results above: 
1) The result remains the same if we restrict the class of groups to any 

one of the following classes of finite groups: (i) solvable groups; (ii) nilpotent 
groups; (iii) abelian groups; (iv) cyclic groups. 

2) If we suppose that the Cayley tables have to be normal, then5) A:(C) = 
2/7 — 1 for all n (inclusively the case n= 4). 
It seems to be natural to raise the following problem: 
What is the number of multiplication tables of distinct groups of order n that , 

differ from each other at most in m places? 
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5) A Cayley table is called normal if its main diagonal contains only unit elements. For some • 
properties of normal Cayley tables see ZASSENHAUS [7], p. 2 9 . 


