A cosine functional equation in Banach algebras*

By SVETOZAR KUREPA in Zagreb (Yougoslavia)

§ 1. Introduction

Throughout this paper $B=\{a, b, \ldots\}$ denotes a real or complex Banach algebra ${ }^{1}$) with unit element $e ; R=\{\alpha, \beta, \ldots, t, s, \ldots\}$ the set of all. real numbers, and $X=\{x, y, \ldots\}$ a Banach space.

In this paper we study the functions $f: R \rightarrow B$ such that:

$$
\begin{equation*}
f(t+s)+f(t-s)=2 f(t) f(s), \quad f(0)=e \tag{1}
\end{equation*}
$$

for all $t, s \in R$, and functions $F: X \rightarrow B$ such that:

$$
\begin{equation*}
F(x+y)+F(x-y)=2 F(x) F(y), \quad F(0)=e \tag{2}
\end{equation*}
$$

for all $x, y \in X$.
The functional equation (1) was studied in our earlier papers. In [2] we have solved this equation under the assumption that the elements of B are square matrices of finite order. In [3] B was the algebra of all bounded normal operators defined on some Hilbert space. Assuming the weak continuity of f we have proved that

$$
f(t)=\cos t a=\int \cos t \lambda d e(i)
$$

where a is a normal operator which does not depend on $t, e(\lambda)$ is the spectral resolution of identity which corresponds to a and integration is over the complex plane. Furthermore in [4] B was the Banach algebra of all continuous and linear operators which are defined on some Banach space Y. Assuming that Y is reflexive and separable we have proved that weak measurability of f on one interval implies weak continuity of f on R. The functional equation (2) was also considered in [4]. Assuming that B is the set of complex numbers and F is continuous it was proved that there exists an additive and continuous functional $A: X \rightarrow B$ such that

$$
F(x)=\cos A(x)
$$

for all $x \in X$.
It is the object of this paper to treat the general case of functional equations (I) and (2) assuming in (1) that f is measurable and in (2) that F is measurable on every
*) This work wăs'supported by the National Science Foundation, contract NSFG 9423.
i) We follow the terminology of Hille-Phillips [1].
ray. We remark that the motivation for such considerations were the following problems A and B in Hille - Phillips [1], p. 278:

Problem A. Determine all measurable functions f on $(0,+\infty)$ to B such. that for all t and s in $(0,+\infty)$

$$
\begin{equation*}
f(t+s)=f(t) f(s) \tag{3}
\end{equation*}
$$

Problem B. Determine all functions F on a complex Banach space to a complex Banach algebra B which are measurable on rays and satisfy

$$
\begin{equation*}
F(x+y)=F(x) F(y) \tag{4}
\end{equation*}
$$

for all x and y in a given cone.
It was proved ([1] pp. 280-291) that measurability of f which satisfies (3) implies continuity and that

$$
f^{\prime}(t)=\sum_{0}^{\infty} a^{n} t^{n} / n!\quad(a \in B)
$$

for all $t \in(0,+\infty)$ provided that $f(t) \rightarrow e$ as $t \rightarrow 0$. If the function F satisfies (4), if it is measurable on every ray and has property that $\lim F(t x)=e(t \rightarrow 0)$ uniformly with respect to x on some sphere, then

$$
F(x)=\sum_{0}^{\infty}[P(x)]^{n} / n!
$$

where $P: X \rightarrow B$ is an additive and continuous function.
In $\S 2$ we treat the problem A for the functional equation (1) and in $\S 3$ we treat the problem B for the functional equation (2), i. e. we consider the following two problems:

Problem A^{\prime}. Determine all measurable functions f from the set R of all real numbers in a real or complex Banach algebra B such that for all t and s

$$
f(t+s)+f(t-s)=2 f(t) f(s), \quad f(0)=e
$$

Problem B^{\prime}. Determine all functions F on a Banach space X to a Banach algebra B which are measurable on rays for all x, y and satisfy the functional equation

$$
F(x+y)+F(x-y)=2 F(x) F(y), \quad F(0)=e
$$

We proye that in the first case there exists an element $a \in B$, independent of t, such that

$$
\begin{equation*}
f(t)=\sum_{0}^{\infty} a^{n} t^{2 n} /(2 n)! \tag{5}
\end{equation*}
$$

for all $t \in R$, where the series converges uniformly and satisfies the functional equation (1). Furthermore it is always possible to imbed the Banach algebra B in another Banach algebra \dot{B} which consists of all square matrices of order 2, the elements of which are elements of B, in such a way that

$$
\dot{f}(t)=\left(\begin{array}{cc}
f(t) & 0 \\
0 & f(t)
\end{array}\right)=\sum_{0}^{\infty}(\hat{a} t)^{2 n} /(2 n)!
$$

where \hat{a} is an element of \hat{B}. If the element a in (5) possesses a regular square root in B then the functional equation (1) can be reduced to the functional equation of type (3). If 1) B is a Banach algebra of bounded linear operators which are defined on some Hilbert space; 2) the element a in (5) possesses a regular square root in B and 3) $\sup _{t \in R}\|f(t)\|<+\infty$, then

$$
f(t)=\sum_{0}^{\infty}(-1)^{n}\left(t d_{0}\right)^{2 n} /(2 n)!
$$

where the operator d_{0} is similar to a selfadjoint operator, i. e. there is a bounded and regular operator q such that $q d_{0} q^{-1}$ is a selfadjont operator.

Concerning the problem B^{\prime} we prove in $\S 3$ that

$$
F(x)=\sum_{0}^{\infty}[A(x)]^{n} /(2 n)!
$$

for all $x \in X$, where $A: X \rightarrow B$. The function A is continuous if and only if $\lim F(t x)=$ $=e(t \rightarrow 0)$ uniformly with respect to x in some sphere. If $\|e-A(x)\|<1$ for some $x^{-\prime}$ then $A(x)=[L(x)]^{2}$, where $L: X \rightarrow B$ is an additive function which is continuous if A is continuous.

§ 2. Problem \mathbf{A}^{\prime} for a cosine functional equation

Theorem 1. Let $R=\{\alpha, \beta, \ldots, t, s, \ldots\}$ be the set of all real numbers, $B=\{a, b, \ldots\}$ a real or complex Banach algebra with unit e and $f: R \rightarrow B$ a singlevalued measurable function such that

$$
\begin{equation*}
f(t+s)+f(t-s)=2 f(t) f(s), \quad f(0)=e \tag{6}
\end{equation*}
$$

holds for all $t, s \in R$. Then there is one and only one element $a \in B$ such that

$$
\begin{equation*}
f(t)=e+\frac{a t^{2}}{2!}+\frac{a^{2} t^{4}}{4!}+\frac{a^{3} t^{6}}{6!}+\ldots=\sum_{0}^{\infty} \frac{a^{n} t^{2 n}}{(2 n)!} \tag{7}
\end{equation*}
$$

the series (7) being absolutely convergent for every $t \in R$.
Proof. From (6) and $f(0)=e$ we see that $f(-t)=f(t)$ and $f(t) f(s)=f(s) f(t)$ for every pair $t, s \in R$. Since f is measurable the numerical function $\|f(t)\|$ is measurable in the Lebesgue sense. Hence there is a perfect set P of strictly positive and finite measure on which $\|f(t)\|$ is bounded. This in the same way as in [3] implies that $\|f(t)\|$ is bounded on every finite interval. Since f is measurable and locally bounded it is locally integrable in the Bochner sense ([1], theorem 3. 7. 4, p. 80).

Now set $f_{0}(t)=f(t)-e$. The function f_{0} is measurable and locally bounded.. Furthermore it satisfies the functional equation:

$$
\begin{equation*}
f_{0}(t+s)+f_{0}(t-s)=2 f_{0}(t)+2 f_{0}(s)+2 f_{0}(t) f_{0}(s) \tag{8}
\end{equation*}
$$

If in (8) we set $u=t+s$ and $v=t-s$, then we get:

$$
f_{0}(u)+f_{0}(v)=2 f_{0}\left(\frac{u+v}{2}\right)+2 f_{0}\binom{u-v}{2}+2 f_{0}\left(\frac{u+v}{2}\right) f_{0}\left(\frac{u-v}{2}\right) .
$$

Integration from 0 to 1 leads to:

$$
f_{0}(v)=\left[-\int_{0}^{1}+4 \int_{\frac{v}{2}}^{\frac{1+v}{2}}+4 \int_{-\frac{v}{2}}^{\frac{1-v}{2}}\right] f_{0}(u) d u+4 \int_{\frac{v}{2}}^{\frac{1+v}{2}} f_{0}(u) f_{0}(u-v) d u
$$

We assert that f_{0} is a continuous function. In order to prove this it is sufficient to consider the integral

$$
\begin{equation*}
\int_{\frac{0}{2}}^{\frac{1+v}{2}} f_{0}(u) f_{0}(u-v) d u=\left\lvert\, \int_{\frac{v}{2}}^{0}+\int_{\frac{1}{2}}^{\frac{1}{2}+\frac{v}{2}}+\int_{0}^{\frac{1}{2}} f_{0}(u) f_{0}(u-v) d u .\right. \tag{9}
\end{equation*}
$$

Suppose that $v \rightarrow v_{0}$. Then

$$
\begin{aligned}
& \left\|\int_{\alpha}^{\alpha+\frac{v}{2}} f_{0}(u) f_{0}(u-v) d u-\int_{\alpha}^{\alpha+\frac{v_{0}}{2}} f_{0}(u) f_{0}\left(u-v_{0}\right) d u\right\| \leqq \\
& \leqq 3 M^{2}\left|\left(v-v_{0}\right) / 2\right|+M \int_{\alpha}^{\alpha+\frac{v_{0}}{2}}\left\|f_{0}(u-v)-f_{0}\left(u-v_{0}\right)\right\| d u,
\end{aligned}
$$

where M is a suitably chosen constant. But the last integral tends to zero as $v \rightarrow v_{0}$ ([1], theorem 3.8.3, p. 86). Taking $\alpha=0$ and $1 / 2$ we find that two of the integrals on the right hand side of (9) are continuous functions of v. For the third integral in (9) we have:

$$
\left\|\int_{0}^{\frac{1}{2}} f_{0}(u) f_{0}(u-v) d u-\int_{0}^{\frac{1}{2}} f_{0}(u) f_{0}\left(u-v_{0}\right) d u\right\| \leqq M \int_{0}^{\frac{1}{2}}\left\|f_{0}(u-v)-f_{0}\left(u-v_{0}\right)\right\| d u \rightarrow 0
$$

Thus f_{0} is a continuous function on R and so is f too. This implies that

$$
\lim _{\alpha \rightarrow 0} \frac{1}{\alpha} \int_{0}^{\alpha} f(t) d t=f(0)=e .
$$

Hence there is a number γ such that

$$
\left|-\frac{1}{\gamma} \int_{0}^{\gamma} f(t) d t-e\right|<1,
$$

and consequently such that

$$
\left.c=\int_{0}^{0} f(t) d t\right]^{-1}
$$

exists.

Now we integrate (6) from 0 to α with respect to s. We get

$$
\begin{equation*}
2 f(t) \int_{0}^{\alpha} f(s) d s=\int_{i}^{\alpha+t} f(s) d s+\int_{-t}^{\alpha-t} f(s) d s \tag{10}
\end{equation*}
$$

From (10) we find:

$$
\begin{equation*}
\left.\left.2[f(t+u)-f(t)]\right|_{\dot{0}} ^{\alpha} f(s) d s=\left.\right|_{\alpha+1} ^{x+t+u}+\int_{\alpha-1}^{x-t-u}-\int_{i}^{t+u}-\int_{-t}^{-t-u} f(s) d s\right] . \tag{11}
\end{equation*}
$$

If in (11) we set $\alpha=\gamma$, multiply by c, divide by u and let $u \rightarrow 0$, we get:

$$
\begin{equation*}
2 \lim _{u \rightarrow 0}[f(t+u)-f(t)] / u=[f(\gamma+t)-f(\gamma-t)] c . \tag{12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
g(t)=d f / d t=\lim _{u \rightarrow 0}[f(u+t)-f(t)] / u \tag{13}
\end{equation*}
$$

.exists for every t, i. e. f is a differentiable (in fact strongly differentiable) function. Now we divide (11) by u and let $u \rightarrow 0$. We get

$$
\begin{equation*}
2 g(t) \int_{0}^{\alpha} f(s) d s=f(\alpha+t)-f(\alpha-t) \tag{14}
\end{equation*}
$$

From (14) and (6) we find:

$$
\begin{equation*}
f(t+s)=f(t) f(s)+g(t) \int_{0}^{s} f(u) d u \tag{15}
\end{equation*}
$$

which, because of the symmetry, leads to

$$
\begin{equation*}
g(t) \int_{0}^{s} f(u) d u=g(s) \int_{0}^{t} f(u) d u . \tag{16}
\end{equation*}
$$

If we take $s=\gamma$ in (16) we get:

$$
g(t) / t=c g(\gamma)(1 / t) \int_{0}^{t} f(u) d u
$$

Thus

$$
\begin{equation*}
\lim _{t \rightarrow 0} g(t) / t=c g(\gamma)=a \tag{17}
\end{equation*}
$$

exists and it is anrelement of B. If we divide (16) by t and allow $t \rightarrow 0$ we find:

$$
g(s)=a \int_{0}^{s} f(u) d u
$$

i. e.

$$
\begin{equation*}
d f / d t=a \int_{0}^{t} f(u) d u . \tag{19}
\end{equation*}
$$

Since $f(0)=e$ and $g(0)=0$ (in (18) set $s=0$), from (19) we find:

$$
\begin{equation*}
f(t)=e+a \int_{0}^{t} d s \int_{0}^{s} f(u) d u=e+a \int_{0}^{t}(t-s) f(s) d s . \tag{20}
\end{equation*}
$$

The iteration method applied to the integral equation (20) leads to

$$
f(t)=e+\frac{a t^{2}}{2!}+\ldots+\frac{u^{n} t^{2 n}}{(2 n)!}+\frac{a^{n+1}}{(2 n+1)!} \int_{0}^{1}(t-s)^{2 n+1} f(s) d s
$$

from which (6) follows. The uniqueness of the solution of (20) can be proved in the usual way. The uniqueness of a is obvious from (7) and direct calculation shows that (7) satisfies (2). Thus theorem 1 is proved.

If in B an element b exists such that $b^{2}=a$, then (7) can be written in the form:

$$
\begin{equation*}
f(t)=\sum_{0}^{\infty}(t b)^{2 n} /(2 n)!=[\exp t b+\exp (-t b)] / 2 \tag{21}
\end{equation*}
$$

which is natural to call the hyperbolic cosine. However, if b exists it is not unique. In. that case as a rule there are infinitely many square roots of a and (7) is written in the form $f(t)=\operatorname{ch} t b$. However, f is in fact the function of $b^{2}=a$ which is unique..

Generally the square root of a does not exist in B and the solution (7) can not be written in the form (21). This also follows from theorem 3 of the paper [2]. Weillustrate the situation by the example. Let B be the Banach algebra of 2×2 complex matrices. The function $f(t)=\left(\begin{array}{ll}1 & 0 \\ t^{2} & 1\end{array}\right)$ satisfies (6) and it is not of the form (21). In. this case $a=\left(\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right)$ and there is no 2×2 matrix b with the property that $b^{2}=a$. On the other hand the matrix

$$
a=\left(\begin{array}{rr:rr}
1 & 0 & 1 & 0 \\
\frac{1}{2} & 1 & -\frac{1}{2} & 1 \\
\hdashline-1 & 0 & -1 & 0 \\
\frac{1}{2} & -1 & -\frac{1}{2} & -1
\end{array}\right)
$$

has the property that

$$
\dot{a}^{2}=\left(\begin{array}{cc:c}
0 & 0 & 0 \\
2 & 0 & 0 \\
\hdashline \hdashline 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) .
$$

In this case the 2×2 matrix function

$$
f(t)=e+\frac{a t^{2}}{2!}+\frac{a^{2} t^{4}}{4!}+\frac{a^{3} t^{6}}{6!}+\ldots
$$

can be written by use of the 4×4 matrix function in the form

$$
\hat{f}(t)=\left(\begin{array}{cc}
f(t) & 0 \\
0 & f(t)
\end{array}\right)=\hat{l}+\frac{\hat{a}^{2} t^{2}}{2!}+\frac{\hat{a}^{4} t^{4}}{4!}+\ldots=\cdot \operatorname{ch} t \hat{a}
$$

This example suggests the idea of imbedding the Banach algebra B in another Banach algebra \hat{B} which has the property that any $a \in B$ as an element in \hat{B} has a square root in \hat{B}; i. e., there is at least one element $\hat{b} \in \hat{B}$ such that $\hat{b}^{2}=\hat{a}$. The construction of such a Banach algebra \hat{B} is very simple. It is sufficient to consider all 2×2 matrices \hat{x}, \hat{y} the elements $x_{i j}, y_{i j}(i, j=1,2)$ of which are elements of B and to define the usual matrix operations between such matrices. Introducing the norm in \hat{B} by the formula:

$$
\|\hat{r}\|=\sum_{i, j=1}^{2}\left\|\cdot x_{i j}\right\|_{2}
$$

one easily verifies that \hat{B} is a Banach algebra. In the Banach algebra \hat{B} we imbed (isomorphically but not isometrically) the Banach algebra B by the correspondence:

$$
a \rightarrow \hat{a}=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) \quad(a \in B)
$$

Now, simple calculation shows that

$$
\left(\begin{array}{cc}
e+\frac{a}{4} & e-\frac{a}{4} \\
-\left(e-\frac{a}{4}\right) & -\left(e+\frac{a}{4}\right)
\end{array}\right)^{2}=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
$$

for every $a \in B$, i. e. in \hat{B} every element $a \in B$ has a square root.
The function

$$
\hat{f}(t)=\left(\begin{array}{cc}
f(t) & 0 \\
0 & f(t)
\end{array}\right)
$$

satisfies all conditions of theorem 1 and

$$
\hat{f}(t)=\left(\begin{array}{cc}
f(t) & 0 \\
0 & f(t)
\end{array}\right)=\operatorname{ch} t\left(\begin{array}{cc}
e+\frac{a}{4} & e-\frac{a}{4} \\
-\left(e-\frac{a}{4}\right) & -\left(e+\frac{a}{4}\right)
\end{array}\right)
$$

holds for every t, where the hyperbolic cosine is defined by the series. Thus we have:

Theorem 2. Let R, B and f be the same as in theorem 1 and let \hat{B} be a Banach algebra of all 2×2 matrices the elements of which are elements of B and the norm of an $\hat{x} \in \hat{B}$ is defined by the formula:

$$
\|\dot{x}\|=\sum_{i, j=1}^{2}\left\|x_{i j}\right\|
$$

If we imbed B in \dot{B} by the correspondence

$$
a \rightarrow\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
$$

then

$$
\left(\begin{array}{cc}
f(t) & 0 \\
0 & f(t)
\end{array}\right)=[\exp t \hat{a}+\exp (-t \hat{a})] / 2
$$

for every $t \in R$, where \hat{a} can be taken as

$$
\hat{a}=\left(\begin{array}{cc}
e+\frac{a}{4} & e-\frac{a}{4} \\
-\left(e-\frac{a}{4}\right) & -\left(e+\frac{a}{4}\right)
\end{array}\right), \quad a \in B
$$

and it does not depend on t.
If in B there is a regular element b such that $b^{2}=a$, then the problem of solving (6) can be reduced to the problem of solving the functional equation $k(t+s)=$ $=k(t) \cdot k(s), \lim k(t)=k(0)=e(t \rightarrow 0)$ in B. In order to prove this we substitute $s+u$ for s in (15) and from the so obtained result we subtract (15). We get:

$$
f(t+s+u)-f(t+s)=[f(s+u)-f(s)] f(t)+g(t) \int_{s}^{s+u} f(v) d v
$$

If we divide this by u and allow $u \rightarrow 0$ we get:

$$
\begin{equation*}
g(t+s)=g(s) f(t)+g(t) f(s) \tag{22}
\end{equation*}
$$

Now write $a=b^{2}$ and define $h(t)=b^{-1} g(t)$. Then (15), (18) and (22) become:

$$
f(t+s)=f(t) f(s)+h(t) h(s), \quad h(s)=b \int_{0}^{s} f(u) d u, \quad h(t+\dot{s})=h(s) f(t)+h(t) f(s)
$$

respectively. If we set

$$
\begin{equation*}
k(t)=f(t)+h(t) \tag{23}
\end{equation*}
$$

then these equations imply:

$$
k(t+s)=k(t) k(s), \quad k(0)=e
$$

But

$$
d k / d t=d f / d t+d h / d t=g(t)+b f(t)=b h(t)+b f(t)=b k(t)
$$

Now $d k / d t=b k(t)$ and $k(0)=e$ lead to

$$
k(t)=e+\left.b\right|_{0} ^{!} k(s) d s
$$

which by iteration gives

$$
k(t)=\sum_{0}^{\infty}(t b)^{n} / n!=\exp t b
$$

(cf. [1], p. 68). Thus

$$
f(t)=[k(t)+k(-t)] / 2=[\exp t b+\exp (-t b)] / 2
$$

Suppose that f satisfies all conditions of theorem 1 and that $M=\sup \|f(t)\|<$ $<+\infty$. This and (14) for $\alpha=\gamma$ imply:

$$
\|g(t)\| \leqq\|f(t+s)-f(t-s)\| \cdot\|c\| / 2 \leqq M\|c\| ;
$$

i. e. $\sup _{t \in R}\|g(t)\|<+\infty$. In the case that a regular element b exists in B such that: $b^{2}=a$ we derive:

$$
\sup _{t \in R}\|k(t)\|=\sup _{t \in R}\|f(t)+h(t)\|<+\infty .
$$

Thus in this case the one-parameter group $k(t)$ is uniformly bounded on R. If B is. the Banach algebra of all bounded and linear operators on a Hilbert space endowed. with the usual structure of a Banach space, then the well known result of Béla Sz .-NAGY [5] implies that the group $k(t)$ is similar to a one-parameter group of unitary operators; i. e., there is a nonsingular and bounded selfadjoint operator q such that.

$$
q^{-1} k(t) q
$$

is a unitary operator for every $t \in R$. Since in our case $k(t)=\exp t b$ we find that. $q^{-1} k(t) q=\exp t q^{-1} b q$ is a unitary group of operators. But this is possible if and only if $d=i q^{-1} b q$ is a selfadjoint operator. Thus

$$
f(t)=q[\exp i t d+\exp (-i t d)] q^{-1} / 2=\cos t d_{0}
$$

where $d_{0}=q d q^{-1}$. In such a way we have:
Theorem 3. Let B be the Banach algebra of all bounded linear operatorson some Hilbert space endowed with the usual structure of a Banach space, f the functionwhich satisfies all conditions of theorem 1 where measurability is meant in the uniformoperator topology.

Then there exists a bounded operator $a \in B$ such that

$$
\begin{equation*}
f(t)=\sum_{0}^{\infty} a^{n} t^{2 n} /(2 n)! \tag{24}
\end{equation*}
$$

for all $t \in R$.
If in addition: $\sup _{t \in R}\|f(t)\|<+\infty$ and the "infinitesimal operator" a which appears" in (24) possesses a regular square root in B, then $f(t)=\cos t d_{0}$ where d_{0} is similar to aselfadjoint operator, i. e. there is a regular element $q \in B$ such that $d=q d_{0} q^{-1}$ is self-adjoint and thus $f(t)=q^{-1}(\cos t d) q$.

§ 3. Problem B^{\prime} for the cosine functional equation

In this paragraph we prove the following theorem:
Theorem 4. Let $R=\{\alpha, \beta, \ldots, t, s, \ldots\}$ be the set of all real numbers, $X=\{x, y, \ldots\}$ a Banach space, B a Banach algebra with unit element $e, F: X \rightarrow B$ the function which satisfies the functional equation

$$
\begin{equation*}
F(x+y)+F(x-y)=2 F(x) F(y), \quad F(0)=e \tag{25}
\end{equation*}
$$

for all $x, y \in X$. Suppose the function F is measurable on every ray i. e. $F(t x)$ is measurable as a function of $t \in R$ for every $x \in X$. Then
(1) there exists a function $A(x): X \rightarrow B$ such that

$$
\begin{gather*}
F(x)=\sum_{0}^{\infty}[A(x)]^{n} /(2 n)!, \tag{26}\\
A(t x)=t^{2} A(x) \quad(x \in X, t \in R), \tag{27}\\
A(x) A(y)=A(y) A(x), \tag{28}\\
A(x+y)+A(x-y)=2 A(x)+2 A(y), \tag{29}
\end{gather*}
$$

for all $x, y \in X$.
(11) The function $A(x)$ is continuous if and only if

$$
\begin{equation*}
\lim _{t \rightarrow 0} F(t x)=e \tag{31}
\end{equation*}
$$

uniformly for x in some sphere.
(III) If $\left\|e-A\left(x_{0}\right)\right\|<1$ for at least one $x_{0} \in X$, then an additive function $L: X-B$ exists such that $A(x)=[L(x)]^{2}$ for every $x \in X$ and therefore in this case

$$
F(x)=[\exp L(x)+\exp L(-x)] / 2=\operatorname{ch} L(x)
$$

If $A(x)$ is continuous so is $L(x)$.
Proof:
(1) For a given $x \in X$, the function $F_{x}(t)=F(t x)$ as a function of $t \in R$ satisfies all conditions of theorem 1 . Hence an element $A(x) \in B$ exists such that

$$
\begin{equation*}
F(t x)=\sum_{3}^{\infty}[A(x)]^{n} t^{2 n} /(2 n)! \tag{32}
\end{equation*}
$$

holds for all $t \in R$. Obviously (32) implies (27). Further $F(t x) F(t y)=F(t y) F(t x)$ for all $t \in R$ and $x, y \in X$ together with (32) leadr to (28). Replacing in (25) x by $t x$ and y by $t y$ we get

$$
F_{x+y}(t)+F_{x-y}(t)=2 F_{x}(t) F_{y}(t)
$$

which together with (32) implies (29) and (30).
(II) Next we observe that a symmetric function

$$
M(x, y)=[A(x+y-A(x-y)] / 4
$$

is, because of (29), an additive function of x^{1}). This and (27) imply that $M(x, y)$ is an additive and real-homogeneous function of each of its arguments. From (29) and the definition of M we find:

$$
\begin{equation*}
A(x+y)=A(x)+A(y)+2 M(x, y) . \tag{33}
\end{equation*}
$$

Now, suppose that $A(x)$ is continuous in the sphere $S:\left\|x-x_{0}\right\|<\varrho$, where we can without loss of generality take $x_{0} \neq 0$. This assumption and (33) imply that $M\left(x_{0}, y\right)$ as a function of y is continuous in the sphere $S_{0}:\|y\|<\varrho$. Hence $A(y)=A\left(x_{0}+y\right)-$ $-A\left(x_{0}\right)-2 M\left(x_{0}, y\right)$ is continuous in the sphere S_{0}. The continuity of $A(y)$ in S_{0} and (27) imply the continuity of $A(y)$ on every finite sphere. Thus $M(x, y)$ is continuous on every finite sphere. Since it is an additive function it is bounded and therefore the function $\|A(x)\|=\|M(x, x)\|$ is bounded on every finite sphere. Suppose that $\|A(x)\|<\alpha^{2}, \alpha>0$, for all x from some finite sphere. This and (32) imply:

$$
\|F(t x)-e\| \leqq \sum_{1}^{\infty}\|A(x)\|^{n} t^{2 n} /(2 n)!\leqq \frac{1}{2}\left(e^{\alpha t}+e^{-\alpha t}\right)-1
$$

But this tends to zero as $t \rightarrow 0$, i. e. if $A(x)$ is continuous in some finite sphere then (31) holds uniformly for every x from any finite sphere.

Conversely, suppose that (31) holds uniformly in $x \in S:\left\|x-x_{0}\right\|<\varrho$. We then assert that $A(x)$ is a continuous function. First of all (31) implies the existence of a number $\gamma>0$ such that

$$
\begin{equation*}
\|F(t x)-e\|<1 / 2 \tag{34}
\end{equation*}
$$

for all $|t|<\gamma$ and $x \in S$. This implies that $F(x)$ is bounded on the sphere $S^{\prime}:\left\|x-x_{0}\right\|<$ $<\gamma \varrho / 2$. This and (25) lead to the boundedness of $F(x)$ on every finite sphere. Thus $F(t x)$ as a function of t is integrable on every finite interval for any $x \in S$. Now (34) leads to:

$$
\begin{equation*}
\left\|e-\frac{1}{\gamma} \int_{0}^{\gamma} F(t x) d t\right\| \leqq 1 / 2 \tag{35}
\end{equation*}
$$

for every $x \in S$. From (35) we conclude that

$$
\begin{equation*}
\left.C_{x}=\mid \int_{0}^{\gamma} F(t x) d t\right]^{-1} \tag{36}
\end{equation*}
$$

exists for every $x \in S$. Moreover we have:

$$
C_{x}=\frac{1}{\gamma} \sum_{0}^{\infty}\left(e-\frac{1}{\gamma} \int_{0}^{\gamma} F(t x) d t\right)^{n}
$$

from which we find:

$$
\begin{equation*}
\left\|C_{x}\right\| \leqq 2 / \gamma \tag{37}
\end{equation*}
$$

[^0]for every $x \in S$. In the same way as in the proof of theorem 1 we have the existence of
$$
G_{x}(t)=\lim _{u \rightarrow 0}\left[F_{x}(t+u)-F_{x}(t)\right] / u
$$
for every $x \in S$ and the function $G_{x}(t)$ has the property that:
\[

$$
\begin{equation*}
2 G_{x}(t)=\left[F_{x}(\gamma+t)-F_{x}(\gamma-t)\right] C_{x} . \tag{38}
\end{equation*}
$$

\]

Now (38), (37), and the fact that $F(x)$ is bounded on every finite sphere imply:

$$
\begin{equation*}
\sup _{x \in S}\left\|G_{x}(\gamma)\right\|<+\infty . \tag{39}
\end{equation*}
$$

Furthermore we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} G_{x}(t) / t=C_{x} G_{x}(\gamma)=A(x) . \tag{40}
\end{equation*}
$$

Now, (40), (37) and (39) imply $\sup _{x \in S}\|A(x)\|<+\infty$, i. e. the function $A(x)$ is bounded on one sphere. This and (27) imply that $A(x)$ is bounded on every finite sphere. Since the additive function $M(x, y)$ is bounded on every sphere it is continuous everywhere and therefore $A(x)=M(x, x)$ is also an everywhere continuous function.
(III) Suppose that $\left\|e-A\left(x_{0}\right)\right\|<1$ for some $x_{0} \in X$. Then

$$
\sum_{0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!}\left[e-A\left(x_{0}\right)\right]^{n} .
$$

converges to $\left[A\left(x_{0}\right)\right]^{-1 / 2}$, i. e. $\left[A\left(x_{0}\right)\right]^{-1 / 2}$ exists and it commutes with $A(x)$ and therefore with $M(x, y)$ for every pair $x, y \in X$.

Now we take the square of (29) and from this we substract (30). We get:

$$
\begin{equation*}
A(x+y) A(x-y)=[A(x)-A(y)]^{2} \tag{41}
\end{equation*}
$$

which together with (33) leads to:

$$
\begin{equation*}
[M(x, y)]^{2}=A(x) A(y) . \tag{42}
\end{equation*}
$$

From (42) and the property of $\left[A\left(x_{0}\right)\right]^{-1 / 2}$ to commute with $M(x, y)$ we find

$$
A(x)=\left[A\left(x_{0}\right)\right]^{-1}\left[M\left(x, x_{0}\right)\right]^{2}=[L(x)]^{2}
$$

where $L(x)=\left[A\left(x_{0}\right)\right]^{-1 / 2} M\left(x, x_{0}\right)$ is an additive function from X to B. If $A(x)$ is continuous then $M(x, y)$ is continuous and therefore $L(x)$ is also continuous. Thus theorem 4 is proved.

Remark 1. Let X be a real Hilbert space and B the algebra of all 4×4 matrices over real numbers. The norm of a matrix $b=\left(b_{p q}\right)$ will be defined as $\|b\|=$ $=\sum_{p, q=1}^{4}\left|b_{p q}\right|$. For an arbitrary bounded selfadjoint operator $A: X \rightarrow X$ set:

$$
A(x)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
2(A x, x) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2(A x, x) & 0
\end{array}\right) .
$$

The functional $F(x)=e+A(x) / 2$ satisfies the functional equation (2) and $A(x)$ is a continuous function of $x \in X$. We assert that there is no additive and continuous function $L: X \rightarrow B$ such that $A(x)=[L(x)]^{2}$. Indeed, if such a matrix $L(x)=$ $=\left(l_{p q}(x)\right)(p, q=1,2,3,4)$ would exist, then each matrix element $l_{p q}(x)$ as a continuous and additive functional would have the form $l_{p q}(x)=\left(x, x_{p q}\right)$, where $x_{p q}$ are uniquely determined vectors. Thus the quadratic form $A(x)=2(A x, x)$ would be determined by its values on 16 vectors. Since this is impossible the assertion is proved. However in this example the condition $\|e-A(x)\|<1$ is not satisfied for any x. On the other hand the existence of such an x is not necessary. Indeed, if in the above example we take $X=R, A(x)=A(t)=2 t^{2}$, then $\|e-A(x)\|=4\left(1+t^{2}\right)$ and $A(t)=L^{2}(t)$ with $L(t)=2^{1 / 2} t$.

Remark 2. Using the results obtained in this paper and in [4] one can generalise some results of the paper [4], e. g. one can solve the functional equation $f(t+s)+f(t-s)=2 f(t) g(s)$ where $f, g: R \rightarrow B$. If f is measurable, $g(0)=e$ and for some $s \neq 0\|e-g(s)\|<1$ then $g(t)=\cos a t$ and $f(t)=b \cos a t+c \sin a t$, where a, b and c are fixed elements of B.

References

[1] E. Hille and R. S. Phillips, Functional analysis and semi-groups, (New York, 1957).
[2] S. Kurepa, A cosine functional equation in n-dimensional vector space, Glasnik mat. fiz. ast., 13 (1958), $169-189$.
[3] S. Kurepa, A cosine functional equation in Hilbert space, Canadian J. Math., 12 (1960), 4550.
[4] S. Kurepa, On some functional equations in Banach spaces, Studia Math., 19 (1960), 149-158.
[5] B. Sz.-NaGY, On uniformly bounded lineaf transformations in Hilbert space, Acta Sci. Math., 11 (1947), 152-157.

UNIVERSITY OF ZAGREB
AND UNIVERSITY OF MARYLAND

[^0]: ${ }^{1}$) Our attention on this fact was drawn by professor Ivan Viday at another occasion.

