On the functional calculus of an operator measure

By JACOB FELDMAN in Berkeley（California，USA）

1．Introduction

Let T be a set，B a σ－algebra of subsets of T ，and F an operator measure on \mathbf{B} ． That is，
（1）For each S in $B, F(S)$ is a nonnegative bounded linear operator on the Hilbert space H ，
（2）If S is the union of disjoint sets S_{1}, S_{2}, \ldots in \mathbf{B} then $F(S)=\sum_{n=1}^{\infty} F\left(S_{n}\right)$ ，
where the sum converges in the strong topology，
（3）$F(T)=I$（the identity operator on H ）．
Naímark has shown（［1］，p．266，or［2］）that $F(\cdot)$ can be written in the form $P E(\cdot) \mid H$ ，where E is a projection－valued measure with values in some Hilbert space K containing H ，and P is the orthogonal projection from K onto H ．

Let $L_{\infty}(F)$ be the class of all bounded complex－valued Borel measurable functions on T ，identified modulo functions f which are F－null in the sense that $F(\{t \mid f(t) \neq 0\})=0$ ．If H is separable，then by choosing a sequence x_{1}, x_{2}, \ldots of unit vectors which span H ，and setting $m(S)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(F(S) x_{n}, x_{n}\right)$ ，one sees that $L_{\infty}(F)$ is just $L_{\infty}(m)$ ．In any case，we can put the usual algebra，norm，and $⿻ 丷 木$ structure on $L_{\infty}(F)$ ．

There is defined a map φ from $L_{\infty}(F)$ to bounded operators on H by $p(f)=$ $=P \int f(t) d E(t) \mid H$ ．The map p is characterized by the property that $(\rho(f) x, y)=$ $=\int f(t) d(F(t) x, y)$ for all x, y in H ．Clearly p is a linear，norm－nonincreasing， ＊－preserving，positivity－preserving map．

Sometimes we shall write $\int f(t) d F(t)$ for $p(f)$ ．Indeed，this is a true equation if the operator integral is interpreted in the weak topology．

Of special interest is the case where T is the unit circle C in the complex plane， B consists of the Borel sets，and F is what is called a strong operator measure：that is，setting $A=\int t d F(t)$ ，

$$
\int t^{n} d F(t)=\left\{\begin{array}{lll}
A^{n} & \text { if } & n>0 \tag{4}\\
\left(A^{*}\right)^{-n} & \text { if. } & n<0
\end{array}\right.
$$

Clearly $\|A\| \leqq 1$ ．Furthermore，if we are given a preassigned A of norm $\leqq 1$ ，then，
by a theorem of Sz.-NaGy [3], [4], there is precisely one strong operator measure F on the Borel sets of the unit circle related to A by $A=\int t d F(t)$. Without assumption (4), of course, there are many F for a given A. The corresponding operator $U=\int t d E(t)$ on the containing Hilbert space K is called the unitary dilation of A, and the operator $\varphi(f)$ is precisely $P f(U) \mid H$. In this case, the function φ becomes multiplicative on polynomials in t, and hence also on their bounded F-a. e. limits. (Cf.[5], [6].) In the present paper, we do not make assumption (4). However, the results are new even for strong operator measures.

Let $C(r)$ be the circle of radius r in the complex plane, and $D(r)$ the closed disk of radius r. If $r=1$, we write simply C and D. For any bounded operator A on H, $\sigma(A)$ is defined as the spectrum of A, and $\alpha(A)$ its approximate point spectrum (which we interpret as including the point spectrum). Thus $\alpha(A) \subset \sigma(A) \subset D(\|A\|)$. In the following theorems, statements are made about $\alpha(A) \cap C(\|A\|)$. It should be noticed, however, that this is the same set as $\sigma(A) \cap C(\|A\|)$, since the boundary of $\sigma(A)$ is always contained in $\alpha(A)$. (this fact was pointed out to me by G. Orland).

In the following theorems F is a fixed operator measure on C, and we utilize the notation above.

Theorem. For any $f \in L_{\infty}(F), C(\|f\|)-\alpha(\varphi(f))$ is equal to the intersection of $C(\|f\|)$ with the union of all those open sets U of the plane for which $\left\|F\left(f^{-1}(U)\right)\right\|<1$.

For $f \in L_{\infty}(F)$, let $\sigma(f)$ denote the spectrum of f as an element in the algebra $L_{\infty}(f)$. Thus z is in $\sigma(f)$ if and only if $f^{-1}(U)$ is F-nonnull for each neighborhood U of z. Furthermore $\sigma(f) \subset D(\|f\|)$, and $\sigma(f) \cap C(\|f\|)$ is nonempty.

Corollary. (a) If φ is norm-preserving, then $\|F(S)\|=1$ for all F-nonnull S in \mathbf{B}.
(b) If $\|F(S)\|=1$ for all F-nonnull S in \mathbf{B}, then not only is φ norm-preserving, but in fact.

$$
x(\varphi(f)) \cap C(\|f\|) \doteq \sigma(f) \cap C(\|f\|)
$$

Theorem 2. Let F be an operator measure on the Borel sets of the complex unit circle, and let F be absolutely continuous with respect to Lebesgue measure. Let φ be norm-preserving when restricted to those functions in $L_{\infty}(F)$ which have representatives in H_{∞}. Then φ is norm-preserving on all of $L_{\infty}(F)$.

I would like to thank Professor M. Schreiber for a series of discussions on this subject, from which I have profited considerably.

2. Proofs of the Theorems

Proof of Theorem 1. First suppose that for each open neighborhood U of z_{0} we have $\left\|F\left(f^{-1}(U)\right)\right\|=1$, and $\left|z_{0}\right|=\|f\|$. We wish.to show that z_{0} is in $\alpha(\varphi(f))$. There is clearly no loss of generality in assuming $\|f\|=1$ and $z_{0}=1$, since the problem can be shifted to this by using $z_{0}^{-1} f$ instead of f. Choose $\varepsilon>0$. Let U be an open disk about 1 , of radius $2 \varepsilon / 3$. Write S for $f^{-1}(U)$, and choose x of norm 1 in H such that $(F(S) x, x)>1-\varepsilon / 3$. Then $(F(C-S) x, x)<\varepsilon / 3$. We write $(\varphi(f) x, x)$ as

$$
\int_{S} d(F(t) x, x)+\int_{S}(f(t)-1) d(F(t) x, x)+\int_{c} f_{-S} f(t) d(F(t) x, x)
$$

Thus:

$$
\begin{aligned}
|(\psi(f) x, x)-1| \leqq & \left|\int_{S} d(F(t) x, x)-1\right|+\int_{S}|f(t)-1| d(F(t) x, x)+\int_{C-S} d(F(t) x, x)< \\
& <|(F(S) x, x)-1|+\varepsilon / 3+(F(C-S) x, x)<\varepsilon .
\end{aligned}
$$

That is, $(\varphi(f) x, x)$ can be made arbitrarily close to 1 by appropriate choice of x. But since both $\varphi(f) x$ and x are vectors of length $\leqq 1$, this implies that $\varphi(f) x$ can be made arbitrarily close to x by appropriate choice of x, i. e. $1 \in \alpha(\varphi(f))$.

Conversely, suppose that z_{0} is in $\alpha(\varphi(f)) \cap C(\|f\|)$. We wish to show that $\left\|F\left(f^{-1}(U)\right)\right\|=1$ for each open neighborhood U of z_{0}. Again there is no loss of generality in assuming that $\|f\|$ and z_{0} are 1 . Choose $\varepsilon>0$, and x of norm 1 in H such that

$$
|1-\psi((f) x, x)|<\varepsilon^{2}
$$

that is

$$
\left|1-\int f(t) d(F(t) x, x)\right|<\varepsilon^{2} .
$$

Then

$$
\varepsilon^{2}>\operatorname{Re}\left(1-\int f(t) d(F(t) x, x) \mid=\int(1-\operatorname{Re} f(t)) d(F(t) x, x),\right.
$$

where "Re" means "real part". Let $U_{\varepsilon}=\{z \mid \operatorname{Re} z \geqq 1-\varepsilon\}$. Let $S_{\varepsilon}=f^{-1}\left(U_{\varepsilon}\right)$. Then we have $\left(F\left(C-S_{e}\right) x, x\right)<\varepsilon$, so that $\left\|F\left(S_{\varepsilon}\right)\right\|>1-\varepsilon$. Since S_{ε} decreases as ε decreases, it follows that $\left\|F\left(S_{\varepsilon}\right)\right\|=1$. If now U is any open neighborhood of 1 in the complex plane, then if ε is chosen sufficiently small we will have $U_{\varepsilon} \subset U$. Thus, $\left\|F\left(f^{-1}(U)\right)\right\|=1$ for any neighborhood U of 1 .

Proof of the Corollary. (a) Suppose $0<\|F(S)\|<1$ for some S in B. Let f be the characteristic function of S. Then $\|f\|=1$, while $\|p(f)\|=$ $=\|F(S)\|<1$.
(b) This follows directly from Theorem 1 .

Proof of Theorem 2. Let F be as described in our assumptions, and $0<\|F(S)\|=c<1$. Let $u(z)$ be the harmonic function which has the boundary value 0 on S and $\log (1-c / 2)$ on $C-S$. Let u^{*} be its harmonic conjugate. Then $e^{u+i u^{*}}$ is an H_{∞} function whose values on C have absolute value 1 a . e. on S and $1-c / 2$ a. e. on $C-S$, with respect to Lebesgue measure. Let $f=e^{u+i u^{*}} \mid C$. Let g be the function on C which is equal to f on S and to 0 on $C-S$, while h is equal to 0 on S and to f on $C-S$. Thus $\varphi(f)=\varphi(g)+\varphi(h)$, so

$$
\|\varphi(f)\| \leqq\|p(g)\|+\|\varphi(h)\| .
$$

Now, $\|\varphi(h)\| \leqq\|h\|=1-c / 2$. We shall show that $\|\varphi(g)\| \leqq c$, which will show that $\|\varphi(f)\|<1$, giving the desired contradiction.

For each Borel subset R of C, set

$$
G(R)=c^{-1} F(R \cap S)+m(R-S) m(C-S)^{-1}\left(I-c^{-1} F(C-S)\right) .
$$

Then G is an operator measure on Borel sets of the unit circle, and is absolutely continuous with respect to Lebesgue measure. Let ψ be the map from $L_{\infty}(G)$ to
operators obtained from G, i. e. $(\psi(k) x, y)=\int k(t) d(G(t) x, y)$. Then ψ is normnonincreasing. Applying this to the function g above, we get

$$
|(\psi(g) x, y)|=\left|\int g(t) d(G(t) x, y)\right|=\left|c^{-1} \int g(t) d(F(t) x, y)\right| .
$$

But $\|\psi(g)\| \leqq 1$, so $|(\varphi(g) x, y)| \leqq c\|x\|\|y\|$, and therefore $\|\varphi(g)\| \leqq c$.

3. Some remarks and a question

We have seen via the corollary to Theorem 1 that if the map φ arising from an operator measure F is norm-preserving, then $\alpha(\varphi(f)) \cap C(\|f\|)$ equals $\sigma(\|f\|) \cap$ $\cap C(\|f\|)$. The opposite direction is obvious, of course. However, there are situations in which assumptions on the spectrum of $\varphi(f)$ for only a single function f lead to φ being an isometry.

Consider the case where F is an operator measure on the Borel sets of C. Let $A=\int t d F(t)$.
(1) M. Schreiber has shown in [7], and it also follows without difficulty from our Theorem 1, that if $\alpha(A)$ contains the support of F, then $\|p(f)\|=\|f\|$ whenever f has a continuous representative.
(2) In the same paper, Schreiber, shows that if F is a strong operator measure, F being absolutely continuous with respect to Lebesgue measure, and $\alpha(A)$ contains some neighborhood of C in D, then φ is isometric on H_{∞}, and so by our Theorem 2 on all of L_{∞} (where L_{∞} refers to Lebesgue measure). Schreirer's theorem actually assumes that $\alpha(A)=D$, but his proof can be seen to give the stronger form we have stated.

So one question which naturally arises is this: let F be a strong operator measure on C. Does the condition $\alpha(A) \supset C$ suffice to make p isometric on $L_{\infty}(F)$?

References

[1] N. I. Achieser and I. M. Glasman, Theorie der linearen Operatoren im Hitbert-Ratm (Berlin, 1954).
[2] M. A. Naľmark, Über eine Darstellung additiver Operator-funktionen von Mengen, Doklady Akad. Nauk. SSSR, 41 (1943), 373-375.
[3] B. Sz.-Nagy, Sur les contractions de l'espace de Hilbert, Acta Sci. Math., 15 (1953), 87-92.
[4] B. Sz.-Nagy, Prolongements des transformations de l'espace de Hilbert qui sortent de cet espace, appendice au livre ,,Leçons d'analyse fonctionnelle', par F. Riesz and B. Sz.Nagy (Budapest, 1955).
[5] B. Sz.-Nagy-C. Foias, Sur les contractions de l'espace de Hilbert. III, Acta Sci. Math.. 19 (1958), 26-45.
[6] M. Schreiber, Unitary dilations of operators, Duke Math. J., 23 (1956), 579-594.
[7] M. Schreiber, Absolutely continuous operators, Duke Math. J., 29 (1962). 175-190.

