On the functional calculus of an operator measure

By JACOB FELDMAN in Berkeley (California, USA)

1. Introduction

Let T be a set, **B** a σ -algebra of subsets of T, and F an operator measure on **B**. That is,

- (1) For each S in **B**, F(S) is a nonnegative bounded linear operator on the Hilbert space H,
- (2) If S is the union of disjoint sets $S_1, S_2, ...$ in **B** then $F(S) = \sum_{n=1}^{\infty} F(S_n)$, where the sum converges in the strong topology,
- (3) F(T) = I (the identity operator on H).

NAIMARK has shown ([1], p. 266, or [2]) that $F(\cdot)$ can be written in the form $PE(\cdot)|H$, where E is a projection-valued measure with values in some Hilbert space K containing H, and P is the orthogonal projection from K onto H.

Let $L_{\infty}(F)$ be the class of all bounded complex-valued Borel measurable functions on T, identified modulo functions f which are F-null in the sense that $F(\{t|f(t) \neq 0\}) = 0$. If H is separable, then by choosing a sequence x_1, x_2, \ldots of unit vectors which span H, and setting $m(S) = \sum_{n=1}^{\infty} \frac{1}{2^n} (F(S)x_n, x_n)$, one sees that $L_{\infty}(F)$ is just $L_{\infty}(m)$. In any case, we can put the usual algebra, norm, and * structure on $L_{\infty}(F)$.

There is defined a map φ from $L_{\infty}(F)$ to bounded operators on H by $\varphi(f) = P \int f(t) dE(t) | H$. The map φ is characterized by the property that $(\varphi(f)x, y) = \int f(t) d(F(t)x, y)$ for all x, y in H. Clearly φ is a linear, norm-nonincreasing, *-preserving, positivity-preserving map.

Sometimes we shall write $\int f(t)dF(t)$ for $\varphi(f)$. Indeed, this is a true equation if the operator integral is interpreted in the weak topology.

Of special interest is the case where T is the unit circle C in the complex plane, B consists of the Borel sets, and F is what is called a *strong* operator measure: that is, setting $A = \int t dF(t)$,

(4)
$$\int t^n dF(t) = \begin{cases} A^n & \text{if} \quad n > 0, \\ (A^*)^{-n} & \text{if} \quad n < 0. \end{cases}$$

Clearly $||A|| \leq 1$. Furthermore, if we are given a *preassigned* A of norm ≤ 1 , then,

268

Functional calculus

by a theorem of Sz.-NAGY [3], [4], there is precisely one strong operator measure Fon the Borel sets of the unit circle related to A by $A = \int t dF(t)$. Without assumption (4), of course, there are many F for a given A. The corresponding operator $U = \int t dE(t)$ on the containing Hilbert space K is called the *unitary dilation* of A, and the operator $\varphi(f)$ is precisely Pf(U)|H. In this case, the function φ becomes multiplicative on polynomials in t, and hence also on their bounded F-a. e. limits. (Cf.[5], [6].) In the present paper, we do not make assumption (4). However, the results are new even for strong operator measures.

Let C(r) be the circle of radius r in the complex plane, and D(r) the closed disk of radius r. If r = 1, we write simply C and D. For any bounded operator A on H, $\sigma(A)$ is defined as the spectrum of A, and $\alpha(A)$ its approximate point spectrum (which we interpret as including the point spectrum). Thus $\alpha(A) \subset \sigma(A) \subset D(||A||)$. In the following theorems, statements are made about $\alpha(A) \cap C(||A||)$. It should be noticed, however, that this is the same set as $\sigma(A) \cap C(||A||)$, since the boundary of $\sigma(A)$ is always contained in $\alpha(A)$ (this fact was pointed out to me by G. ORLAND).

In the following theorems F is a fixed operator measure on C, and we utilize the notation above.

The or e m 1. For any $f \in L_{\infty}(F)$, $C(||f||) - \alpha(\varphi(f))$ is equal to the intersection of C(||f||) with the union of all those open sets U of the plane for which $||F(f^{-1}(U))|| < 1$. For $f \in L_{\infty}(F)$, let $\sigma(f)$ denote the spectrum of f as an element in the algebra

 $L_{\omega}(f)$. Thus z is in $\sigma(f)$ if and only if $f^{-1}(U)$ is F-nonnull for each neighborhood U of z. Furthermore $\sigma(f) \subset D(||f||)$, and $\sigma(f) \cap C(||f||)$ is nonempty.

Corollary. (a) If φ is norm-preserving, then ||F(S)|| = 1 for all F-nonnull S in **B**.

(b) If ||F(S)|| = 1 for all F-nonnull S in **B**, then not only is φ norm-preserving, but in fact

$$\alpha(\varphi(f)) \cap C(\|f\|) = \sigma(f) \cap C(\|f\|).$$

The orem 2. Let F be an operator measure on the Borel sets of the complex unit circle, and let F be absolutely continuous with respect to Lebesgue measure. Let φ be norm-preserving when restricted to those functions in $L_{\infty}(F)$ which have representatives in H_{∞} . Then φ is norm-preserving on all of $L_{\infty}(F)$.

I would like to thank Professor M. SCHREIBER for a series of discussions on this subject, from which I have profited considerably.

2. Proofs of the Theorems

Proof of Theorem 1. First suppose that for each open neighborhood U of z_0 we have $||F(f^{-1}(U))|| = 1$, and $|z_0| = ||f||$. We wish to show that z_0 is in $\alpha(\varphi(f))$. There is clearly no loss of generality in assuming ||f|| = 1 and $z_0 = 1$, since the problem can be shifted to this by using $z_0^{-1}f$ instead of f. Choose $\varepsilon > 0$. Let U be an open disk about 1, of radius $2\varepsilon/3$. Write S for $f^{-1}(U)$, and choose x of norm 1 in H such that $(F(S)x, x) > 1 - \varepsilon/3$. Then $(F(C-S)x, x) < \varepsilon/3$. We write $(\varphi(f)x, x)$ as

$$\int_{S} d(F(t)x, x) + \int_{S} (f(t) - 1) d(F(t)x, x) + \int_{C-S} f(t) d(F(t)x, x).$$

Thus:

$$|(\psi(f)x, x) - 1| \leq \left| \int_{S} d(F(t)x, x) - 1 \right| + \int_{S} |f(t) - 1| d(F(t)x, x) + \int_{C-S} d(F(t)x, x) < |F(S)x, x) - 1| + \varepsilon/3 + (F(C-S)x, x) < \varepsilon.$$

That is, $(\varphi(f)x, x)$ can be made arbitrarily close to 1 by appropriate choice of x. But since both $\varphi(f)x$ and x are vectors of length ≤ 1 , this implies that $\varphi(f)x$ can be made arbitrarily close to x by appropriate choice of x, i. e. $1 \in \alpha(\varphi(f))$.

Conversely, suppose that z_0 is in $\alpha(\varphi(f)) \cap C(||f||)$. We wish to show that $||F(f^{-1}(U))|| = 1$ for each open neighborhood U of z_0 . Again there is no loss of generality in assuming that ||f|| and z_0 are 1. Choose $\varepsilon > 0$, and x of norm 1 in H such that

$$|1-\psi((f)x,x)| < \varepsilon^2$$

that is

$$\left|1-\int f(t)d(F(t)x,x)\right|<\varepsilon^2.$$

Then

$$\varepsilon^2 > \operatorname{Re}\left(1 - \int f(t)d(F(t)x, x)\right) = \int (1 - \operatorname{Re}f(t))d(F(t)x, x),$$

where "Re" means "real part". Let $U_{\varepsilon} = \{z | \operatorname{Re} z \ge 1 - \varepsilon\}$. Let $S_{\varepsilon} = f^{-1}(U_{\varepsilon})$. Then we have $(F(C - S_{\varepsilon})x, x) < \varepsilon$, so that $||F(S_{\varepsilon})|| > 1 - \varepsilon$. Since S_{ε} decreases as ε decreases, it follows that $||F(S_{\varepsilon})|| = 1$. If now U is any open neighborhood of 1 in the complex plane, then if ε is chosen sufficiently small we will have $U_{\varepsilon} \subset U$. Thus, $||F(f^{-1}(U))|| = 1$ for any neighborhood U of 1.

Proof of the Corollary. (a) Suppose 0 < ||F(S)|| < 1 for some S in **B**. Let f be the characteristic function of S. Then ||f|| = 1, while $||\varphi(f)|| = ||F(S)|| < 1$.

(b) This follows directly from Theorem 1.

Proof of Theorem 2. Let F be as described in our assumptions, and 0 < ||F(S)|| = c < 1. Let u(z) be the harmonic function which has the boundary value 0 on S and $\log(1-c/2)$ on C-S. Let u^* be its harmonic conjugate. Then e^{u+iu^*} is an H_{∞} function whose values on C have absolute value 1 a.e. on S and 1-c/2 a.e. on C-S, with respect to Lebesgue measure. Let $f=e^{u+iu^*}|C$. Let g be the function on C which is equal to f on S and to 0 on C-S, while h is equal to 0 on S and to f on C-S. Thus $\varphi(f) = \varphi(g) + \varphi(h)$, so

$$\|\varphi(f)\| \leq \|\varphi(g)\| + \|\varphi(h)\|.$$

Now, $\|\varphi(h)\| \le \|h\| = 1 - c/2$. We shall show that $\|\varphi(g)\| \le c$, which will show that $\|\varphi(f)\| < 1$, giving the desired contradiction.

For each Borel subset R of C, set

$$G(R) = c^{-1}F(R \cap S) + m(R - S)m(C - S)^{-1}(I - c^{-1}F(C - S)).$$

Then G is an operator measure on Borel sets of the unit circle, and is absolutely continuous with respect to Lebesgue measure. Let ψ be the map from $L_{\infty}(G)$ to

Functional calculus

operators obtained from G, i. e. $(\psi(k)x, y) = \int k(t)d(G(t)x, y)$. Then ψ is normnonincreasing. Applying this to the function g above, we get

$$\left|\left(\psi(g)x,y\right)\right| = \left|\int g(t)d(G(t)x,y)\right| = \left|c^{-1}\int g(t)d(F(t)x,y)\right|.$$

But $||\psi(g)|| \leq 1$, so $|(\varphi(g)x, y)| \leq c||x|| ||y||$, and therefore $||\varphi(g)|| \leq c$.

3. Some remarks and a question

We have seen via the corollary to Theorem 1 that if the map φ arising from an operator measure F is norm-preserving, then $\alpha(\varphi(f)) \cap C(||f||)$ equals $\sigma(||f||) \cap C(||f||)$. The opposite direction is obvious, of course. However, there are situations in which assumptions on the spectrum of $\varphi(f)$ for only a *single* function f lead to φ being an isometry.

Consider the case where F is an operator measure on the Borel sets of C. Let $A = \int t dF(t)$.

(1) M. SCHREIBER has shown in [7], and it also follows without difficulty from our Theorem 1, that if $\alpha(A)$ contains the support of F, then $\|\varphi(f)\| = \|f\|$ whenever f has a continuous representative.

(2) In the same paper, SCHREIBER, shows that if F is a strong operator measure, F being absolutely continuous with respect to Lebesgue measure, and $\alpha(A)$ contains some neighborhood of C in D, then φ is isometric on H_{∞} , and so by our Theorem 2 on all of L_{∞} (where L_{∞} refers to Lebesgue measure). SCHREIBER's theorem actually assumes that $\alpha(A) = D$, but his proof can be seen to give the stronger form we have stated.

So one question which naturally arises is this: let F be a strong operator measure on C. Does the condition $\alpha(A) \supset C$ suffice to make φ isometric on $L_{\alpha}(F)$?

References

- [1] N. I. ACHIESER and I. M. GLASMAN, Theorie der linearen Operatoren im Hilbert-Raum (Berlin, 1954).
- [2] M. A. NAĬMARK, Über eine Darstellung additiver Operator-funktionen von Mengen, *Doklady* Akad. Nauk. SSSR, 41 (1943), 373-375.
- [3] B. Sz.-NAGY, Sur les contractions de l'espace de Hilbert, Acta Sci. Math., 15 (1953), 87-92.
- [4] B. Sz.-NAGY, Prolongements des transformations de l'espace de Hilbert qui sortent de cet espace, appendice au livre "Leçons d'analyse fonctionnelle", par F. Riesz and B. Sz.-Nagy (Budapest, 1955).
- [5] B. Sz.-NAGY-C. FOIAŞ, Sur les contractions de l'espace de Hilbert. III, Acta Sci. Math., 19 (1958), 26-45.
- [6] M. SCHREIBER, Unitary dilations of operators, Duke Math. J., 23 (1956), 579-594.
- [7] M. SCHREIBER, Absolutely continuous operators, Duke Math. J., 29 (1962), 175-190.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA

(Received September 14, 1961)