Remark to the preceding paper of J. Feldman*

By B. SZ.-NAGY in Szeged and C. FOIAS in Bucharest

At the end of his paper, J. Feldman raises a question. We show that the answer to this is in the negative, i. e. we exhibit a strong operator measure $F(\sigma)$ in Hilbert space H, such that the spectrum of $A=\int_{0}^{2 \pi} e^{i t} F(d t)$ covers the unit circle C int the complex plane, nevertheless the map

$$
\begin{equation*}
f \rightarrow \int_{0}^{2 \pi} f(t) F(d t) \tag{1}
\end{equation*}
$$

from $L^{\infty}(F)$ into $B(H)$ is not isometric.
Let M be an open set in $(0,2 \pi)$ such that (i) $m(M)=\pi$, (ii) $m(M \cap \Delta)=0$ for any interval $\Delta \subset(0,2 \pi), m$ denoting Lebesgue measure. Such an M may be constructed e. g. by taking first the open interval of length $2 \pi / 3$ from the middle of $(0,2 \pi)$, the two open intervals each of length $2 \pi /\left(2 \cdot 3^{2}\right)$ from the middle of the two remaining parts of $(0,2 \pi)$, then the four open intervals each of length $2 \pi /\left(2^{2} \cdot 3^{3}\right)$ from the middle of the four remaining parts of $(0,2 \pi)$, and so on.

Now consider the Hilbert space $H=L^{2}(M) \oplus X$ where X is one-dimensional. For any Borel subset σ of $[0,2 \pi)$ define

$$
F(\sigma)(u(\theta) \oplus \xi)=\chi(\sigma ; \theta) u(\theta) \oplus \frac{m(\sigma)}{2 \pi} \xi
$$

where $\chi(\sigma ; \theta)$ denotes the characteristic function of $\sigma . F$ is evidently an operator measure on H; it is a strong one since

$$
\int_{0}^{2 \pi} e^{i n t} F(d t)(u(\theta) \oplus \xi)=\int_{0}^{2 \pi} e^{i n t} \chi(d t ; \theta) u(\theta) \oplus \int_{0}^{2 \pi} e^{i m} \frac{d t}{2 \pi} \xi=e^{i n \theta} u(\theta) \oplus 0
$$

($n=1,2, \ldots$), thus if

$$
A=\int_{0}^{2 \pi} e^{i t} F(d t) \text { then } A^{n}=\int_{0}^{2 \pi} e^{i n t} F(d t) \quad(n=1,2, \ldots) .
$$

[^0]The spectrum of A contains the spectrum of the part of A in $L^{2}(M)$, i. e. the spectrum. of the unitary operator $U u(\theta)=e^{i \theta} u(\theta)$ on $L^{2}(M)$. The spectral measure E of U is. given by

$$
E(\sigma) u(0)=\chi(\sigma ; \theta) u(\theta)
$$

thus, for any interval Δ in $[0,2 \pi)$,

$$
\|E(\Delta) 1\|^{2}=\int_{M \cap \Delta} d \theta=m(M \cap \Delta)>0
$$

by (ii). It follows that no interval Δ is of E-measure 0 , thus the spectrum of A covers C.
Nevertheless the map (1) is no $L^{\infty}(F) \rightarrow B(H)$ isometry. For if $M^{\prime}=[0,2 \pi)-M$ then

$$
F\left(M^{\prime}\right)(u(\theta) \oplus \xi)=\chi\left(M^{\prime} ; \theta\right) u(\theta) \oplus \cdot \frac{1}{2} \xi=0 \oplus \frac{1}{2} \xi
$$

thus $\left\|F\left(M^{\prime}\right)\right\|=\frac{1}{2}$. Taking $f(\cdot)=\chi\left(M^{\prime} ; \cdot\right)$ we get

$$
\left\|\int_{0}^{2 \pi} f(t) F(d t)\right\|=\left\|F\left(M^{\prime}\right)\right\|=\frac{1}{2}
$$

whereas

$$
\|f\|_{L^{\infty}(F)}=1
$$

since the set on which f assumes the value 1 , i. e. the set M^{\prime}, has not F-measure 0^{0} (indeed, $\left\|F\left(M^{\prime}\right)\right\|=\frac{1}{2}$).

[^0]: * J. Feldman, On the functional calculus of an operator measure, Acta Sci. Math, 23 (1962), 268-271.

