Remark to the preceding paper of J. Feldman*

By B. SZ.-NAGY in Szeged and C. FOIAŞ in Bucharest

At the end of his paper, J. FELDMAN raises a question. We show that the answer to this is in the negative, i. e. we exhibit a strong operator measure $F(\sigma)$ in Hilbert space H, such that the spectrum of $A = \int_{0}^{2\pi} e^{it} F(dt)$ covers the unit circle C in the complex plane, nevertheless the map

(1)
$$f \rightarrow \int_{0}^{2\pi} f(t) F(dt) \sim$$

from $L^{\infty}(F)$ into B(H) is not isometric.

Let *M* be an open set in $(0,2\pi)$ such that (i) $m(M) = \pi$, (ii) $m(M \cap \Delta) > 0$ for any interval $\Delta \subset (0,2\pi)$, *m* denoting Lebesgue measure. Such an *M* may be constructed e. g. by taking first the open interval of length $2\pi/3$ from the middle of $(0,2\pi)$, the two open intervals each of length $2\pi/(2 \cdot 3^2)$ from the middle of the two remaining parts of $(0,2\pi)$, then the four open intervals each of length $2\pi/(2^2 \cdot 3^3)$ from the middle of the four remaining parts of $(0,2\pi)$, and so on.

Now consider the Hilbert space $H = L^2(M) \oplus X$ where X is one-dimensional. For any Borel subset σ of $[0,2\pi)$ define

$$F(\sigma)(u(\theta)\oplus\xi)=\chi(\sigma;\,\theta)u(\theta)\oplus\frac{m(\sigma)}{2\pi}\,\xi,$$

where $\chi(\sigma; \theta)$ denotes the characteristic function of σ . F is evidently an operator measure on H; it is a strong one since

$$\int_{0}^{2\pi} e^{int} F(dt) (u(\theta) \oplus \xi) = \int_{0}^{2\pi} e^{int} \chi(dt; \theta) u(\theta) \oplus \int_{0}^{2\pi} e^{int} \frac{dt}{2\pi} \xi = e^{in\theta} u(\theta) \oplus 0$$

(n=1, 2, ...), thus if
$$A = \int_{0}^{2\pi} e^{it} F(dt) \text{ then } A^{n} = \int_{0}^{2\pi} e^{int} F(dt) \qquad (n=1, 2, ...).$$

272

^{*} J. FELDMAN, On the functional calculus of an operator measure, Acta Sci. Math., 23 (1962), 268-271.

Remark to the paper of J. Feldman

The spectrum of A contains the spectrum of the part of A in $L^2(M)$, i. e. the spectrum of the unitary operator $Uu(\theta) = e^{i\theta}u(\theta)$ on $L^2(M)$. The spectral measure E of U is given by

$$E(\sigma)u(\theta) = \chi(\sigma; \theta)u(\theta),$$

thus, for any interval Δ in $[0,2\pi)$,

$$||E(\Delta)1||^2 = \int_{M\cap\Delta} d\theta = m(M\cap\Delta) > 0$$

by (ii). It follows that no interval Δ is of *E*-measure 0, thus the spectrum of *A* covers *C*.

Nevertheless the map (1) is no $L^{\infty}(F) \rightarrow B(H)$ isometry. For if $M' = [0,2\pi) - M^{-1}$ then

$$F(M')(u(\theta)\oplus\xi)=\chi(M';\,\theta)u(\theta)\oplus\frac{1}{2}\,\xi=0\oplus\frac{1}{2}\,\xi,$$

thus $||F(M')|| = \frac{1}{2}$. Taking $f(\cdot) = \chi(M'; \cdot)$ we get

$$\left\| \int_{0}^{t} f(t) F(dt) \right\| = \|F(M')\| = \frac{1}{2}$$

whereas

$$\|f\|_{L^{\infty}(F)} = 1$$

since the set on which f assumes the value 1, i. e. the set M', has not F-measure 0> (indeed, $||F(M')|| = \frac{1}{2}$).

(Received October 24, 1961)