
Elementary divisors in von Neumann rings 
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1. Introduction 

1 .1 . Terminology. In this paper L will always denote a complemented modular 
lattice and 9t will denote an associative regular ring with unit element. 

We will call L an geometry if: 

(1. 1. 1) Whenever xx£L for each a £ / with cardinal power of / = K, the union 
x = LJ a(xJ and intersection x' = C\a ( x j exist and for each y: if j f l 
n (U (xJ«6F) )=0 1 ) for every finite subset F of I then y f ] x = 0; if 

j U (Pi ( x j a £ F j ) = 1 for every finite subset F of I then yUx' = 1. 

If (1. 1. 1) holds for all K, we will call L a von Neumann geometry.2) 
In every von Neumann geometry there exists a unique normalized' dimension 

function D, vector-valued with 1 for all x in L such that x ~ j 3 ) if and 
only if D(x)=D(>')• [9, 6]. When L is irreducible D is numerical-valued and its range 

I n 
of values is either 0, —, ..., — for some integer n (then L is called a finite dimensional 

n n 
or discrete geometry of von Neumann) or all real numbers 0 ^ t S 1 (then L is 
called a continuous4) geometry of von Neumann) [9, Part I, Theorem 7. 3]. 

Rm, FH will denote the set of principal right (respectively, left) ideals of 9ft, 
ordered by inclusion; i?3i and Li)t are complemented modular lattices [9, Part II, 
Theorem 2 .4]. 9i will be called an &-ring or a von Neumann ring if R;n (hence also 
/.¡it) is an ^-geometry, respectively a von Neumann geometry. 

In a von Neumann ring there exists a unique, normalized rank-function 
R(a), vector-valued with for all a in defined by: R(a) = D((a)r).5) 
If 91 is irreducible, R is numerical-valued and Rm must be discrete or continuous; 
then 9i will be called a discrete ring, respectively a continuous ring (of von Neumann). 

') {u\(p(u)\ will denote the class of u for which <p(u) holds. 
2) Thus L satisfies VON NEUMANN'S axioms I—V; his axiom VI (irreducibility) is not postu-

lated [9, pages 1,2]. 
3) In any lattice, x~y means: x is perspective to y (that is, for some w, x 1) w — y U w and 

• x 0 w = yV\ w; x-<y means x ~ w for some » g j . 
") In our terminology a continuous geometry is always irreducible. 
3) (a)r and (a), denote the principal right and the principal left ideal generated by a, respec-

tively (since 5H is a regular ring, (o)r = a5l). 

A L 
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A discrete ring must be of the form SD„6) with £) a (possibly non-commutative) 
division ring [9, Part II, Theorem 14.1 and page 292]. 

If n =• 1, 9f„ must also be a regular ring [9, Part II, Theorem 2. 13] but if 9Í is 
a von Neumann ring, 9i„ need not be a von Neumann ring (the union of a countable 
subset of RXn may not exist7)); but if 9i is an irreducible von Neumann ring then 
91 „ is also a von Neumann ring (see the Corollary to Lemma 3. 2 below). 

The centre of 9t will be denoted Z (if 9t is a von Neumann ring, Z will be a 
commutative von.Neumann ring); Z will be a division ring if and only if Z is irre-
ducible and if and only if 9Í is irreducible. 

A non-zero element x in a lattice L will be called minimal if y1 ^x, 
y i ~ y 2 together imply y ^ = y 2 . 

By P we shall denote the set of all polynomials 

p(t) = ím + z,„_1ím_1 + ... + z 0 

' with mSi and all z¡ central.8)p, q in P will be called relatively prime if h(t)p(t) + 
+ k(t)q(t) = 1 for some It, k of the form t", + zm_1tm-1 + . . . + z 0 with mÉO and 
all z¡ central8), p will be called irreducible if p cannot be expressed as a product 
P=PíP2 with pi_,p2 in P and each of degree less than the degree of p. 

If Z is not a field, Z contains a non-zero non-invertible9) z0 and p = t, q = t + za 
are irreducible, different but not relatively prime. This motivates the following 
definition. 

Call p in P pure irreducible if for every non-zero central idempotent e, ep is 
irreducible in the ring eSi. If Dt is a von Neumann ring then for each p in P there is 
(obviously) a -set of orthogonal non-zero central idempotents, {ex} with U;.(e;)r = 9¿ 
and with the property that for each X: e,p =e;Tiiq)i with a finite set of i and with 
each qkyi in P and exqxi pure irreducible in cyji. 

Let Pt be a subset of P and let P1 consist of all p=pl-- -pm (all p¿ in Px). We shall 
call an element a Pi -algebraic if p(a) =0-for some p in P1, Px -almost-algebraic if 
Pi ((/?(a))r|/' €-Pi) = 0- When Pt coincides with P we omit it in this nomenclature 
[10,4]. 

a and ¿ are called similar or conjugate in 91 if b = dad~~1 for some invertible d. • 
Then for each p in P, p (b) = dp (a) d~\ (p (b))r — (dp (a))r and we shall show in Co-
rollary 1 to Lemma 2. 1 below that in a von Neumann ring (p(b))r ~(p(a))r and 
hence R(p(a) — R(p(b)) for each^ in P. 

1.2. Elementary divisors. When 3i = 2)„ with © a commutative division ring 
(we shall call this the classical case) it is known [1, page 283], [11, pages 120—124], 
[7, pages 92 -98 ] that: 

(1. 2. 1) a and b are similar if and only if they have the same elementary divisors. 

6) The ring of nxn matrices with entries in S will be denoted S„. 
7) This failure occurs in KAPLANSKY'S example [8] where I){ is the ring of sequences of com-

plex numbers a = {a,„\m 1} with all but a. finite number of am real, with componentwise ring 
addition and multiplication. • 

8) An element of ill is callcd central if it is in the centre Z\ a, b are orthogonal if ab = ba = 0. 
' 9 ) In any ring @ with unit, d is called invertible if for some c in S , dc = cd= 1; c is called 

the reciprocal of d and denoted d~ 
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We give now a definition for „elementary divisors of a" in terms of the rank 
function, applicable in any von Neumann ring. 

Note first that for b in and integer sSO, (bs+1)r = (bsb)r^(b*)r and 1 0 ) 

( 1 . 2 . 2 ) • [ ( ¿ s + 1 ) r - ( i s + 2 ) J ^ [ ( n - ( A s + 1 ) J 

((1. 2. 2) will be proved in Lemma 2. 2 below). Thus R{bs)^R{bs+1) and R(bs) -
- R (bs +!) S R (bs +!) - R (b* + 2). 

We set Ra(p) = R(p(a)) for each p in eP = P(e${) for arbitrary non-zero 
central idempotent e. For each integer i ^ l we define 

fa{P,s)=s{<<Ra{p^)-R^))-{Ra^)-Ra{p^))). 

Then fa{p, s) SO. The function fa(p, s) is determined by the function Ra(p); the 
converse also holds since • 

RAp'-^-RaiP*) = z \ f a ( p , t ) , 
• t = s I 

' Ra{p°)-Ra{ps)= 2 z \ f « { p , i ) , 
1 = 1 t=i t 

Xa(ps) = 1 - 2 z \ f a { p , t ) , ¡=1 l = i t 

It can be shown that if p, q are relatively prime then 1 — Ra(pq) = (1 —Ra(p)) + 
+ (l-Ra(q)). 

Thus in any von Neumann ring the function Ra(q) for all q in P is determined 
by the values of fa(ep, s) for all p in P with ep pure irreducible in eDi and e a non-
zero central idempotent and all j £ l . We shall say for each non-zero central idem-
potent e andp in P with ep pure irreducible in eii, and fjep, i) > 0 that q=ps is an 
elementary divisor of a in e;Jt occurring with normalized frequency fa(ep, s).. This 
definition agrees with the usual one for the classical case (there, the only possibility 
for e is 1) except that the normalized frequency is the usual frequency multiplied 

by the factor 5 (degree of p}^ It can be shown that in every irreducible von Neumann 
n 

ring 
l~2fa(p,s) = R(ae0)^0 

P,S 

where ae0 is the transcendental part of a [4] (thus „ = " holds if a is almost-algebraic, 
in particular for all a in the classical case). 

We have noted that each p in P can be expressed „locally" as a product of pure 
irreducible factors. We shall call a subset P1 of P fully factorizable if for each p in 
Pl there are central idempotents {e} such that U (e)r = Si and such that each ep is a 
product epi...pm with each pi in Px and epi pure irreducible in edl. 

Clearly P itself is fully factorizable. If 9t is irreducible then Pi is fully factoriz-
able if it contains all irreducible p in P. 

1 °) If x^y then [x — y] denotes any (fixed) w such that y U w = x (the dot in U indicates inde-
pendence of the addends); such w exist in every complemented modular lattice. 
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1.3 . Statement of main theorem. The main object of this paper is to prove 
the following theorem, a generalization of (1.2. 1) to any von Neumann ring: 

Theorem 1. 1. Let a and b be arbitrary "elements of a von Neumann ring. 

(i) For a and b to be similar it is necessary that 

<1.3.1) Ra{q)=Rb{q) for all q in P. ' 

(ii) For a and b to be similar it is sufficient that for some fully factorizable Pl: 

<1.3.2) Ra(ps) = Rb(jps) for all.p in P± and s^l, 

(1.3.3) a and b are Pi -almost-algebraic.11) 
(1.3.4) Whenever e is central idempotent such that ¿91 contains minimal ele-

ments then eL9i is a finite dimensional matrix ring over el Z for some 
non-zero central idempotent ex such that e^e — e^. 

<1.3.5) ^ is a von Neumann ring.12) 

Remark. The definition of 9i2 is given in footnote 6). It is shown in the Corol-
lary to Lemma 3. 2 below that 912 is a yon Neumann ring whenever Si is an irredu-
cible von Neumann ring (equivalently, if Ry is a discrete or continuous geometry), 
more generally whenever 91 is a direct sum of irreducible von Neumann rings. 

Also, it follows from Lemma 3. 1 and Lemma 3. 2 below that every von Neumann 
ring can be expressed as a direct sum 91 © 91' in such a way that (8t')2 is a v o n Neu-
mann ring and 91 is a von Neumann ring in which every idempotent is central (equi-
valently, Di« is a Boolean algebra). 

Let E be the central idempotent for which 9t' = 9iis; then clearly, a and b are 
similar in 91 if and only if Ea, Eb are similar in 91' and (1 — E)a, (1 —E)b are similar 
in 91. If a, b satisfy (1. 3. 2), (1. 3. 3) and (1. '3. 4), then at least Ea, Eb are similar in 
91' (hence in 9i) since 9i' satisfies (1. 3. 5). Thus a and b will be similar in 91 if 
and only if (1 — E)a, (1 —E)b are similar in the ring 91((1 —E)a and (1 — E)b 
satisfy (1. 3. 2), (1. 3. 3), (1. 3.4) in 91). 

In such a ring 91 condition (1. 3. 2) can be expressed in the simpler equivalent 
form: 

( 1 . 3 . 2 ) ' (p (a))r = (p (b))r for all p in Pt. 

We shall postpone to another occasion further discussion of the case of a ring 
91, noting here only that it is easy to see that Theorem 1. 1 (ii) holds without (1. 3. 5), 
if 81 is the example given by KAPLANSKY (and described in footnote 7)). 

Corol lary to Theorem 1. 1. Suppose 91 is a von Neumann ring which is 
irreducible, or more generally, is a direct sum of irreducible von Neumann rings, or 
more generally, has the property: 912 is a von Neumann ring and that (1.3.4) holds. 

" ) In the presence of (1. 3.1) the condition (1.3.3) for a will imply (1.3.3) for b. 
12) For the classical case 9t = S„ (3) commutative) our proof specializes of course, to a proof 

of the known result (1.2.1). 
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If a and b in 9t are almost algebraic then they are similar if and only if they have the 
same elemeniary divisors. 

However, we shall not use rank (or dimension) functions. In (1. 3. 1) and 
(1. 3. 2) we shall replace equality of rank by perspectivity of corresponding principal 
right ideals. 

1. 4. Plan of the proof of Theorem 1.1 . Corollary 1 to Lemma 2. 1 below will 
show that ( d p ( a ) ) r ~ ( p ( a ) ) r if d is invertible. From this follows (i) of Theorem 1.1. 

To prove (ii) of Theorem 1. 1 we prove first the special case: 

(1. 4. 1) a and b are similar in an $0-ring if 3ft2 is an #0-ring, and (as)r~(bs)r' 
for all i ^ l and fl ((as)rl-i— 1) = 0 (see Theorem 4. 1 below), 

and then the case: 

(1. 4. 2) a and b are similar in a von Neumann ring 9i if (1. 3. 4), (1. 3. 5) hold and 
for some pure irreducible p in P, (p(a))r~(p5(b))r for all s si and 
H ((/?s(a)),|iSl) = 0 (see Theorem 4. 2 below). 

Then in the general case we. show that the unit in i)i can be decomposed into 
orthogonal idempotents e (not necessarily in the centre) with U (e)P = 9t and 
(using Theorem 3. 1 below) such that, for some b—dbd-1: for each e, ae = ea and 
be = eb and ae, be satisfy the hypotheses of (1. 4. 2) in e9te. 

This will yield: ae and be are similar in edie. Then, using a theorem which 
permits „combining" such local similarities in the case that 9i2 is a von Neumann 
ring (Theorem 3. 2 and its Corollary 1 below) we deduce that a and b, and hence 
also a and b are similar. 

2. Proof of (1. 2. 2) and Theorem 1 .1 (i) 

If d is in 3i we shall write dr to denote {b\db = 0}. If x c 9t we write xr to denote 
{b\xb = 0}. Similarly for dl and x', ' 

Lemma 2. 1; Suppose <i£9l and x£Rx. Let x0=drC\x. If xf\dx = Q or if 
is an K o -ring, then [x — x0] ~ dx. 

Corol lary 1. If also x0 = 0 (in particular, if d is invertible), then x~dx so (i) 
of Theorem 1. 1 holds. • 

Corol lary 2. IfSl is a von Neumann ring, then D{x) — D(dx) +D(x0). ; 

Proof of Lemma 2. 1. Let e , / b e idempotents such that x = (e)r, d9i = ( f ) r , 
and let X! = [x — x0]. Then a£x implies a = a0 + a i with « ¡ 6 ^ . Thus dx = dxt. 

Let T denote the mapping of 0 ^ ^ ^ x 1 onto w^dxy defined by: T(a)r — 
— (da)r.Then T^has the properties: 

(i) T is order-preserving: indeed, (db)r ^ (dc)r is equivalent in turn to each'of:. 
for some a in 9i, db==dca, d(b — ca) = 0, b — ca = 0, (b)r^(c)r. 
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(ii) T(a)r~(a)r if T(a)rf~)(a)r = 0: indeed, (a + dci)r is an axis of perspectivity 
since 

T(a)r U (a + da)r = (dd)r U (a + da\ = (a)r U (a + da)r. 

From [4, Lemma 6. 1] it follows that xi ~dxl = dx. 
Proof of Corol lary 2. D(x) = D(x0) - fZ)^!) and D(dx) = D(xsince 

•dx~xy. 

Lemma 2. 2. (1. 2. 2) holds in an X0-ring. 
! 

P r o o f . Let XS = (bs)r n br. By Lemma 2.1, [(b% - (bs+1)r] U XS = (b% for 
•some x-s~xs. Since xs+1 ^xs, xs+1 -< xs (perspectivity is transitive in an K0-geo-
metry [2]). Now (bs+l)r^(b%; so from [2, Lemma 6.5] follows (1.2.2). 

3. Lattice sums of ring elements 

3. I. Preliminary Lemmas. 

Lemma 3. 1. Suppose R^ has a basis13) x1, x2, x3 with x2 , x3-<x1. Then 
.if 9i is an it-ring (respectively von Neumann ring) so is 3i2 • 

Proof . This coincides with [5, Corollary 2 to Theorem 3. 1]. 

Lemma 3. 2. Every von Neumann ring 91 is a direct sum 9i ©9i' with 8d' satisfy-
ing the hypotheses of Lemma 3. 1 and 9i a von Neumann ring in which every idempotent 
is central}*) 

Proof . If L is a von Neumann geometry then L = £ ©£> where has 
i — 0 

a homogeneous basis consisting of / minimal15) elements if i 5= 1, and JL0 has the 
properly: 0 ^ x £ L 0 i m p l i e S O ~ j 2 f o r s o m e j 1 U y 2 ^ x [9, Part III, Theorem 3.2]. 

There are elements xi0), x2
0) which form a homogeneous basis for L0: indeed 

take a maximal class of pairs {y1,y2} with {yi, y2 j all a} JL16) and y\~y% for 
•each a and set x{0) — , x2

0) — Uxy2 • 
For /=- l ,L; has a basis x(j', x(

2\ xf with' x(
2

} ~ x(l', xf -< x(l': indeed, if 
yi} ,.:,yi is a homogeneous basis for Li then according as i = 2m or / = 2/71+1, 
take x ( / ) = j 1 U . . . U j m , x 2

) = j m + 1 U . . . U j 2 m , x < 3 ) = 0 or ^ respectively. 

Let L = Lu L' = L0® @L,. Then L = L@L' and L is a Boolean al-
1 = 2 

.gebra whereas L' has a basis Xj = U ( x f | / 1), y = 1, 2, 3, with x2~x1,x3Sx1. 

I3) x 'i , . . . x,„ are said to be a basis for a lattice L if U,X( = the unit of L; the basis is called 
homogeneous if xi ~ xj for all /', j [9]. 

>4) If 3i is a regular ring with unit, all idempotents in 9t are central if and only if B^ is a 
Boolean algebra [9, Part II, Theorem 2.5 (Note) and Theorem 2.10]. 

15) A non-zero element x in a lattice L is called minimal or locally-atomic if yi x, yi x, 
yi together imply yi=yi (for another definition, see [9, Part 111, Definition 3.1]). 

16) _L indicates „independence". 
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Every direct decomposition of L = R$ is determined by a corresponding direct 
decomposition of 9J and from this follows Lemma 3. 2. 

Corol lary. Suppose . 9t is a von Neumann ring. Then 91 has the property: 3t2 
is a von Neumann ring whenever Si is irreducible, more generally whenever 9t is a 
direct sum of irreducible von Neumann rings-, more generally whenever 9i is a direct 
sum of von Neumann rings Dia each of which has the property: (9ia)2 is a von Neumann 
ring. 

Proof . Since (2 © 9^)2 = 2® (3ia)2 w e need only show that 9t2 is a von Neu-. 
mann ring whenever 9t is an irreducible von Neumann ring. But if 91 is irreducible, 
then with the decomposition 9i = 91 ©9i' of Lemma 3.2, we must have 9£ = 9t 
or 9i = 9i'. Since (902 is a von Neumann ring (according to Lemma 3. 2), we need 
only prove: 9i2 is a von Neumann ring whenever 9i is an irreducible von Neumann 
ring in which every idempotent is central, equivalently, 91 is a division ring. But in 
this case 9i2 is (trivially) a discrete von Neumann ring. 

Lemma 3. 3. If (a)r = Ua(aa)r in R^ then bax = 0 for all a if and only if ba = 0. 

Proof . [9, Part II, Corollary 2 to Lemma 2. 2.] 

Lemma. 3. 4. If 9i is an R-ring and {xx\a^I} _L in with cardinal of / ^ K , 
there exist orthogonal idempotents {<?„} with (ea)r = xafor all a. 

. Proof . Let .y = — UaxJ and choose ea so that (ex)r = xx and (1 —ex)r = 

Lemma 3. 5. Suppose {ex\a£/} are orthogonal idempotents with cardinal of 
K in an is-ring and let e be an idempotent with (e)r — U5((ea)r. Then e is the unique 

idempotent with also (1 — e)r = fla(l —ea)r
lT) if and only if (e)t = Ua(ea),; then 

dey = ey,dep= 0 for ft^y imply de = ey; eyd = ey, epd — 0 for fi^y imply ed = ey. 

Proof . By [9, Part. II, Lemma 2.2, Corollary'2] ( l - e ) r = f l ^ l - O r is 
equivalent to (e), = (1 - e)> = U a ( l - e j = Ua(eJ;. 

Next, (de — ey) ex = dex — eyex — 0 for all a. Hence, by Lemma 3. 3, (de — eY)e = 0, 
de = ey. 

Lemma 3. 6. Suppose Uaxa exists in L3l. Then for any d in 9i, UX1'*^) exists 
and is equal to (U Xxx)d. 

Proof . Let x = {Jxxx. Then for each «, xd^xad since x^xx. To prove 
Lemma'3. 6 we need show: if y ^ x x d f o r all a then y ^ x d . 

Suppose y^xxd for all a. Then y Pi (d)l = xad for all a and therefore it clearly 
suffices to prove: (d)l^y^xxd for all a implies y S xd. Now for some a in 9i, 
y = (ad)i = (a)td. Let u = (a)[ U dl. Then y=ud. Hence it is sufficient to prove that 
u^xx for all a; this would yield uSx and hence y = ud^xd as required. 

To prove u = xx suppose c£xx, then cddud since xxd^ud, hence cd=ct d for 
some c1 £u. Then (c — c1)d=0, so c — c1 £u. Now u is a left ideal so (ct +c — c1)£u, 
c£u. Thus xa = w, as required. This proves Lemma 3. 6. 

17) This e exists because Ua(e«)^ and n„(l — ea)r are complements (9t is an X-ring). 
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3. 2. Lattice sums of ring elements. In this section, 3t will be an N-ring for some 
I a set of jndices a with cardinal 

D e f i n i t i o n 3. 1. A set of orthogonal idempotents (r'—{ex} will be called a 
separating system (s. s.); then e = ea will denote the unique idempotent with (e)r = 
= U«(Or. (e)t = Ua(ea), (existing by Lemma 3,- 5). 

D e f i n i t i o n 3. 2. An s. s. a will be called a right separating system (r. s. s.) 
for {cQ if exdx = da for all a. 

<T. r 
D e f i n i t i o n 3. 3. If a is a r. s. s. for {dx} then % ©¿4 will.denote an element d 

a 
such that d£\Jx(dJr and exd = dx for each a; such an element d (if existing) will 
be called a <r-right lattice sum of the dx. Similarly for <j-left lattice sum. 

Lemma 3. 7. A r. s. s. <x exists for' {da} if and only if {(¿4)r}_L- (by Lemma 
3.4). If for some r. s. s. a, a a-right lattice sum of the dx exists then its value d 
is unique, d=ead, (d)l = Ua(i4)(, and for any element b,dyb = d for some y and 
dab = 0 for a^y imply db = dy. 

Proof . If ex(d—d) = 0 for all a, then by the right-left dual of Lemma 3. 3, 
en{d — d) = 0,- e„d = e„d. This means: the cr-right lattice sum (if existing) is unique. 

Next, {d)l = {ead)t = {ea)ld, so by Lemma 3.6, (d), = Ux(exd), = \Jx(dx)[. 
Finally, ea(db — dy) = 0 for all a, so by the right-left dual of Lemma 3.3, 

e„(db-dy)= 0. Hence db = dy. 
r 

D e f i n i t i o n 3.4. If {((/a)r}±, we denote by ^Z®dx an element d such that 
a 

d is a a-right lattice sum of the dx for every r. s. s. a for {d^}. This d (unique, if it 
exists, by Lemma 3. 7) will be called the right lattice sum of the dx. 

D e f i n i t i o n 3. 5. If {(<ia)r} _L and {(¿4)/}-L we denote by ^ ¡®d x an element 
a 

d such that d is a right lattice sum and a left lattice sum of the dx. This d (unique, if 
it exists, by Lemma 3. 7) will be called the lattice sum of the da. 

Lemma 3. 8. If {(dx)r}.L and {(¿/J,} _L and d is a o-right-lattice sum of the dx 
(for some r. s. s. a) then d is a lattice sum of the dx. 

Proof . Let T = {/A} be any left separating system for {dx} and let f = f x . Then 
ep(dx — dfa) = 0 for all a, fi so e„(dx — dfx)= 0, dx = dfx. This shows that d is a T-left 
lattice sum of the dx (by Lemma 3. 7, {d)l = Ua(i/a), ^ Ua(/a)/). 

Now by right-left duality, d is a cr-right lattice sum of the dx for every r. s. s. 
a for {dx}. 

r 
Lemma 3.9. If {(da)r\adl} _L and I is finite then ]?®da exists and coincides 

a 
with the ordinary (ring) sum £ dx. 

a 
Proof . Obvious. 

Lemma 3. 10. If {ex} are orthogonal idempotents then ^®ex exists and co-
x a 

incides with the unique idempotent e with properties: (e)r= \Jx(ex)r, (e)t= \Jx(ex)t. 
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Proof . By Definition 3. 3 and Lemma 3. 5. 

Coro l l a ry . Suppose {ea} are orthogonal idempotents and e= ®ea. If for 
some a in % eaa = ae„ for each oc, then 2«. © (<V<) exists and equals ae = ea. 

Proof . First we show ae=ea. We have (e),.— Ua(eJr by Lemma 3. 10, and. 
(a — ea)ex- — aex — eaex = aex — eexa = aex — exa = 0 for all a. By Lemma 3. 3, 
(a-ea)e —0 so ae = eae. By a left-right dual argument, ea = eae. So ae = ea. 

Next, a — {ex} is a r. s. s. for {aex} and {(«£«);} are independent since (aelt)l s 
^ ( e j , . So by Lemma 3. 8, ae = 2a®(.aex) if o n ly ae is a ff-right lattice sum of the 
aex. 

So from Definition 3. 3 we need only show (i): exae=aex for each a and (ii)' 
ae£ Ua(aea)r. But (i) holds since exae — exea = exa = aex. As for (ii), (ae),,S(aeerj),. = 
(<aex)r so (ae)r^\Jx(aex)r. If (ae),. ̂  Ua (aea)l., then there exists anon-zero idempotent 
g£(ae)r such that (1 —g)r^(aea)r for all a. Then gaex= g(l — g)aex=0, (ga)ex — 0' 
for all a, so by the left-right dual of Lemma 3. 3, (ga)e = 0. But g = aed for some d, 
so g=gg—gaed=0, a contradiction. Thus (ae),. = UJaeJ,. so (ii) holds and the 
Corollary is established. 

Lemma 3. 11. It a is a r. s. s. for {dx}, then a a-right lattice sum of the dx 
does exist if 3i2' is an $-ring,i8) 

Proo f . Let e —e„ and form the matrices: 

0 0 0 0 

da ex 
, M = 

0 e 

{Dx} are orthogonal idempotents in 3i2 so by Lemma 3. 5 an idempotent E in, 
3i2 exists such that (E)r = Ua (£>„),. and ( £ ) , = Ua (DJ, in with © = 9i2. Now . 
MDa=Dx for all a so (M)r 3 U x (DJ r = (E)r, ME=E. Thus E must have the form. 

0 0 
E = 

d 
E = 

d g 
with ed = d. Since DaE= Da for all a it also follows that exd=dx for all a. Thus this 
element d is a «r-right lattice sum of the da. 

Lemma 3. 12. Suppose d=2a®d«> c = 2a® c«> and some a = {ex} is a r. s. s. 
for {cj and a I. s. s. for {dx}. Then 2«®(daex) exists and is equal to dc. 

P r o o f . Since ( ¿ / J f S ^ n {(40,'}-L• Similarly, {(¿«cj,} _L. If ? = {#«} is a 
r. s. s. for {dx\, then gxdc=dxc = dxexc = dxcx. 

T h e o r e m 3. 1. Suppose e — 2a® ea andf= 2«®faf o r idempotents ex,fx in a 
von Neumann ring Si. Suppose (ej,. ~ (Ja),. for each a. Then there exist dd in St such 
that d = edf d=fde, dd=e, dd=f, dfxd=ex and dexd=fx for each a. Moreover, if 
\Jx(ea)r =iR then e = l =f and d is invertible with d as its reciprocal. 

l a ) If N is an infinite cardinal, 3t2 may fail to be an N-ring and such d may not exist; this, 
happens in KAPLANSKY'S ring (see footnote 7)) if e„, = (0 , . . . , 0, 1, 0, . . .), dm = ( 0 , . . . , 0, f„ 
0 , . . . ) ( m g 1) where the non-zero components are in the ;«-th place. 
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P r o o f . The last statement would follow from the aclditivity of perspeetivity 
in a von Neumann geometry [9, Part III], [3]. 

Wc recall VON NEUMANN'S proof of Theorem 3, 1 for the case I lias a single 
index [9, Part II, Theorem 15.3 (a)]; suppose (e),. and (/),. are perspective, hence 
have a common complement. Then there exist idempotents e',f such that: 

(e), = (e%; ( l - o , = (i - / ) , ; (/'), = (/),.. 

Define d(e,f) = e'f d(e,f) =J'e. Then it follows that e' = e'f ,f =f'e', e=e'e, 
•e' = ee', / = / ' / , / = / / ' . Therefore: 

ed(e,f)f=d(e,f); fd(e,f)e = d(e,f); 

d(e,f)fd(e,f) —d(e,f) 1 (e,f) =e-

d{e,f)fd(e,f)=d(e,f)d{e,f)=f. 

Next, if 9i2 is also a von Neumann ring, we need only define d—2a®d(ex,fx), 
•d—2«®d(e„,f„), using Lemma 3. 11. and Lemma 3. 12. 

Finally, every von Neumann ring 3d has a direct decomposition 9t ©91' as in 
Lemma 3. 2 and we let E be the central idempotent for which 91' = 912?. 

Then Ea = aE for all a in 91. Let a' denote aE, a denote a( 1 —E). Then in 91, 
''(<?<«)r~(/«)r a n d since R® is a Boolean algebra, necessarily ex =JX . 

In 9i', (e'a),. ~ (jQ,. and we can apply the argument of the preceding paragraph 
since is a von Neumann ring when © = 9i2 • Now 

d = 2*®d(e'a,f'a), 

•satisfy the requirements of Theorem 3. 1. 

T h e o r e m 3.2. Suppose {ex} are orthogonal idempotents in a von Neumann 
.ring 91. Suppose for each a, da = ead„=dae„. If 9t2 is also a von Neumann ring, then 
2«®da = d exists. 

P r o o f . v = {e„} is a r. s. s. for {d„}, so by Lemma 3. 11, {d„} possesses a a-
right lattice sum d. But {(c/JJ _L since (i/J; = (ej;> s o by Lemma 3. 8, d is a lattice 

•sum 2« ®d„. 

C o r o l l a r y 1. If in Theorem 3.2, {dx} satisfy dx = dxex = eada, dadx = 
—dada = ea for each a, then d = 2«© <4 satisfies dd = dd = 2«®e«-

P r o o f . Since (r = {ea} is a r. s. s. for {d„} and 1. s. s. for {dy}, it follows from 
"Lemma 3. 12 that dd=2«®(dxdx) = 2a®e«.' Similarly, dd=2«®e«-

C o r o l l a r y 2. Suppose {e„} are orthogonal idempotents and {fa} are orthogonal 
idempotents in a von Neumann ring 91 such that 9i2 is a von Neumann ring. 
Suppose for each a, da = eadx = dja. Then d = 2«. © d„ exists. Moreover if {<4} exists 
such that for each a: da=fad„=daea, dxdx — e„, dxdx=fx, then d= 2«®dx exists 

«and dd= 2x®ea> dd = 2a®fa-
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P r o o f . The argument for Theorem 3 .2 and its Corollary 1 is valid in the 
present case. 

4. Proof of the special cases (1. 4.1)," (1. 4. 2) 

L e m m a 4. 1. Suppose that c is in an Xo-ring 9't and Pl((cs),.|,s'Sl) = 0. Then 
9i can be espressed as the union of independent principal right ideals: 

(4.1.1) 31 = 

such that cxij = xij+l and c1' 0x^ = 0 for 1 ¿/<!<oo( and cxUi = 0 for 
Then19) necessarily xu ~ x w + 1 / o r l S ; ' < z , c9'i U (U (x;>, | / S 1)) = 9t, and for each 
s ^ l , ( c 5 ) r s x i if i-s<]-ki and {cs)r P i x u = 0 i f j ^ i - s , so (by (1. 1. 1) and the 
modular law) (cs)r= U (xtj\iisl; i — s<jSi). 

Moreover any value of [(cO''-((cO ,'n((c'i-1) ,'Uc9i))] = [(c ,) ,'-((c i- : t) , ,U((c i)''n 
f l c9'i))] may be used as x ; > 1 ; 2 0 ) on the other hand, any value of [(cr f l c i_19fi) — 
— (C f! c'9{)| may be used as xit. 

P r o o f . Suppose x i ; 1 given as described and define xij = ci~1xl l for l ^ j s i . 
Then for 1 cxuj=xtj+1. Jf d£xtil and chl=0 with 1 S j < i then ci~1d=0, 
d £ ((c'~ 1)r U ((c1)'' f l cSft)), hence (see the definition of x M ) d=0. Thus c ' 'P lx , u = 0 
for 1 Clearly cxiit = cixitl = 0 . 

Next we show that for each j s 1 

{ c ^ , x ^ l z S j } ! . . 

For suppose cJv = cj~1vJ +... + c->~1 vs with allv^x^ t . Then we must have cJ '_1t;s = 0. 
Otherwise, j — 1 < j and left multiplication by cs~J yields: csv = cs~1vs. Then 
vs = (f s — cv) + cv and (vs — cv)£ (c5-1)'', cu6(cs)'' Plc9t; this implies that vs = 0 since 
vs£xSii and hence cJ~1vs —0, after all. Repetition of this argument shows that 
cJ~1vi = 0 for all i=s, s — 1, ...,j and hence ch — 0. This-proves the assertion. 

From this it follows that for each fixed j s 1: {xUj |z Sjr'} J_. Also 
{ U (xUj | i Sy) \j s 1 }_L since U (xtJ | i S j ) f l U (xi)S | z S i > ; ) J U ( x w | z S j ) f l oW = 0. 
This implies that { x u | z ' S l ; lSySz'}_L. 

Next,by [4, Lemma6.2], P ( ( c J ) i \ jS1 ) = 0sincebyassumption n( (cJ ) , . | ; ' s l ) = 0. 
Hence Si = (Pi ((cJ)i\j S1))'' = U((cO' U 'S l ) (by [9, Part II, Lemma 2. 2, Corollary 2]). 
Since (U(x i i l | zS l ) )U(c9 i ) s ( c . ' ) ' ' for a l l j s l it follows that U (x ; J 1 z < U 
U c 9 i s 9 i . Successive left multiplication by c now gives: U ( x i ^ | l 3 . / S z < ° ° ) U 
Uc ' "9 t s3 t for all m s l , and since Pi (c" '9 i |msl ) = Pi ((c"'),.|/«Sl) = 0, therefore 

19) Xt,j^xt,j+1 follows from cxt , j=xi , J + i and c r n x w = 0 because of Corollary 1 of 
Lemma 2.1. Further, from cxt,j=xuj+i follows, because of formula (4.1.1), cSt = 0 (xt,j | 1 «= 

20) When specialized to the classical case, this result yields: let T be a linear transformation 
of a finite dimensional vector space V into itself (V shall be finite dimensional over a division 
ring D but D need not be commutative) and suppose Tp — 0 but Tp-1^0 for some ^ S i -
Let iV"(T) = { « | r « = 0}. Let h,st be a basis for the difference-space [N(Ti) —N(Tt) fl 
f l ( i V ( r ' - i ) U r ( n ) ) ] . Then {TJ£,,k\l = l, k = l,...,sti y = 0 , 1 / - 1 } are a basis 
for K 
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On the oilier hand, if the xtit arc pre-assigned as some given [(C fl c'_19{) — 
- ( e n c ' S i ) ] , set xtA - [{d\ct-1cl£xu}-(ct-Lyl We shall show that these values, 
for xtll satisfy the conditions given in the first part of Lemma 4. 1 and that c'~1xiil 
will coincide with the given xu. 

First, if ddxtl, then ci~1d£xi t and xn^cr. Hence c'd=0. This proves: 
xit i ^ (c1)1'. ' ' 

Next, xtil is a relative complement of (c1)1' fl ((c'~ 1)1' U (c?R)) with respect to 
(c ly; to show this we must prove: (i) xl L f]((c'-1) rUc3 ii) = 0, (ii) xt t U ^ c ' " 1 ) ^ 
Uc9t)s(c ') ' ' . 

To prove (i), suppose d£xul and d =u-\-cv with c'~1u=0. Then ci~1d= 
= civ£xlti and C(C 1D)=-0. Hence c 'y£(cnc '9 t ) so, from the definition of xu it 
follows that clu=0. Thus c'~ld—0. Now we have d€(c'-1y, so from the definition 
of xtil it follows that d=0. This proves (i). 

To prove (ii), we remark that from the definition of xit 1: xit t 
= {d\c i~1d^x i i^. Hence 

xt, 1U ((c'-1)'' u cK) = {d\c'-Ve xu} U c3i 

Now suppose u£{ci)r. Then ci~lu£cr so (c 'Dc ' _ 19l) . Then from the 
definition of x M : c i _ 1 w = v+w for some v€xu and some w€(Cflc'9£). Now 
w = c'q for some q. Therefore u = d+cq where d = u—cq has the property: 
c'~1d — c'~1u — ciq = v H e n c e u£(xhiU((ci_i)1"Uc9£))> which implies (ii). 

Finally, if dZxtl, then so ci~1xiil^xltl; on the other hand, if 
uZxt>h then u = ci~1w for some w, so w = d+v for some d£xitl and some v€(cl~1)r. 
So u = ct~1d^ci~1xi l . Thus Xiii^cl~1xiA. Hence xij — c'-1xt>1 as stated. 

Now all parts of Lemma 4. 1 are established. 

R e m a r k . If c is an element in an arbitrary regular ring 91 with unit and c''=0 
for some integer h, then the proof of Lemma 4. 1 is valid; moreover the range of i 
may be restricted to 1 g i^Sh (the appeal to [4, Lemma 6. 2] and [9, Part II, Lemma 
2.2, Corollary 2]) is unnecessary here since 91 — U((c^ r |7 'fel) is an immediate 
consequence of ch — 0, (c'')r = 9l- 1 

L e m m a 4. 2. Suppose the hypotheses of Lemma 4.1 hold and that c=p(a) 
for some element a and some pure irreducible p in P, p(t) = tm -{- zm-xt"'~l + ... +z0. 

If z0 is invertible, in particular if m>l, then the element a is invertible. In every 
case if 91 is a von Neumann ring21) arid (1.3.4) holds 91 has a decomposition as 
described in Lemma 4.1 with the additional properties:' For each z ' s l , 

(i) xul = U (ajXi\0^j<m) for some xt; 

(ii) xill='J(flJyt\0^j<m) for some yt with ci~1yi = xi; 

(iii) (aj)rflyt = 0 so aJyi~yifor 0 ^ y < m z . 

2 1) Lemma 4.1 (and Lemma 4.2 for the case m = 1) hold if 9t is any ¡¡o-ring. But if I 
our proof of Lemma 4.2 uses transfinite induction (or ZORN'S Lemma) and requires 91 to be a von 
Neumann ring in which (1. 3. 4) holds. 
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Then (necessarily implied by (i), (ii), (iii) in any ft 0-ring) 

- (iv) \J(a]yi\0^1j<ms) = U (xtJ\l^j^s) for 1 S i ^ i and {¿z^IOs/omz}!; 

(v) U (aJ'yi[/ = 1, 0 = 9'i. 

P r o o f . Suppose that d£.ar. Then 
0 = n ( < y ( a ) ) , | i s l ) s C\{(p°(.a)d)r\s^l) = = (d)r 

if z0 is invertible. Then a'' = 0, (a), = 9t. Thus if z0 is invertible then (in any tf0-ring 
by [4, Lemma 6. 2]) a is invertible. 

Suppose m> 1. Suppose e is a non-zero central idempotent. If ez0= 0, then 
ep(t)=et(t'"-1 +...+zt) which is impossible since p is pure irreducible. Hence 
•ez0 ^ 0 for every non-zero central idempotent e. But z09'i = e09t for some central 
idempotent e0 [9, Part II, Theorem 2.5], and (1 — e 0 ) z 0 £( l — eo)eo9l=0. This 
forces 1 — e0 to be 0, so-e0 = 1, ^ S i = Si. This shows that z0 is invertible, and there-
fore, by the preceding paragraph, a also is invertible. 

Next, suppose (i), (ii) and (iii) hold. Then, by (ii), ci-1(asyi) = aJci~1yl = 
= ajxt so aiyi~aixl if 0 b y Corollary 1 to Lemma 2.1 (since (e' -1)' ' f] 
nx f > 1 =0) . But xul~xui so, by (i), U(a - / j i | 0 s . /<m) ~ U (cdx^Osj^m). This 

forces: {aJyt\0^j<m}_L by [2, Lemmas 6.15, 4.4], in any Ko-ring- The same-
argument applies to inclusion relation 

U(a J> i |0s ; -</m') S U O^k^s-1) = U {xU]\ 1 isjrSs) 

and forces the addends on the left to be independent and the inclusion to be equality. 
Thus (i), (ii), (iii) imply (iv) and hence (v). 

We need now only show that (i), (ii) and (iii) can be satisfied. 
If m = l, choose xUi and x,tl as in Lemma 4. 1. Let xi=xitl,yi = xl l . Then 

(i) and (ii) hold obviously (m = 1). Suppose for some j with 0 Sy < i and some d£yt 
that aJd= 0; then (c — z0)Jd= 0 so cJ'd^(xul U.. . C\xUj+x = 0 , hence d= 0. 
Thus (iii) holds by Corollary 1 to Lemma 2. 1. 

We may therefore suppose m > l . Let Ai—cr f l c * - 1 ^ . Then aAi^Ai so aAi =Ai 
(since a is invertible). 

Now since p is pure irreducible and ( 1 . 3 . 4 ) holds, an argument of VON 
NEUMANN [4, Lemma 5. 1] applies here21) and shows, by transfinite induction 
that for some xt\Ai+1 (j(lj(aJxi\0^j<fn))=Ai. Hence we may use U (a'x^Q-^j-^m) 
as the pre-assigned xt ,• in Lemma 4. 1 and (i) will hold. 

Let B i - { d \ c l - 1 d ' e x i } ^ ( c l y and define yt = [B<-(c1-1)'']. Then c
i-1yi = xi. 

Also 
(U ( a ' y ^ j ^ m ) ) U = 

so we may also (in the proof of Lemma 4. 1) choose {J^y^^S] <m) as xhl. Then 
(ii) holds. 

As for (iii), since m > l , a is invertible and (a1)1' = 0; thus (iii) does hold. 
This completes the proof of Lemma 4. 2. 

L e m m a 4. 3i Suppose a and b are elements in a regular ring Si with unit and 
suppose m is an integer s i . Suppose x1} ..., x,„ is a basis for i?9l such that axt — 
= xi+1 =bxi for 1 =5 z < m and a!' =b'~ = xm. Then a and b are similar. 
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P r o o f . We may suppose m^2 (if m = \ then a—b=0 and so b — dadwith 
d= 1). 

Since xt,..., xm is a basis for Rx: U (x,| 1 S ztam) — 91, in particular = 0 
if i•/• j. But if 1 S i m , then axt=x,+1 and a'T\Xi=x„ir\xi = 0> so by Corollary 1 
to Lemma 2. I, x , ~ x , H e n c e x 1 ; ..., x„, is a homogeneous basis for Then 
by [9, Part II, Lemma 3. 6] there exist matrix units stJ (i,j = 1 , . . . , m) with (xtt),. =xt 
for all i. Finally, the proof of [9, Part II, Theorem 3. 3] (note especially [9, page 
99, lines 13,14]) shows that 8i = ©„, with <3* = i u

s J i i n . 
We shall call c = ( c y ) off-diagonal if (i) cu = 0 except when z = ;'-|-l and (ii) 

C j+ i j is Invertible (in i n S f c u ) for 1 S / < m. Let c0 be the olT-diagonal clement 
with'non-zero entries all l ( = J n ) . 

Now the hypotheses of Lemma 4. 3 force a and b to be off-diagonal; so it is 
sufficient to prove a and c0 are similar. Thus we need only find an invertible d=(d t J ) 
such that ad=dc0. For this purpose choose dtJ= 0 for zV/, and dn = 1, 
dll = alil-ial-iii-2...fl2i f ° r 2 > 1 > then ad=dc0. 

Tliis completes the proof of Lemma 4. 3. 

T h e o r e m 4. 1. Suppose that a, b are in an $0-ring, 91 such that 9l2
 a n 

$0-ring, and (cfv)r~(b"),. for iSl and n((as)i|J= 1)=0. Then a and b are similar. 

P r o o f . Since n((Z> s ) rksl)^(a '") , . for all m s l it follows by [2, Lemma 6. 11] 
that n((Z>5)rkisl)=0. 

Let and xh
it] be determined for a, b respectively as in Lemma 4.1. 

First we shall show that x\j. We have: (a%~(b% for s S 1, hence 
[(a5-1),.-(«•'),.]-[(¿s"1),.-(Z>s)r] for j ' s 1. Then by Lemma 4.1, il(x? )S | 

Since x" ( S~x? ( 1 for each i ^ s , U (x? j S |zW)~ U (x?(1 |Z"SJ). Hence U (X?(1|Z'SJ)~ 
~ U (xf,j |i =£.v), and so by subtraction, x?j 1 ~ x \ t 1 for all / s i . Then 

80 rf,J~xt,j f ° r a " 1 S j S i < « > , as stated. 
Now let {etj}, { f j } be families of orthogonal idempotents such thai. 

(eUj)r = x'lt] and ( f i j ) r = r f j • Then by Theorem 3.1, dflJd~i—ei J for some in-
vertible d. 

The element c = dbd~1 has the property: (cs),. — (dbs)l.^(bs)l. for i ^ l (use 
Corollary 1 to Lemma 2. 1), so (cs)r^(as)r. Hence fl ((cs) r | j s 1) = 0 (the argument 
used above for b applies to c also). Finally (dfjd^1),. may be used as xftJ since 
the mapping: (u)r->-(dud~1),. = (du)r is a lattice automorphism of Rx. 

So we may suppose xc
ij = (eiJ)r=x1ij and clearly, we need only prove a 

and c are similar. In other words, we may assume xa
itj=x\j=xLj (say). 

Let {e£} be orthogonal idempotents with (e ;),.= U(X;J1 Sy'Sz), ^ ¡ © £ ¡ = 1. 
Then aet = eta, bet = efi for all z and the hypotheses of Lemma 4. 3 are satisfied 
in the ring efilei by aeu bci and xij7-ei ( lSy ' ^z ) . 

Thus for some dt,dt in e^ie,, i/;(/; = e ;=i/ ; i / ; and elb = diaeidi. 
Now d = 2 i ® d t > d — 2 t ® d i exist by Lemma 3.11; and by Lemma 3. 12, 

dd=dd= 1, b = dad. Thus Theorem 4. 1 is established.22) 

22) Theorem 4.1 together with Lemma 4.3, yields a „canonical" representation for any a in 
Si for which n ((0s),. | i S 1 ) = 0. 
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L e m m a 4. 4. Suppose a and b are Invertible elements in a regular ring Si with 
unit. Suppose m £ 1 and p(t) = t'" + zm„1t'"s^ + ...+z0 is in P and p(a) =p(b) =().. 
Suppose x, ax,..., am~1x is a basis for R^ and dx = b'x for 1 ^ z < m. Then a and b 
are similar. 

P r o o f . We may suppose m £ 2 (if m = 1 then a = —z0=b and b = dad~1 

with d= 1). 
Then A is invertible and Corollary 1 to Lemma 2. 1 shows that X) &X) ..., CI X 

is a homogeneous basis for R?R. Hencc 9i possesses matrix units stJ (i,j = 1, ..., m)< 
with (sii)l.^a'~1x for l ^ z ^ r a . 

Call c=(c ; j ) p-off-diagonal if: 
(i) c i + 1 > i is invertible (in .v^Uiiu) for l s i < m , 

(ii) C ! , A , » - i c » - i , » - 2 - C i t i , i = - * i - i for I S i S m , and 
(iii) c y = 0 for all other z',;'. 
Let.c0 be the ^-off-diagonal element with c i + M = 1 for 1 Sz '<m. 
The hypotheses of Lemma 4. 4 force a and b to be ^-off-diagonal. Hence, we 

need only show that ad=dc0 for some invertible d. For this purpose take d11 = I, 
dii = ai>l-1...a2i for 1 and di} = 0 for zV;. This completes the proof of 
Lemma 4. 4. 

T h e o r e m 4. 2. Suppose that a and b are elements in a von Neumann ring Si 
and that (1.3.4), (1.3.5) 'hold, and m s l and pit) = tm + zm-1tm~1 +... +z0 is 
in P and pure irreducible. Suppose (ps(a))r~(ps)b))r for all iSl and 
n((p s(a)) , . | jSl) = 0. Then a and b are similar. 

P r o o f . Theorem 4. 1 applies t o p ( a ) a n d p ( b ) and shows that p(a) = dp(b)d-1 = 
—p (dbd~1) for some invertible cl. If m = 1, then b + z0 — d(a + z0) d~1 so b = dad ~1 

for some invertible d, as required. Thus we may assume m s 2. Since we need only 
show that a and dbd:~1 are similar, we may now assume that p(b) =p (a). 

Now Lemma 4. 2 can be applied to yield elements y f , y\ for a, b respectively, 
as described in Lemma 4. 2. The corresponding values of xt> 1 (as described in Lemma 
4. 1) x 1 , i , may not be the same but they are of the form [x—x] for the same-
x,x; hence they are perspective. So, by (ii) of Lemma 4 .2 : U(aJy"\0 j<m) ~ 
~ U (b Jy' l \0s j<m). Moreover, by (v) of Lemma 4. 2, the elements in each of these 
unions fonn an independent family, and by (iii) of Lemma 4. 2, the elements in 
the same family are mutually perspective. 

Now y"t ~ybi follows from the theorem that in a von Neumann geometry 
whenever U ( « i | l ^ z ' S m ) ~ U(i>/| l^z'^rn) with {ut} mutually perspective and { u j 
mutually perspective (in the terminology of [9, Part III, page 272]: if mA = mB 
with m ^ l then A = B). To prove this theorem assume if possible that ux ~ v± is 
false. Then for some w in the centre of the geometry: 

w f l « ^ w h e r e but v 1 ^ v t (here we use [9, Part III, Theorem 2. 7]; 
and interchange ui, f j if necessary). Then there exist elements v0

t such that 
m m m m 

w n u «< = u (wOu,)-U (wn» i
0) = w n U » M 

¡ = 1 ¡=1 i = l Z=1 
III m in 

s w D U « « but with » n U ^ ^ M T l U v f . 
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m \ 
wC\ U OF) by [9, Part III, Theorem 1.4, (a), 

f =3 1 J 
III III 

•with w = a, U ut = a, U ot = b]. So by the transitivity of perspeetivity the lattice 
m 

'element c = wfl |J vt satisfies: c ~ c t with c^c, c1 j±c. But this is impossible. 
<=i 

Hence ux must hold, and so y"t 
Then aJyi ~bJy\ for all j. Now by Theorem 3. 1 there exists a similarity mapping 

which maps bJy\ onto a3y"t for all <mi. Hence, in proving Theorem 4.2, we 
may suppose b,yh

l=a3yi for all 0 ^j<mi. 
Now set Yt = U S ; < mi). Then U,7, = 9t and aYt = bYt for all 

i s 1. By Lemma 3. 4 there exist orthogonal idempotents Ft with ( F t ) r = Y h aFt = 
= Fla, bFt = Ftb. 

The hypotheses of Lemma 4. 4 are satisfied in the ring F^RFt by aFi and bFt 
•and {aJytFt\0^j<mi}. Hence aFt and bFi are similar in the ring Fl3iFl and, as 
.in the proof of Theorem 4. 1, Lemmas 3. 11 and 3.12 can be used to derive: a and b 
.are similar in 9i.23) 

5. Proof of tlie Main Theorem 

We suppose 91 is a von Neumann ring satisfying (1.3.4), (1.3.5) and need 
•only prove Theorem 1. 1 (ii). It will be sufficient to prove the following „aug-
mentation" lemma. 

L e m m a 5. 1. Suppose Px, a, b satisfy the hypotheses (1.3.2) and (1.3.3). 
Suppose S" = {ea

a,pa\a£l} and Sb = {^,pja£l} have the properties:2*) 

>(5.1.1) e"a, eb are non-zero idempotents with e'} = eb=e„ (say) for each a £ I, 
ptt£Pi and e„p„ is pure irreducible in ea91/ , 

< 5 . 1 . 2 ) « . ( n ( t a ( f l ) ) r | i S l ) ) = & - 4 k , 

<2a( n ((Pa(a))i Is^ 1)) = (ea - e£)z; similarly for b in place of a. 

•(5.1.3) e a e p p a ^ e a e p p p if e a e p ^ 0 . 

'Then: 

(5.1.4) (e«)f^ (eb)r for each a el, (£a © ej)r ~ (Ea © eb)r; 
{5.1.5) {e2|a€/}, {e« |a€/} are sets of orthogonal idempotents, 

ae„ = exa,eab = bea; 

(5. 1.6) If 2«®e« ^ 1 M is possible to augment S", Sb by pairs (e",p), (eb,p) 
preserving (5. 1. 1), (5. 1. 2) and (5. 1. 3). 

23) Theorem 4.2 together with Lemma 4.4 yields a „canonical" representation for any a in 
31 for which fl ((pHajr \ s £ 1) = 0 for some pure irreducible p in P. 

24) For any idempotent e in a von Neumann ring 91, we write e to denote the central cover 
of_e, that is, the central idempotent e with the properties: ee = e and for any central idempotent 

f,fe=e implies fe = e. 

•On the other hand, w f ) U Ut 
¡=t 
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R e m a r k . Theorem 1. 1 (ii) can be deduced from Lemma 5. 1. To see 
this, note that by transfinite induction (or ZORN'S Lemma) it is possible to choose 
Sa, Sb to be maximal with the properties (5. 1. 1), (5. 1. 2), (5. 1. 3). Then from 
(5. 1. 6) it will follow that 2«® ea = 1 a n d hence 2*®4 = 1-

Then by Theorem 3.2 there will exist d,d' in 91 such that dd'=d'd= 1 
(so d' = d~l) and de\d' — e", d'e"d — for each a. The mapping u ->- dud~1 is a 
ring isomorphism of e £ 9 o n t o effieZ. 

Let c = dbd-1. Then de^bd-1 ^dbe^d-1 =ea
ac = cea

x and (5.1.1), (5.1.2), 
(5.1.3) hold if b is replaced by c and each eb

a is replaced by e"x = ea (say). 
In each ring ejitea, the elements eac, eaa satisfy the hypothesis of Theorem 

4. 2. Hence gtt,g'a exist in ea%ea such that gag'a=g'aga = ea and g,,eacg'a = erja. 
If now 9l2 is also a von Neumann ring then, by Corollary 1 to Theorem 3.2, 

the elements g= 2 ®ga> g'= 2«®g* exist and satisfy: gg'=g'g = 1 ( s o g ^ g - 1 ) . 
Then by the Corollary to Lemma 3.10, c = 2a®e«c and by Lemma 3.12, 
gcg -1 - 2«©(gaie^g"1)= 2a©M = a. 

Thus ifm2 is a von Neumann ring, c and a are similar, hence b and a are similar, 
which establishes Theorem 1. 1 (ii). 

Thus we need only prove Lemma 5. 1 to complete the proof of Theorem 1.1. 

P r o o f of L e m m a 5. 1. The hypotheses of Theorem 1. 1 (ii) imply that (re-
call the definition of e a given in footnote 2 4): 

n (PSMX | s s l ) ) ~ ea( 0 (Pl(b))r I ^ S1)). 

Hence (5.1.2) implies (e£),~(eS)r. Now (5.1.5) follows from [4, § 7.1]. Then 
U (e2)r ~ U (e„)r> by the additivity of perspectivity in von Neumann geometries [3]. 
So (5. J . 5) and (5.1.4) both hold. 

Finally, we establish (5.1.6). Suppose E = 1 - 2« ©<?« ^ 0. Then Eea
a = 

= e'lE=0 and the Corollary to Lemma 3. 10 shows that aE—Ea so p(a)E = Ep(a) 
for all p e P . 

Now a is assumed to be iValmost algebraic, so n f ( ^ ( « ) ) , = 0 when p varies 
over all products of factors from Pi. Hence C\p(Ep(a))r = Pi p{p(a)E)r = 0. Thus 
for some such p, (Ep (aj)r ^ (E)r. 

Since Pi is fully factorizable there is a set of orthogonal non-zero central idem-
potents {e} such that U ( e ) r =9i and each ep is a product ep1...pm with all pi in 
and epi pure irreducible in e3t. 

Now for at least one of these e we have (eE) r7 i(,eEp(a)) r since for every c in 
91: (c),.= U (ec)r (use the Corollary to Lemma 3. 10). Hence with this e: (eEp(a)),. = 
= (eEp^a).. ,pm(a)),. ^ (eE)r where the p, are all in P, and each e/;; is pure irre-

ducible in e9i. If eEpi(a)bt=eE were to hold for some bi for i= 1, ...,m We would 
have 

eEp1(a)...pm{a)bm...bi •= eEp1(a)...p,„-1(d)eEbm_1...bl = 
= eEeEpl(d)...pm„.1(a)bm_1...b1 =... =eEeE...eE — eE, 

a contradiction. Thus, if p is replaced by a suitable ph we can assert: p is in Pt, ep 
is pure irreducible in and (eEp (a)),. ^ (eE),.. For the rest of this proof we keep 
;; "fixed with this value. t • 

Now we apply the well known method of „exhaustion". Let {/} be a set of 
orthogonal non-zero central idempotents maximal with the property: j e — j and 

A 2 



'18 I. I-Ialperin 

(jEp(a))r — (fE)r. Le t / 0 = ^ e ( / ) . Then / 0 e = / 0 and, using the Corollary to Lemma 
3.10, we deduce {JoEp(a))r~(J0E)r. 

Thus, if ё is replaced by ё— f0 we can assert: (gEp(aj)r^(gE)r whenever g 
is a non-zero central idempotent with g—eg. For the rest of this proof we keep 
ё fixed with this value (clearly, ё^О) . 

Applying [4, § 7.1] to the ring ёШ, we choose e" to be the unique idempotent 
with еа — ёеа and 

(ё-~е")г = П ( (#• («) ) , | s s 1), 

and (ё - е")г = П ((ёр%а))г \ я 3= 1); 

similarly, with p"(b) in place of ps(a), we choose eb. 
Since we assume (1. 3. 2) and (1. 3. 3) it follows that for each j s l , (ёр%а))г~ 

~ (e//(6)) r, hence 
П ( ( ¿ И а ) ) , к £ 1) ~ П ( ( ё р Ш \ я S i ) 

(use [2] or [3]). Hence, by subtraction: (ea)r~(e'%, and so e"=eb (use [9, Part III, 
Theorem 1 .4 (d)]). 

We now prove that if Sa, Sh are augmented by the pairs (e",p), (eb, p) then 
(5. 1. 1), (5. 1. 2), (5. 1. 3) arejpreserved. 

First, we shall show that е"—ё. If this were false then, since е"ё — e" it follows 
that ge"=0 (and hence ge"=0) for some g=ge^0. But our choice of e" implies, 
by [4, §7. 1], that ((ё — ea)p(d))r = (ё-e")r so (g)r = (g(e~e"))r = (g(e-e")p(a))r = 
= {sp(a))/, (g)r = {gp(dj)r._ But also, by our choice of ё: (gE)r^(gEp(dj)r. This 

is a contradiction, for if gp(ci)c=g, then gEp (а) с=Egp (а) с=Eg = gE. This con-
tradiction shows that ё"—ё. Since ё^О, it follows that е"Й0 and so (5. 1. 1) and 
(5. 1. 2) continue to hold. 

Next we show that (5. 1. 3) also continues to hold. We suppose for some к 
that g = exe?±0 and we need only show that gpx^gp. It is sufficient to show that 
gpa(a)^gp(d). 

Since exE—0 it follows from (5. 1.2) that 

(ёхЕ)г = {(ёа -е£)Е)г si П((йХ«))г I я ё 1) £ (px(dj)n 

so Еёх—рх(а)с for some с in 9ft. Then gEpx(a)c==gE£x=gE so (gEpx(a))r = (gE)r. 
But by our choice of ё, since g^O and g = eg: (gEp(a))r 9^(gE)r. Hence gpx(a 
^gp(a) , as required to show that (5.1. 3) continues to hold. 

This completes the proof of Lemma 5. 1 and so Theorem 1. 1 is established. 
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