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The generation of affine hulls1) 
By V. KLEE in Seattle (Washington, U. S. A.) 

0. Introduction. Throughout this paper, E denotes a vector space over .a field 
€> of characteristic zero, the case of special interest being that in which <t> is the 
real number field R. A subset A of E is called affine iff au + Pv 6 A whenever 
u,v£A, a, fi £ 3>, and a + /? = 1. (When d> = R, this requires that A contain each line 
determined by any two of its points.) Each intersection of affine sets is affine, and the 
affine hull (aff X) of a set A'is defined as the intersection of all affine sets containing 
X. Equivalently, aff ̂  is. the set of áll affine combinations of X, these being points 

n n 
of the form 2 a i x i with (natural numbers), x ^ X , a ^ O , and = This 

i i 
relationship between blank hulls and blank combinations is valid not only when 
blank means affine, but also when it means linear, positive, or convex (where, for 
the last two, <£ should be an ordered field). If bla denotes the operation of forming 
the blank hull, then blaX= U bla,,^, where b\anX, denotes the set of all 

nett 
blank combinations of n (or fewer) points of X. 

The individual operations bla„ are also of interest. When aft2X is (X 
together with) the union of all lines determined by two points of X, affjZ is (aS2X 
together with) the union of all planes determined by three points of X, etc. It is 
easily verifield that 

blam(bla„Z) = bIam„X for bla aff. (See 1.2.) 

The present paper is motivated by the fact that while 

affm(aff„Z)caffm„^, 

the two sets need not be eqüal. For example, if the affinely independent set ZaE 
consists of four points z1, . . . , z 4 , then 

aff4 Z ~ aff2 (aff2 Z) = j ^ l z}j - Zj: 1 ^ 4J . 

To describe the same example more geometrically, let a, b, c, and d be the vertices 
of a tetrahedron in R3. For each permutation u, v, w, x of these four vertices, let 
II (u,v; w, x) denote the plane which contains the line wx and is parallel to the 

') Preparation of this paper was supported in part by the National Science Foundation, U. S. A. 
( N S F - G 18975). 
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line uv. Then 

n(a , b; c, d) 0 n ( a , c; b, d) fl n(a , d; b, c) = j - i b + j c + j d - ~ a 

and the set afT4 {a, b, c,d) ^ affj (aff2 {a, b, c, d}) consists of this point together 
with three others which are similarly situated. 

We. study here sets of the form aff„i(aff„2(...(afT„kAr)...)) and others which 
are formed in a similar way. Since many of the results are rather technical in nature, 
the reader is referred to the text for full statements. However, the general spirit 
of our results is indicated by the following corollaries (3. 3 and 3. 4): 

For all X, affmn_ i l e affm(aff„r); and ifm A n, aifm„Ar-affm(affnZ) U aff„(affmA0. 

1. Results on blam(bla„X). Let us begin by extending the definition of bla^. 
m 

For /jj, ..., nm£N, bla(„, „„,)X will denote the set of all points of the form 2aiyi 
i 

for >>¡6bla„,X and (a1; ..., am)€Bm, where for bla = lin the last condition imposes 
m 

no restriction, for bla = aff it means that 2 a i —1> for. bla = pos it means that a( S0 , 
i 

m 

and for bla = con it means that « ¡ ^ 0 and 2 a i = ' • Thus, in particular, blam^ = 
I 

= bla(1>...;1)X with m l's and blam(bla„Z) = bla(n .. „)X with m n's. 

1.1. P r o p o s i t i o n . For all four types of operation (and for all X), 
bla(ni n m ) Zcbla m X; in particular, blam(bla.nX)czblamnX. 

Zn, 
i 

m 
P r o o f . Forp£bla ( n i nm)X, letp= £ <x,ytwithj^bla^ATand (a1 ; . . . ,am)£Bm . 

For each i, yt can be expressed in the form 2 Puxu with xu £ X and 

( f i a , - J i n ^ B n i . But then of course 
m m . 

p= 2 2 aiPuxu> 
i= l 7=1 

where it is easily verified that 

mHm 1) 
mnm ) Z B m . I 

2> i 
• i 

The next observation is due jointly to W . E . BONNICE and the author.1) 1.2. P r o p o s i t i o n . For Wii^aff, bla(nij...,„m)Ar=blam X; in particular, 
£ M 

bhm(blanX) = bhmnX. 
P r o o f . Since this is obvious for linear or positive combinations, we discuss 

i 
only the case of convex combinations. Let k0= 0 and kt= 2ni f ° r 1 = ' — m. 

r= 1 
') See also WILLIAM BONNICE and VICTOR KLEE, The generalisation of convex hulls, Math. 

Annalen, 149 (1963), to appear. 
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m̂ . ' ' km 
Consider a point p£conkmX — say p — 2 a j x j with Xj^X, and a,- = 1. 

ki 
For l^iSm, let <x; = a / - For t + 1 define 

t i - i + i 

fij = cijlci when o"; t̂  0, Pj = ocj when = 0. 

m / ki \ m 

Then /?= 2 1 (7; 2 Pjxj )» where all coefficients are SO, Z (7i = h and 
i = 1 V J = k(_i + 1 / . , 1 

2 A = 1 when <7(^0, 
. j=*ii_i+i 

ki 
Z PjXj = 0 when a, = 0. 

j = ki_ i + l 
Consequently p£con(„u...,„m)X. | 

The proof of 1. 2 depends on partitioning the a / s into m groups such that 
there are nt of them in the ¿th group and such that those in each group are all zero 
or have nonzero sum. The same problem arises in connection with affine combi-
nations, but there the desired partition may not exist. In order to discuss the si-
tuation efficiently, we shall introduce the notion of a weighted set and shall study 
partitions of such sets. 

2. Partitions of weighted sets. Here and subsequently, r denotes a fixed (but 
arbitrary) ordered abelian group, while < , + , and — are used for the ordering, 
addition, and subtraction in both F and N. A weighted point is an ordered pair 
w = (w, w') for which w' £F (vv arbitrary); w' is called the weight of w. A weighted 
set is a finite set W of weighted points such that for .w, V£W, U — V=>U =V'. The , 
weight fi(fV) of a weighted set W is the sum of the weights of its points ( f i (W) = 
= 2 M^O) is a weighted point. A weighted set will be called good un-

if ew 
less its weight is zero while at least one of its points has nonzero weight, where 
zero is the neutral element of T. 

A partition of a set S is a finite family of pairwise disjoint subsets of S whose 
union is S. For n£N, an n-partition is one in which each member consists of n po-
ints. An («J, ..., n„)-partition is one consisting of m sets which can be ordered in 
such a way that (for l ^ / i m ) the ith set is of cardinality «¡. A partition 3? of a 
weighted set will be called nice iff each of its members is good; thus ^ is nice unless 
there exist P^SP and w£P such that w'^0-n(P). m 

2. 1. Theorem. Suppose W is a weighted set and nly ..., nmdN with 2ni = 

I 
= card W. Then W admits a nice {nit ..., nm)-partition if and only if the following 
three statement are all false: 

(S^ m= 1 and W is not good; 
(52) nt= 2 for all i; W is the union of two sets of odd cardinality such that 

all points of one set have the same nonzero weight a and all points of the other set 
have weight —a; 

(53) there exists «S3 such that nt = n for all i, all but one point of W have the 
same nonzero weight a, and the exceptional point has weight (1 — «)oe. 
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Proof . It is easily verified that if S1} S2, or S3 is true, W does not admit 
a nice (n1, ..., Mm)-partition. We now assume that W does not admit such a par-
tition, and wish to show that St, S2, or S3 is true. If m = l, it is evident that W 
is not good and S^ holds, so we assume m > 1. Let k — card W and consider an 
enumeration of the points of W in order of increasing weight: 

w{ s w'2 g . . . S Wk . 

Let Pl be (the set consisting of) the first nY of the w/ s, P2 the next n2 of them, ..., 
Pm the last nm of them. Then some set Pr fails to be good, and from the method of" 

r — 1 m 
construction it is clear that w ' < 0 for all w ( 1J Ph while w ' > 0 for all |J P ; . 

1 r + l 

Since m > l , there are three cases to be considered: 

1 ; rem; 1 <r<m; 1 <r = m. 

However, the first case is treated like the third, so it suffices to consider the second' 
and third cases'. We assume, then, that 1 < r. 

Note that if u^P, with u' and w£Pi for z t h e n w' = u', for otherwise 
a nice («! , . . . , nm)-partition of W results from the partition {Py, ..., Pm} upon., 
interchanging u and w. Since 1 < r, this implies the existence of a > 0 such that 
w' = — a whenever w 6 W with w'^0. Further, if z<r and v£Pr with v' >0 , then 
fi(Pt) = — rijOL and hence v' = (n; —l)a, for otherwise a nice (w1; ..., /jm)-partition 
of W results from interchanging v with a point of Pt. Thus there exists i i g 2 such., 
that ni = n for all z<r, and v' = (« —l)a whenever v£Pr with v' > 0 . 

We wish next to show that nr=n, and for this purpose will consider another 
(«!, ..., wm)-partition of W. Let Qr be the first nr of the w/s (in terms of the given 
ordering), Qi the next nx of them, Q2 the next n2 of them, ..., <2r-i the next n r_ t 
of them, Qr+1 the next nr+1 of them, ..., Qm the last nm of them. Then = P ; for • 

and (since 1 <r) there exists s<r such that the. weighted set Qs is not good.. 
If s > 1 it follows from reasoning in the preceding paragraph that card Qr = card Qx,. 
whence nr = ni —n. If.j = 1, let R^ be the first nx of the w/s, Rr the next nr of them, 
and Rt = Qi for z'${l, r}. By hypothesis, some Rt fails to be good, and clearly it is. 
Rr. But then from the method of. construction (using the ordering of the w/s) we 
conclude that Rr = Q1; whence nr =ni=n. 

We have now established that nt = n S 2 for l s i ^ f , that w' = — a for all. 
w£W with w'g 0, and that v' = (n-1) a for all v£Pr with u'>0. Let / denote the. 
number of points of Pr which are of positive weight. Then 

0 = n(Pr) = / ( n - l ) a = (n-Z)a = (l-l)m, 
whence / = 1. Thus S3 holds (with its a the negative of our present a) if r = m and. 
n ^ 3, while S2 holds if r = m and n =2 . If the reasoning of the above paragraphs. 
shows that nt = n for all i and that a = (n — 1) /3 whenever /? = w' 0 for some vv 6 W. 
But then a = (n —l)2a, whence n = 2 and S2 holds. J ' 

3. The basic theorem on aff(„a . „ j l . 
3. 1. Theorem. Let E be a vector space over a field <E> of characteristic zero,. 

...,nm(iN, and Then £aff(„1... „m)lr unless one of the following-

statements is true: 
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2m 
(i) «¡ = 2 for all i;for each expression of p in the form 2 aixi 

I 
2m 

ai and 2 ai —1> there is an odd number l£N such that w < / < 2 m , / of the a,'s 
I 

are equal to rG®, and the remaining 2m —I a ;'s are equal to — — 2(1 —m) ¿(t — m) 
(ii) m > 1; all n{s have the same value n ̂  3; for each expression of p in 

mn mn J ^ 
the form 2 aixi with X;«¡£ 4>, and 2 ai = l> one a; is equal to t——t~—(£> 

I I (m — l)n 

.and the others are all equal to -,——-—£ 4>. (m — \)n 
(If 1 is the unit element of <J> and a,b£N, the point (1 + 1 + ... + 1 ) 

- — 
Q a terms 

--r(1 + 1 + ... + 1)€® is denoted simply b y — . 
' ry b 

b terms 
P r o o f . Let us suppose first that p€ aff(1)1,..:iIlm).Y, whence there exist 

m m 
yt £afimX and such that 2Pi~^ and 2Piyi=P- For each i, there exist i i 
points z\,...,z'm (not necessarily distinct) of X and numbers y\, ..., y^G® such 

ni Hi m 

that 2 l ) = 1 and 2 y)z) = • Now with s= 2 ni> 
J- i j-1 0i 

(xj , ..., xs) = (z i , . . . , Z„,, ..., Zi , ..., znm), 

-and • (txu ...,as) = (fi1y\, ...,piyl1,-.,.,pmyi, ...,pmynj, 
s s 

we have p— 2 <xrxr,xr£X, and 2ar = 1-
i i 

.Further, in their natural ordering the indices 1, ..., s are partitioned into m sets 

•such that there are n; indices in the ¿th set, and the sum p t^ = 2 PilrJ the a,'s 

•corresponding to the /th set of incides is different from zero unless all of these ar's 
are zero. From this it is easily verified that (i) and (ii) are both false. 

Conversely, we assume (i) and (ii) to be false and want to prove that 
p f. aff(nl „m)X. Since the field $ is of characteristic zero, its additive group T is 
isomorphic with a subgroup of a direct sum of a (possibly infinite) number of copies 
of the additive group of rational numbers. Since this direct sum is an ordered group 
under the lexicographic ordering based on the natural ordering of rational numbers, 
we may assume without loss of generality that T is an ordered group (not implying, 
of course, that O is an ordered field). 

Now taking T as an ordered group, we see from 2. 1 (and the assumption 

that (i) and (ii) are false) that p admits an expression in the form P — 2 arxr with 
s ' -

xr £ X , ar £<I>, ^ a r = l, and such that the weighted set {(/•, ar): 1 S r S s } admits 
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a nice (nlt ..., nm)-partition. .We may assume without loss of generality that the 
members of the partition are the sets { ( r . a ^ j j . ^ r i j , - } for 1 s i g m , where 

i Si 

s o = 0 and = 2 nr• Defining a¿ = 2 ar> w e s e e that either <7^0 or ar = 0 for all 
1 4,-1 . 

r with It then follows as in the proof of 1.2 that /?6aff(ni 1 . 

3.2. Corol lary. If the numbers nit ..., nm(£N) are not all the same, 

1 
3 .3 . C o r o l l a r y . For all X and all nu affVm ^ Zea i f ( n i „ )Xc: 

I f ' J - 1 

c a f f 
m X) in particular, af f m n _ 1 X c affm (aff„ X) c affm„ X. 

1 . 3.4. Corol lary. For m^n, affm„X=affm(affnZ)Uaff„(afTmA'). 

3.5. Corol lary. If X is affinely independent and consists of k points, and 
m S2, the cardinality of the set-

' X' — affmn^f ~ a f f m (a f f n Z) 
k 

1 mn when n^3, 

is equal to -

2m) \^2m~2 ~ m
 when n= 2 and m is odd. 

3. 6. Corollary. If X is finite, so is X'. If dim (aff X) <mn — 1, X' is empty. 
If dim (aff X) = mn — l, card X' g c(m, ri), where 

mn when « S 3 , 
22m~2 when n = 2 and m is even, 

l/2m\ 
22m-2_ when n = 2 and m is odd. 

2 \ m ) 

If dim E^mn and then E containts a set X for which X' consists of c(m, ri) 
distinct parallel „lines" (genuine lines when O = R). 

Proofs . The Corollaries 3. 2, 3. 3, and 3. 4 follow immediately from 3. 1. For 
k \ fmn\ 

mn 

k 
2 2 m - 2 when n= 2 and m is even, 

2m J 

k\( l /2m 

the first part of 3. 5, apply 3. 1 (ii) to show that card ^ / = \ . m n ) \ i y" ^or the 

( k 
second and third parts of 3. 5, apply 3. 1 (i) to show that card X' is equal to I 

\mn 
times the number of sets F c { l , ..., mn} for which card Fis odd and card Y<mn 
— card Y. The first three assertions of 3. 6 follow from 3. 1, 3. 3, and 3. 5 respectively. 
For the fourth, let F be an (mn — l)-dimensional linear subspace of E, Y an affinely 
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independent set in F with card Y=mn, z£E~F, and X — Y+$>z. It is easily 
verified that 

aftmnX~ affm(affnZ) = (affm„ Y ~ affm(aff„ Y)) + 0>z, 

whence the desired conclusion follows from 3. 5. | 

4. A qualitative approach. For Y<zE and n{£N, consider the set 

bla(ni;...jni(i))(bla(n2 < 2 ) )( . . , (bla ( n i ! . . . ,n , ( ( ( ) )y). . .)) . 
k ( m U ) A ' 

With n—TJ\ ^ « i I, it follows from 1. 2 that this set is equal to blanF when bla j<= 
j=l\i = l / 

^aff. For bla = aff, the situation is much more complex and a full analysis would 
probably cost more than it is worth. In any case, the problem of describing the 
above set reduces to one concerning the interaction of operations aff„ for various 
values of n, since (by 3. 2) aff(ni „m)X=aft™ X for all X if the «¡'s assume at 

1 
least two different values, while of course aff(nii... •„m)Ar=affm(aff,1Z) if all the w,'s 
have the same value n. 

From 3. 3 it follows that always 
aff,(affm(affrtZ)) c afflm„ _, _ x Z U aff/m„ _ „ _ t X. 

However, this is a crude approach and becomes cruder as the number of operations 
increases. The present section shows by means of a qualitative approach that always 

(1) afrn,(afrn2(...(aff„ltZ)...))cafT(ni„2...„t)_1Z, 

and that if X is finite, so is the set 

(2) af f n i „ 2 . . . n k Z~aff n i (afr n 2 ( . . . (afr n ^) . . . ) ) . 

Section 5 contains a more quantitative analysis, leading to a description of sets 
of the form (2) for k = 3 which is similar in completeness to that of Section 3 for 
the case k = 2(cf. 6. 6). 

A basic tool is the notion of a weighted partition. When SP is a partition of a 
weighted set, the corresponding,; weighted partition is the weighted set = 
= {(P, n(P,)):P£^}. To illustrate the combinatorial problem which is involved 
in the study of sets of the form (2), let us consider a weighted set W consisting of 
twelve points, ten of weight 1/6 and two of weight —2/6. Though IF admits a nice 
3-partition W, the weighted partition must consist of four „points" (the sets 
P^Sf), two of weight 1/2 and one of weight —1/2, whence does not admit a 
nice 2-partition. This corresponds to the fact that if an affinely independent set 

/ 1 0 1 \ 1 
XczE consists of twelve distinct points , ..., x12, and if p= — ^ n -

— y x 1 2 , then p (t aff2(afT2(aff3A')), even though p € afTm(aff„A') whenever mn = 12. 

Thus in studying sets of the form (2), trouble is caused (speaking roughly) not only 
by weighted sets which admit no nice partitions but also by those whose nice partitions 
admit.no nice partitions, and so on down the line. To establish (1) we must show 
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that if W is a weighted set of cardinality nin2...nk with at least one point of zero 
weight, then W admits a nice rtk-partition ¿?(k) such that 3Pfk) admits a nice 
partition ^(fc-u such that SPtksuch that 3Ptz) admits a nice n2-partition 3P(2). 

The basic lemma is easy to prove, but its statement requires some additional 
notation. Let T be a finite set, $ the class of all nonempty subsets of T, and 3 the 
class of all functions on T to T. For S£& and £ £3, let S( denote the weighted set 
{(¿, £s):s(: S} andlet ¡¿iS denote its weight((p^S = n(S() = ^ is)). Let nlt ..., nm£N 

s£S 
M . 

with m and 2 «¿ = card T, and let denote the class of all , ..., nm)-partitions 
I 

of T. For each and £ £ 3 , let denote the corresponding partition of the: 
weighted set Tt\ that is, = 

4. 1. Lemma. Suppose A is a finite subset ofT and H is the set of all £63' 
such that T( admits at least one nice (n1? ...,nm)-partition with SP*® c A for all 
such . Then the set H is finite. 

Proof . Let I be the class of all ordered triples (Q, f g) for which Q is a nonempty 
subset of ip , / i s a function whose domain is and the following conditions, 
are satisfied: 

for each is a function on (2 to A; 
for each gSP is a nonempty subset of 5?. 

For each t = (Q,/, g) £/, let HL denote the set of all r\£H which have the - following 
two properties: . 

Q = {(2€^:<2(,) is nice}; whenever 5 6 ( 2 ^ 0 , then n n S = f g S ; 
for each 9 = {Se9:finS = 0}. 

It is evident that H = U H, and that I is finite. To complete the proof it suffices 
<8/ 

to show .(for i £ / ) that the difference of any two functions in H is constant on X, 
for then it is apparent that each set H, has at most one member. 

Let t = (£Hf,g)€I and consider two functions r\€.Ht. Choose (2€Q. To 
show that Z — t] is constant it suffices to show that whenever Ml and u2 are points 
of T which lie in different members Ux and U2 of (2, then (JM1 —rju^ = S,u2—r\u2. 
For such XJi it follows from the definition of Ht that n^Ui — ̂ Ui (i = l, 2). Let SP 
denote the partition of T which is obtained from (2 by interchanging u{ and u2. 
Then 

9 = ( (2~{C/ 1 , i 7 2 } )U . {F 1 ,F 2 } , ' 

. ^ ( P ^ K D U ' W ( /* / ) • 

Vivi =' ^Ui-^Ui + ^Uj 

= I^Ut-Wi + Wj-
If ^ £ 0 , then (for i = 1 and i = 2) F; =fP V-t = ¡in Vt, and (recalling that Ut = f /J 
we conclude that Zuj — rjuj = tiut. Suppose, on the other hand, that ^Zty ~ Q. 
Then by the definition of Hi, neither nor 3P(t]) is nice. Since (2 was nice it follows 
that PfVi=0 for 7 = 1 or i — 2 (but not necessarily both), whence V;£g3P and 
HnV( = 0. Then, as before, £Uj — rjUj = —f/w,-. @ 

where 

Clearly 

and 



•68 V. Klee 

For a finite set Tand for 'y let Ay(T) denote the set of all functions ^ on T 
• ft 

to T such that 2 & = "!• For ..., /7tejVwith [J «¡ = card T, let A (T; ny, ..., «¿) 
<£T ¡=1. 

denote the set of all ^ £ Ay(T) for which there exist weighted sets Ts = 
- Wk+1, Wk, ..., W2 with №¡ = 0?* for some nice «¡-partition 0>t of Wl+1(2^i^k). 

k 
4.2 . Theorem. Suppose T is a finite set, y^T, and nt, ...,nk£N with JJ nt — 

¡=i 
card T. Then the set Ay(T) ~ Ay{T\ n1} ..., nk). is finite. 

P r o o f . When k = 2, the assertion follows from 2. 1. Suppose it is known for 
/ - 1 

k = j — 1 ̂ 2 and consider the case k=j. Let S be a set of cardinality ]J nt and let 
i—i 

B = Ay(S)~Ay(S; nlt . .„«y- i ) . Then B is finite by the inductive hypothesis, so 
j 

the set A = U t]S is also finite. Now with.card T—JJ ni, let G denote the set of 
*l£B i=l 

all £dAy(T) such that admits no nice «j-partition. The set .G is finite by 2. 1. 
Let H denote the set of all £, £ Ay(T) such that admits at least one nice 

-partition ^(j), but c A for all such Then H is finite by 4. 1, and it is 
easily verified that ' . 

Ay(T)~Ay(T-,ni, . . . , « t ) c G U # . | 

4 .3 . Theorem. For each set X'czE, 

aff(ni„2...„k) _ , 1 c aff„,(affn2(.. . ( a f f ^ . . . ) ) . 

If X is finite, so is. the set 
affnin2...ntZ ~ aff„,(affn2(.. .(aff„tX)...)). 
k * 

Proof . Let r — JJni and let '7'={l , ..., r}. As in the proof of 3.1, we see that 
•=i 

if ^Ay (T]nlt ..,.,nk) and if ...,xr are (not necessarily distinct) points of X, 
then 

2 i ( 0 6 aff„,(aff„2(...(affBfc*)...)). 

The second statement of 4. 3 follows at once from this fact in conjunction with 
r - l 

4. 2. For the first part of 4. 3, consider an arbitrary point p = 2<xixi with xi £ a i £ r> 
• • i 

r - l 

arid 2 01 i = l- F° r e a c h let the function £A¿T) be defined as follows: 
i 

£,(/) = <*, for l s / s r - 2 ; « „ ( r - l ) = «,_!-)»'; = 

Since F is infinite, 4. 2 implies the existence o f /J^T for which (T; nY..., nk). 
With xr = x r _ x , we have 

P= 2 Z , ( i ) * t 6 aff„1(aff„2(...(aff„kA')...)).| ' 
1 = 1 . ' 

: * • . • / 
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1 . • 
5. Troublesome sets: Lemmas. For a weighted set W, W' will denote the set 

W}<^T. W will be said to have the form (yi)a,---(yk)ak iff a^T, a^N, 
k 

¿ 'a .— card W, and a,=card {w^.W-.w' = yi} for 1 and W has the crude 
I 

k 
form {y1)ai---(yk)ak iff 7 ; g r , a^iVU {0}, 2 ai = card W, and W admits a partition 

' I 
into pairwi'se disjoint sets P1,...,Pk such that card P; = a ; and- c { y ; } for 
I s i ^ k . With «¡>0, the first condition requires that W' — {yi'A^i^k} and the 
y.'s are distinct; the second condition requires that W ' a {]>(: 1 g/g-A:} but permits 
ai 0 (with of course Pi = 0 ) and = for i ^ j . 

A weighted set W will be called troublesome iff W has the form 

(T) («)r(/?i)r'-(&)'' with 

and 
0 < a g m i n { — 1 ^ i^s} or 0 > a Smax { — /?,•: 1 g / ^ s } . 

We shall often refer to the expression (T), using its notation without further explanation. 
A weighted set W will be called positively (resp.' negatively) troublesome iff W 

has the form ( T ) with a > 0 (resp. a < 0 ) , doubly troublesome iff it has-the form 
(T) with i = 1 and Pi = • — a, singly troublesome iff it has the form (T) with s = 1 = rx, 
and t-singly troublesome (for t £.N) iff it has the form (7") with s = 1 = rl and/?, = — to..' 
In connection with 2. 1 and with the principal goal of this section, the doubly and 
i-singly troublesome sets are of special interest; unification in the treatment of these 
two special types is achieved through the more general notion. Note that a set 
which is both positively and negatively troublesome must be doubly troublesome, 
but not conversely, and that a troublesome set may be-both doubly and singly 
troublesome but need not be either. 

A partition 3? of a weighted set will be called troublesome (resp. doubly troub-
lesome etc.) iff the weighetd set (0**)' is troublesome (resp. doubly troublesome, 
etc.). When SP is a partition-of W and we define 0>

y-{P^0>\p(P) = y), 
={P£0>:n(P)<O}, and SP+ For any family & of sets, 

uSF will denote the union of all members of J5". Thus (for example) is the 
union of all members of SP which have negative weight, while ((^_)*)' is the set 
of all negative weights attained by members of SP. Since the danger of confusion 
is slight, we shall usually omit the parentheses in expressions such as these. 

When & is a partition of W and x and y are points of W, ¿P(x, y) will denote 
the partition which results from SP upon interchanging x and y. Thus for 
and y ( 

; 0(x, y) =. {SP ~ {X, Y}) U {x}) U {7}, -(Y~ M ) U {x} }. 

When more complicated interchanges are required, they will be described explicitly. 
For the remainder of this section, we make the 

STANDING HYPOTHESES: W is a weighted set andn...,nm-£N, with w £ 4 
m 

and 2 ni = caid W admits a nice («,, ..., nm)-partition, but all such partitions 
1 

are troublesome. 
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Partition will mean an (nt, ..., nm)-partition of W. A partition 0> will be called 
an a-partition iff SP* has the form (T) and in addition 

(f) x' —y' 6 { — a, 0, a} whenever x and y are points of distinct members of SPa. 
An a-partition 0" will be called a minimal a-partition iff there is no a-partition <2 
for which (2a is a proper subset of 3Pa. 

* * * 
The first lemma is 
5. 1. If SP is a partition and SP* has the form (T) (but requiring only r S 2), then 

m a x u ^ ' S m i n u ^ ; . . 

Proof . It suffices to consider the case a >0 . If w g i i ^ c a n d x£u.3Pa = 
then 3? (u, x) is a partition for which 

0>(u,x)*' = BUlPi-JAriUiPj-iu'-x'la + iu'-x'la}, 

where Be. {Pj}. If u —x' >0 , the partition 9(u, x) is nice but cannot be troublesome, 
for /?; — («'— x') < A/ — — a<0<a<a + («' — x'). The contradiction shows that 
u' —x'S. 0 and yields the desired conclusion. § " 

5. 2. If 9 is a partition and 3P* has the form (T) with |a |<max {|/?,-|: 1 i / S i } , 
then SP is an a-partition. 

Proof.1 We assume without loss of generality that a >0 . If x and y lie in different 
members of 3Pa, and x ' = - / , then 

9(x,yr' = {pi:l^i^s}\J{a-(x'-y'),a + (x'-y'),a}, 

and 9(x, y) is not positively troublesome since 0 < a < a + (x'— y'). 'If SP(x, .y) is 
negatively troublesome, .then i = l and 0=-/?!^ — a. Since we knew already that 
a S - ^ , it follows that 

|a| = \p1\ = max {10,1:1 S i S i } , . 
contradicting the hypothesis of 5.2. Thus 9(x, y) must fail to be nice, whence 
a-(x'-y') = O.fl 

5. 3. For some a, W admits an a-partition. 

Proof . Let SP be a nice partition, whence has the form (T). Suppose. 9 
is not an a-partition, whence there exists points x and y in different members of 
SPX such that x' —y' $ {—a, 0, a}. The partition 9(x, y) is nice and hence troublesome. 
We assume without loss of generality that a > 0 and x'— y' >0 , whence SP{x, y)*' 
contains at least two positive weights and 8?{x,y) must be negatively troublesome; 
this implies 5 = 1 and a, whence = — a. With O^a — (x'— / ) < a , it 
follows that a — (x'—y') — — a, whence x'—y' = 2a and 9(x,y)* has the form 
( — a)r 1 + 1 (a)r ~ 2 (3 a)1. But then r, and SP(x, y) is a (-a)-partition by 5. 2. J 

5.4. For each a-partition 9 there-is a minimal a-partition (2 with (2* cz SPX. 
Now we add to the . . • . ' . 

. STANDING HYPOTHESES: (2 is a minimal a-partition of W, with a > 0 ; 
z 6 Z £ (2a with z' =min ii(2a'; y—z.. (The assumption a > 0 is only for conve-
nience, since the case a < 0 can be treated in the same way.) 



Aflfine hulls 71 

From ( f ) there follows 

5. 5. Either (i) n<2,i ={y, y + a} • 
or (ii) {y, y + 2a} c Z ' c {7, 7 + a, y + 2a} and u((2a~{Z})' = {y + a}. 

The discussion is now divided into three cases, as follows: 
(A) y^O; (B) y < 0 ; y+2a€*&i; (C) y < 0 ; y+2a(u<3i. 

By adding the appropriate letter to the number of a lemma, we indicate the addition 
•of one of these three conditions to the standing hypotheses. 

5. 6A. There exists n£N such that a =ny and each member of (2a has the form 
(y)n. In particular, 

Proof . Since y&0 by condition (A), it follows from the definition of y that 
all points of u(2a have non-negative weight. Consider two points x and y lying in 
•different members of <2a. The partition' (2(x; y) is nice but is not troublesome if 
x' ^y', for then €l(x,y)*' contains Pi as well as three different non-negative weights, 
and one of the latter is — Pi. This shows that x' —y' and consequently 
jifiji = {y}. The desired conclusions follow. | 

5.7^7/26(2^, then.Q'c{y,y-a,y-2a,y+Pj,y+Pj-a}. 

Proof . By 5. 1, maxu(21gy. Let U0 = {«£ Q.u' < y}, and define the subsets 
Ui of U0 by saying that if u 6 U0, then 

u€ Ui iff &(u, Z) is not nice; 
u£U2 iff'(2 (u,z) is positively troublesome; 
u £ U3 iff (2 (u, z) is negatively troublesome. 

'Obviously U0 = Ui U t/2 U £/3. For u£_ U0, we have 

( 2 ( K , 2 f = 5 U { | S i : i ^ } y { j ? r i / + y , a - i + « ' J a} , 

with Bcz {Pj}. Clearly u £ Ui implies u = y + Pj or u — y — a. If u € U2 U U3, then 
a — y + w'<0, for otherwise <2(w, z)*' contains the positive weights a and a — y + u 
with 

a — y + « ' < a g m i n { — 

and (2(w, z) is not troublesome. If M€ U2, then (since (2 is a minimal a-partition) 
'Pj — w' + y > 0 , whence Pj — u' + y = a and m" = y + Pj — a. If i/3, thena — y + u' = 

= Pi = — a (for z V / where in fact this situation entails s = 2 and rj = 1). We have 
now proved that {/<jc{y — a, y — -2a, y + Pj, y + Pj — a}. | 

5. 8a . W is troublesome when 2. 

Proof . Use 5. 6,. 5, 7, and the fact that 

max {y^a, y — 2a, y f B y+Pj — a} = y — a = (1 — « )? • ! 

5. 9a . JFM Q € <2̂  , let a, b, and c denote the number of points of Q which are 
•of weight y, y —a, and y — 2a respectively. Let d = 0 if Pj£{ — cc, —2a} and otherwise 
d = card {u£Q: u' = y + Pj}. Let e—0 if Pj = —a anc? otherwise e - card {u£Q\u' -
— y+Pj-a). Then one of the following statements is true: 
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(i) d=l,c = e = 0; a + 1 =.(n-l)b; 
(ii) e = l, c = d = 0;- a + \ = (n-l)b + n; 

(iii) d = e = 0; (a-(n-l)b-(2n-l)c) = Pj. 

Proof . Clearly 
y(a + b + c + d + e)-a(b + 2c + e)+Pj(d+e) = n{Q) = fi]t 

and since a = ny it follows that • 

(a + (l-n)b + (l-2ti)c + d+(l-n)e)y = (l-d-e}Pj. 

To gain more information about the numbers a, ...,.e, we consider the partition 
<2(11, u) which is obtained-from (2 by interchanging two points u and v of Q with 
two points which lie in different members of <2„. Then 

'<2£.)= pjUA(u,v)\J{*}\ ' 
where 

{Pr . iAj jcBjCz iP i -A^i^s} 
and 

A(u, v) = {Pj - u' -v' + 2y, a - y + u', a - y + v'}. 

The possibilities of special interest are described in the following table: 

A (u, v) 

{-/?,., a + Pj} 
{2 *-Pj,PJ} • 

. {<*-pj,« + pj,Pj}. 
{2a, — a, a + Pj} • 
{3a, — a, Pj}. 

Recalling that d?±0 implies /?,-${—a, —2a}, we see that <2(u>„j is nice in each case 
and hence must be troublesome. In the first case, (2(u, v) cannot be positively trouble-
some since — PJAOL and cannot be negatively troublesome since 0 > a + Pj + a. 
In the second case, Q(u,v)cannor be positively troublesome since 0 < a < 2 a — Pj 
and cannot be negatively troublesome since (with e + 0) Pj < — a. Similar contra-
dictions.ensue in the other three cases. It follows that d + e ^ 1, and d + e = 1 implies 
c = 0, whence the remaining possibilities for a,...,e are exactly as described 
in 5. 9. | 

5. 10A. Ifn = 1, each member of <2p. has the form (fij)1 or the crude form (y)"(— y)c. 
Thus W is troublesome. 

Proof . With n = 1, 5. 9 (i) is impossible, 5. 9 (ii) implies a. = 0, and 5. 9 (iii) 
becomes (a — c) y = Pj. The corresponding possibilities for the crude form of Q € 
are (0)6 (Pj)1 and ()')a(0)b(— y)c; to establish 5. 10 we must prove 6 = 0. Suppose 
¿>>0 and let u£Q with.w'=0. Then <2(h, z)*' = BjU{Pj + y, 0, y}, so <2(w,z),is 
not troublesome and hence not nice. Since M£{W} 6 ( 2 ( W , Z), the fact that u' = 0 does 
not account for (2(«, z)'s lack of niceness, and it follows that Pj = — y. Thus n(Q) = 
= — y, Q contains a point v with v' = — y, and (2*„'„) = B} U {2y, 0, — y, y}. Since 0 
appears only as the weight of a onepointed member of (2(„;„j, £2(u>u) is nice but not 
troublesome. The contradiction implies 6 = 0. | 

u' v' 

(dm 2) y+Pj y+Pj 
( e s 2) y + Pj-a y +Pj-« 
(d^ l s c ) • y+Pj y+Pj-<* 
( c S l S i / ) y —2a • y+Pj 
(c S 1 ^ e) y — 2a y + Pj-cc 
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5. 11A. Suppose n = 1 and there exists Q£(2_ with card Q > 1. Then Q has the-
crude form (y)"(— y)c for c£{a + 1, a+ 2, a + 3} and each member of (2_ ~ {2 } ^ 
the form' (—y)1. 

Proof. Clearly c S s + 1, for (c —a)y = n(Q)<0. Suppose fi(Q) = Pj and let 
«1 6 e with «1 = -y. Then <2(i>i, z)*' = B} U {(a - c + 2) y, - y, y}..If <2(i>i,'z) is not. 
nice, a — c -I- 2 = 0. If z) is positively troublesome, then (since <2 is a minimal 
a-partition) a — c + 2 = 1. If (2(vt, z) is negatively troublesome, then a — c + 2' = — 1 
when a — c + 2 < 0 and — I s — a + c — 2 when a — c + 2>0 . It follows that c — a 6 
€{1, 2, 3}, with c. = a + 3 only when ^(u^z) is negatively troublesome. 

Now suppose c = a + 3 and let v2 and v3 be distinct points of such, 
that v'2= v3 = — y. Suppose some member P of ( 2 _ ~ { 2 } has form other than 

'(—y)1. Since .<2(«i, z) is negatively troublesome, it is evident that p(P) — —y and 
hence (using 5. 10) if P does not have the form •(— y)1 there exists w £P with w' = 
But then 

&(VUV2)(v3, wj*' = £ U { - 3 y , 3y, - y , 7 } • 

with 5 c {Pi'. 1 g j ' g 1}, whence the partition &(VuVl)(v3, w)'is nice but not troublesome-
. and the contradiction, shows that P has the form (—y)1. 

Alternatively, suppose c — a 6 {1, 2} and note that since card Q > 1. Suppose 
some member P of ( 2 _ ~ { 2 } has form other than (—y).1 With v1,v2(iQ and 
v{=v2 = —y, we have 

<235.1, •>.) = B U {n(P), (a -c + 4) y, - y, y.}, 
s o ®(vuv2) nice and the fact that it is troublesome implies p(P)= —y. Thus there-
exists w£P with w'==y and we have 

&(vi,z)(v2,w)*' = B(J{-3y,(a-c + 4)y,-y,y}, 

a contradiction which yields the desired conclusion. | 

5. 12a. If all the n;'s have the same value n g 2, each member of <2,f has one of 
the following crude forms: 

( P j i { - a , - 2 a } ) ' -(i) ( v ) » - 2 ( r _ a ) 1 ( y + / ? . ) 1 ; - • 

(Pj*-<x) • (h) (yy-Hy+Pj-*)1; 

(Pj = -a) (iii) (y)"-2(y-a)2; ' . (iv) (y)"-1 (y -2a) 1 ;' 

(Pj=-2a) (vj (y)»-3( y _ a ) 3 ; ( v i ) (y)n—2(y a)1 (y 2a)1 j-

(PJ=-3A) (vii) (y)"- 4(y-a) 4; (viii) (y)"" 3 (y-a) 2 (y-2a) 1 ; 

(ix) (y)«-2(y-2a)2 . 

If some member Q of (2_ has the crude form (vii), (viii), or (ix), then (2_ ~ { 2 } is 
nonempty and all its members have the crude form (iii) or (iv). 

Proof . Here 5. 9 (i) becomes 

n = a + b + d = (« — 1 ) 6 — 1 + 6 + 1 = nb, 
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^whence 6 = 1, a = n — 2, and Q has the crude form (i) above. And 5. 9 (ii) becomes 

n = a + b + e = ( и - 1 ) 6 + п - 1 + 6 + 1 = nb + n, 

whence 6 = 0, a — n — 1, and Q has the form (ii) above. 
For 5. 9 (iii) we have n = a + b + c (and of course a = ny), so Pj = (1 — 6 — 2c) a. 

Now with g^b, h^c, and g + 2h > 1, let denote a partition which is obtained 
from (2 by interchanging g points of weight y — a in Q and h points of weight y — 2a 
in Q with g + h points of weight у in a single member of (2а. (When all H('S have 
the same value, such an interchange is possible.) Then 

= Bj U {Pj + (g + 2h)a, (1 -g - 2h)a, a}.' 

Note that 1 - # - 2 / г < 0 . Thus if @(e,h) is not nice, Pj = - ( g + 2/z)a and g + 2h = 
= 6 + 2c —1. If Pj + (g + 2h)<x<0, then (since (2 is a minimal a-partition) ¿%(g,h) is' 
negatively troublesome and 

Pj + (g + 2h)a = (1 -g-2h)ot = - a , 

whence g + 2h = 2, ps = - 3 a , and 6 +2c = 4. If Pj + (g+ 2h)a>0, theng + 2/г = 
= 6 + 2c when &(g,h) is positively troublesome, while negative troublesomeness of 
!%(g.h) implies . . ' 

— Pj — (g + 2h)a^(l—g — 2h)a — —a, 
whence g + 2h = 2 and -Pj^a. But then Pj = - a and 6 + 2 c = 2. 

The preceding paragraph shows that if 2 ( £ ( 2 _ ) has the crude form (y)n-b-c 

(y — a)\y — 2a)c, the pair (6, c) must be such that 6 + 2 c > 1, and such that whenever 
.g^kb, h^tc, and 1 < g + 2A<6 + 2c, then g + 2h = 6 + 2 c - l , or g + 2h = 2 and 
6 + 2 c = 4. It is obvious that 6 ^ 4 and с ё 2 , and a closer examination shows that 

(6, с) € {(0, 1), (0, 2), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)}, 

whence Q has one of the crude forms (iii)—(ix). Note also that if (6, c) $ {(0, 2), 
(2, 1), (4, 0)}, then n(Q) = — 3a and there exist g and h as described for which 
fl(Q) + (g + 2/г)а<0. But then is negatively troublesome, whence ( 2 _ ~ { 6 } 
is nonempty and all members of (2_ ~ { S } have weight — а. | 

* * # 

We consider now the case in which condition (B) is satisfied. In this case, y < 0 
and a single member Z of (2a contains points of weights у and y + 2a (perhaps also 
у + a), while the other members of (2̂  consist exclusively of points of weight у + а. 

5. 13в. а = — 2у. Z has the form (у)Ч—Зу)1, while all other members of (2а 
have the form (— y)2. All members of (2 _ have the form (y) with at most one exception, 
and the exceptional member Q (if there is one) has the form (y)1(3y)1 or the form 
(y)4. If there is such a Q, then (2_ ~{2} is nonempty. 

Proof . Note the existence of n£N such that each member of (2 a ~{Z} has 
the form (y + а)"; with а=и(у + а), we have (1 — n)a=ny and thus 

Let x, z £ Z and y£n(3x~Z with x' — у +2а, у' = у + а, and z' = у. For each 
•и С с ii(2, let (2(u) denote the partition which results from (2 under cyclic permu-
tation of u, x, and у (replacing x by u,y by x, and и by y). Then 

(2(*> = B{J{pi:iAj}U{pj-u' + y+a,-y-a + u',2(x,oi} 
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with Bxz{Pj], so (2(u) is not positively troublesome. Thus u<2_ = U , (C ĵ U Uj), 
1 G ; S S 

where Uj is the set of all for which (2(u) is negatively troublesome and Uj 
is the set of all u £ u < . f o r which (2(u) is not nice. 

•Now we claim that for l g y ' g s , 

(1) {UjY = {y + Pj + a} 
and 

(2) (UJY = { y}. 
The statement (1) is immediate from the definition of Uj and the form of (2(„), 
sjnce (by 5. 1) — y — a + w'g — a for all w£u(2_. Now suppose u£Uj. Since a£(2*U), 
it follows that —y — a + u' = — a, whence u' = y and j8j + a 6 (2(*>. This establishes 
(2) and (continuing with the assumption that u 6 Uj) since + a = 0 we see that 
Pj + a = — a, whence it follows that Pj = —2a, rj = 1, = — a for iV/ , and 5 = 2. 

If M € 2 fl C/j (where g 6 (2^), the above reasoning shows that «' = y and there 
exists such that each member of <2_ ~ { 2 } has the form (y)k, with ky = —a. 
Recalling that ny = (1 — n)a, we see that k — n/(n — 1), whence n = 2 = k and 
a = — 2y. Thus each member of (2a ~ {Z} has the form (—y)2 while each member 
of (2_ ~ { 2 } h a s the f°r .m (l)2- We want to show that Z has the form (y)'(— 3yj2 

while Q has the form (y)1 (3-y)1 or the form (y)4. 
From (1) and (2) we know that Q consists of a points of weight y and b of 

weight 3y, with ay + 3by = n(Q) = —2a = 4y. Hence a = 1 and 6 = 1 or a = 4 and 
b = 0; in either case, Q has the desired form. A simple interchange shows that if some 
such Q occurs with <2_ —{Q}, then W admits a partition S> for which §* has the 
form (2y)2(—2y)c(—4y), an impossibility since I is nice but not troublesome. 

We know that Z consists of c points of weight y, d of weight — y, and e of 
weight — 3.y, with c S l S e . Now suppose e S 2 (resp. d^l) and let 01 denote the 
partition which is obtained from (2 by interchanging two points of weight — 3y 
(resp. one of weight — 3y and one of weight — y) from Z with the two points of 
weight y from a single member of <2_ ~ {Q}. Then M*' = {4y, 2y, — 2y} U A, where 
A = {—6y, 6y} (resp. A = {—4y, 4y}). Thus 01 is nice but not troublesome, and the 
contradiction implies that.d=0 and e = l, whence c — 1 and Z has the desired form. 

Fortheproof of 5. 13, it remains to consider the case in which U i7?=u(2_, 
1 jSs 

whence (for all j) each member of <2Pj has the form (y +)?} + a)kJ for some k-£ N. 
With (1 —kj)fij = kj(y +a ) and a = n(y + a), we have n(i—kj)Pj = k/j.. Now 
for m6u(2^., note that 

• &(u, z)*' = B U {fi,:; ^ j ) U { - a, [lj + 2«, *} 

with Bxz {fij}. If (2 (m, z) is not nice,, then f j = — 2a and 2n = kj/(kj — 1). This 
implies kj—2 and « = 1, whence y = 0 in contradiction of our basic assumption 
that y < 0 . If Pj + 2a < 0 , then (since (2 is a minimal a-partition) Q(u, z) must be 
negatively troublesome, whence. Pj + 2a = — a and 3n = kjl(kj — 1), an impos-
sibility. Suppose, finally, that + 2a >0 . If (2 (u, z) is positively troublesome, then. 
Pj+2a = a, while, negative troublesomeness of (2(w, z) implies — a ^ — Pj — 2a. 
But we know already, that Pj ̂  — a, so both possibilities imply Pj = — a. From 
this it follows that n = kj/(kj — 1), whence kj = 2, n = 2, and u(2l = {y}. Thus 
each member of (2_ has the form (y)2 while each member of ( 2 i ~ { Z } has the form 
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( —y)2. The argument of the preceding paragraph shows that Z has the form 
(y) 1 ( -3y) 1 , and this completes the proof of 5. 13. | 

We turn finally to the case in which condition C is satisfied. 
5. 14c. Each set X£ Qx has the crude form (y)"(X)(y + y.)hlX)\vi(h (a(X) + b(X))y = 

= {\ -b(X))a and b{X)^2. Of course a ( Z ) s l . 
, Proof . With a y + 6 ( y + a ) = ¡x(X) = a, the equality (a + b)y = (1 — b)y is 

immediate; 6 S 2 because y < 0 < a . Further,z£Z with z' = y (as part of the stand-
ing hypotheses), g 

5. 15c. Suppose a ( Z ; ) £ l for at least two different members Z, and Z2 of <2,x, 
or a ( Z 3 ) s 2 for some Z3 6 &x. Then (2 is doubly troublesome, card (2_ = 2, u(2_ = {y}, 
and W admits a nice (n,, ..., nm)-pariition which is neither doubly nor singly troub-
lesome. . 

Proof; In the first instance, let z t £Zj and z2 6 Z 2 , and in the second z t , z2 £ Z 3 , 
with zi = y = z2 in each case. Let F be a member of (2a different from the Z/s, and 
y.i, y2 € y with yi = y + a ± y'2. 

Let M — (yi, zl)(y2, z2), whence 

with {2a} c A c {a, 2a} or , 4 = {a, 3a}. In the first case, 2a appears as the weight 
of two different members of Sk, so in neither case is doubly or singly trouble-
some. On the other hand, is nice and hence troublesome, which can happen 
only.if Pi = —a for all i (whence (2 is doubly troublesome) and card (2_ S 2 . 

Now suppose w£u(2_ with u' Ay. Then w'<y by 5. 1, whence a — y + w'-<a. 
Since 

Q(u, z j •= {— a, — a — u' + y, a — y + u', a}, 

it follows easily that a —y + w' = 0 or a —y + w' = — a. Now if a member of'<2-* 
contains a point of weight < y — a, or two points of weight S y — a, then by interchang-
ing these with points of weight y + a in a single'member of (2a we obtain a nice 
partition whose members have weights < — a, = — a, =a , and > a . Since this 
is impossible, we conclude that each member of (2 - , has the crude form (y—a)c(y)d 

with cg{0, 1}. But then (c + d)y — ca = —a, so c = l implies y = 0 . This contra-
diction completes the proof. | 

5. 16c. W is troublesome. 

Proof . By 5. 14, W contains at least six points of we ighty+a . By 5. 1, w ' S y 
whenever W with u''<y + a. Thus W is surely troublesome if y — y. Sup-
pose, on the'other hand, that a > 2 ( - y ) . Then for each (a(X) + b(X))> 
>2(b(X)-\), whence a ^ O s l . It then follows from 5. 15 that W has the form 
(y)c(y + a)/' with y < 0 < y + a and so of course IF is troublesome. | 

5. 17c. If all m s have the same value n, then « S 3 ; each member of (2_ has the 
form (y)n while each member of (2a has the form (y)"_2(y + a)2.' 

Proof . For each X€&a we have a(X) + b(X) = n, whence (by 5. 14) 
(1 — b(X)) a = ny and b(X) has the same value for all Thus the same is also 
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true of a(X), and 5. 15 applies to show that —a = ny. But t h e n \ l — b ( X ) = — 1 
. and the desired conclusions follow. { . 

6. Troublesome sets: Theorems. The results of this' section are based on the 
lemmas of Section 5. 

6. 1. Theorem. Suppose W is a weighted set and nl, ..., h,„ £ N with 
m 

and card W: If all nice (nlt ..., nm)-partitions of W are troublesome, then 
I ' 

either W itself is troublesome or all n{s are equal to 2 and W has the form 
( - 3 y ) 1 ( - y ) 4 + 2 o ( y ) 4 + 2 , ' ( 3 y ) 1 for some y € F ~ { 0 } and a,b£NU{0}. 

Proof . If IF admits no nice («1 ; ..., «m)-partition, 2. 1 implies that IV is troub-
lesome. Suppose, then, that W admits a nice («1; ..., «m)-partition, and let (2 be a 
minimal a-partition of W as described in Section 5. Referring to 5. 8, 5. 10, 5. 13, 
and 5. 16, we see that W can fail to be troublesome only if (2 satisfies the condition 
(B). By 5. 13, the only non-troublesome possibility for this case is that described 
above. | 

It would be interesting to have an intrinsic characterization of those weigh-
ted sets W and m-tuples (n,, ..., nm such that all nice (nl, ..., «m)-partitions of W 
are troublesome. (This is not provided by 6. 1, for a troublesome set may admit 
nice partitions which are not troublesome). Relevant information is supplied by 
5. 6A , 5. 7 a , 5. 9 a , 5. 11A, 5. 12A, 5. 13B, 5 .15 c and 5 .17 c . The picture is complete 
for condition' (B) and could probably be completed without difficulty for (C), but 
the case of (A) seems more complicated. We have a complete solution only when 
all the n- s have the same value. For m S 4 and n g 2 , let IS{m, n) denote the class 
of all weighted sets W of cardinality mn such that all nice «-partitions of W are 
troublesome. Let §N(m, n) denote the class of all (m,.n) such that W admits 
no nice «-partition, and for D£{A, B, C} let £lD(m, n) denote the class of all 
fV£oF(m,«) such that for some a g r ~ { 0 } , W admits a minimal a-partition which 
satisfies condition (D). Then 

f (m, «) = §N(m, n)\J®A(m, n)UiB(m, n){J§c(m, «). . 
The class §N(m, n) is completely described in 2. 1, and the other classes are descri-
bed in the following result. 

6. 2. Theorem. Suppose m ^ 4 , n^2, and W is a weighted set of cardinality 
mn. Then 

(a) W£§A(m,ri) iff W has the crude form 
(yyn + a(n-2) + b(n-l) + c(n-2)+d(n-l) + e(n-3) + /(n-2)+9(n-4) + /i(n-3)+i(n-2) 

" ... (y _ ay + 2c + 3e + / + 4g.+ 2h _ 2 a )d + / + h + 2 i + ^ y (y + ^ _ (y + ^ _ a) 1 

for some y ~ {0}, a =ny, fij of opposite sign from a but of greater absolute value 
. . (0 Sj^b), P0?i-2a, and a,b,...h,i£N U {0} with e > 0 = > « ^ 3 , 

g > 0 = > « s 4 , h >0=>« = 3, and one of the following four conditions satisfied: 
(flj) 0 = e— f=h=i,. a'= 1; . 
(a2) 0 = a=g = h = i, b^l, e + f s 1; 
(a3) 0 = a = b=g = h = i, c + ds 1, e+/g2; 
(a 4) 0 = a = 6 = e = / = 0 , ' c + d^l, g + h + i = 1; 
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(b) W£§B(m,n) iff n — 2 and W has the form (— 3y)x(— + + o r 
the form ( -3y) 1(-y) 4 + 2«(y) 4 + 2 i ' (3y) 1 for some y £ T ~ { 0 } and a, b£N[J{0}. 

(c) IV£§c(m, ri) iff and W has the-form (y-a)6 + 2a(y)Sn-6+al-'-2) + '"' 
for some y £ r ~ { 0 } , ct = ny, and a, 6£JVU{0}. 

Proof . It is tedious but not difficult to verify that if W has one of the stated 
forms, then W is a member of the appropriate class §D(m, n). This task is left to 
the reader. That the members of §B(m,ri) and.cTc(/n, ri) must have the indicated 
forms is an almost immediate consequence of 5. 13 and 5. 17 respectively, with 
a slight change of notation in the latter case and use of 5. 15 to show that card 
(2_ S 2 when a > 0 . This takes care of (b) and (c). For (a) we use 5. 12, but some 
additional argument is necessary. 

Let' Q be as in 5. 12, whence (2, consists of k sets of the form (y)", a sets of 
the crude form (i) (for various — a, — 2a}), b sets of the form (ii) (for various 
PjA —oi), c sets of the crude form (iii), ..., i sets of the crude form ( ix), where 
3 '^fc< w and the designations (i)...(ix) refer to the statement of 5. 12. From 5. 12 
it follows that if g + h + im 1, then g + h + i = 1, a = b = e—f= 0, and c + r f s l . 
And e + / S 2 in any case, for if e + / s 3 a simple interchange leads from (2 to anot-
her minimal a-partition of IF for which g + h + im 1 and e + / S l , in contradiction 
of 5. 12. Note also that if a s l , then a — 1 and e=f=g = h = i = 0, for otherwise 
a simple interchange leads from (2 to another minimal a-partition one of whose 
members has a crude form other than those indicated in 5. 12. We now see further 
that if b S i , then e + f s 1, for otherwise an interchange leads from (2 to another 
minimal a-partition for which a s 1 and e+f S i . A review of the assembled facts 
shows that one of the four conditions (a t) — (a4) must be satisfied. | 

We next discuss weighted sets all of whose nice «-partitions are doubly or 
singly troublesome.. While the discussion could be based on 6. 2, it will be simpler 
to apply the relevant lemmas. 

6. 3. Theorem. Suppose m S4 , n S 2 , and W is a weighted set of cardinality 
mn which admits a nice n-partition. Then all nice n-partitions of W are doubly trouble-
some • iff W has the crude form (y)a',*b(n-2)+<n-i) (y— d)2h(y— 2ol)c for some 
y £ r ~ { 0 } , a =ny, and a, b, c£N{J {0} such that a + b + c =m and one of the fol-
lowing additional restrictions is satisfied: 

n — 2; 3^a~<m m£{ 4,5}, a — m — 3,; 
and cS 1 . b = 2 and c = 1 

n = 3; 3 S f l < m ; 6 = 0 and c = 1 or ¿>£{1,2} and c = 0; 
n S 4 ; a = m — 1; b= 0 and c = l or b = 1 and c = 0. 

Proof . The stated crude form for IF is equivalent to I^'s being the union 
of a sets of the form (y)", b of the crude form (y)"_2(y — a)2, and c of the form 
(y)"-1(y — 2a)1. If a, b, and c are subject to the restrictions given above, it can be 
verified that all nice «-partitions of W are doubly troublesome. 

Now suppose conversely that all nice n-partitions of W are doubly trouble-
some, and let (2 be a minimal a-partition of W. From 5. 15 it follows that (2 satis-
fies condition (A) or condition (£) of Section 5, whence 5. 12A and 5.13B will apply. 
Since (2 is doubly troublesome, the form (y)1(3y)1 (for a member of (2) of 5. 13 
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is eliminated,- as are all the forms mentioned in 5. 12 except for (iii) and (iv). Thus 
if 5. 12 holds, W clearly has the desired form with 3 S a < m (but ignoring, for the 
moment, the restrictions on b and c). And with the aid of a simple substitution (the 
— y of 5. 13 being the y of 6. 3), W as described under 5. 13 is seen to have one, 
of the two forms listed above for n = 2. It remains only to justify the restrictions 
on b and c. 

If c — 2, we may interchange two points of weight y — 2a in u(2_a with two 
points of weight y in a single member of <2a to obtain from (2 a nice «-partition 
& of W for which St*' ZD { — 3a, a}, contradicting the assumption that all nice n-
partitions of W are doubly troublesome. If « ^ 3 and c^l^b, a similar contra-
diction arises from an interchange involving one point of weight y — 2a, two of 
weight y —a, and three of weight y. If « S 3 and 6 s 3 , then interchanging the two 
points of weight y—a in one member of (2_a with points of weight y in two other 
members of <2_a leads to a nice «-partition $ with J>*'z>{ — 2a, a}, again an im-
possibility. Finally, if n S 3 and ¿ ^ 2 , a contradictory partition is obtained in a 
similar way by choosing the two points of weight y from a single member of <2_a.-
The stated restrictions have now been justified. | 

Note that if « S 4 and all nice «-partitions of W are.doubly troublesome,, then. 
all are singly troublesome. ' 

6.4. Theorem. Suppose n S 2 , and W is a weighted set of cardinality 
mn which admits a nice n-partition. Then all nice n-partitions of W are singly trouble-
some. iff W has one of the following forms for some y € F ~ {0}, a = ny, 8 and e of 
opposite sign from a but |<5| |a| and | e | s2 |a | : 

(y)m"-3(y-a)3 (only for «S3); 

(3y)1(y)m"_4(-v)3 (only for n = 2). 

Proof . Again, case (C) is eliminated by 5. 15. Under 5. 12A, the forms (vii),. 
(viii) and (ix) are eliminated by the fact that card <2_ = 1 (since (2 is singly trouble-
some). Combining the representations of (i) and (vi) and of (ii) and (iv), we see 
that W has one of the first four forms listed above. 

Under 5.13B, W is seen to have the last form listed. Finally, it can be veri-
fied that if W has one of the five stated forms, then all nice «-partitions of W are-
singly troublesome. | 

6. 5. Corol lary. Suppose «S2, and W is a weighted set of cardinality: 
mn which admits a nice n-partition. Then all nice n-partitions of W are t-singly troub-
lesome (for t^N) iff W has one of the following forms for some y £r~{0}: 

( y ) ™ - i ( 7 _ ( 1 + i ) n v ) i . (y^n-^y-nyYiy-tny)1; 

(y^mn-2(j_nyY {only for «==3, f=2); 

• O ^ U y ) ™ - 4 ^ ? ) 3 (only for n = 2, i = l). 

With the aid of 2. 1, 6. 3, and 6. 5, it is possible to give a detailed description' 
of sets of the form aff,(affm(aflf„A')) . By way of illustration, we prove 
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' 6. 6. Theorem. Suppose.X is an affinely independent subset of E and card X— 
= lmn, where I, m, n£N ~ {1}. Then the cardinality of the set aff/m„Ar~aff,(affm(afF„Ar)) 

-is equal to c(l, m,n) as given by the following formulae: 

when « S 3 and m S 4 , c(l, m, ri) — lmn(lmn+l); 

• when « S 3 and m — 3, c(l, 3, «) = -^-/«(9(/«)2 + 9/« + 8); 

when «S3 and m = 2, c(l,2n) = /«(2/« +3); 

when n = 2 and mg3, c(l, m,2)=22lm~2+ (2lm)2—f where f= 0 when Im 
1 (2lm\ 

iis even and f = ~2 \ ¡m ) when Im is odd; 

, / / 41 \ / 4 / - l \ \ 
• when n=,2 and m-2, c(l, 2, 2) = 24'"2 + 2 1 1 _ 2 J + 4/1 _ j ) j-g, where 

(4l\ /41- V 
,g = — 280 when 1 = 2, g = 0 when. I is even but >2 , and g = l 2/J + ^/l 2/ 2' 

wAe« / /s odd. 

Proof. Let yl denote the set of all functions £ on. A' to ® such that 2 U . - x£X 
and for each let X4 denote the weighted set {(x, £x):x£X}. Then c{l,m,n) 
is equal to card B + card C, where B is the set of all such that X^ admits no 
nice «-partition and C is the set of all £ €A ~ B such that for each nice «-partition 
SP of -Xt the weighted set admits, no nice m-partition. From 2. 1 and 3. 5 it fol- ' 
lows that 

• Imn \ / n S 3 
1 22'm'-2 / \n = 2 and Im is even 

card B = { /„, \ / when < 
1 1 /2lm\ ( 1 
2 2 ( m - 2 n \^n — 2 and Im is odd. 

When m s 3 , the set C is determined by 6. 5 (with t = m — 1) in conjunction 
•with 2. 1, whence it is seen that 

I Imn + lmn(lmn — 1 • \ [mS4 or « = 2 
card C = \ (lmn\ V when I 

/ lmn + lmn(lmn — 1) +1 ^ J \ im = 3 and « S 3 . 

When m = 2, the set C is determined by 6.3 in conjunction with 2. 1. For 
« S 3 , we see that iff A"* has the form (y)2'"~2((l — n)y)2. or the form 
<-?)2,''_1((1 ~2n)yY (where y = 1/(2/«-2)), and it follows that 

'2 In 
card C—I „ ] + cr> 

When «1 = 2 = « , the above considerations show that iff X( has the form 
(y)4(-26 (_ 7 )2f With b odd, bAl, and I=s6=a2/-1, or the crude form (y)4-2"-1 
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(~y)2b ( - 3 ? ) 1 with b even, b^l- 1, and 0 s Z > ë 2 / - 2 or (only when also 1-2) 
the form (y)3 ( — y)4 ( — Sy)1, where in each case the value of y is determined by 
the fact that ¡i(X^)=\. Thus for / S 3 , 

c a r d C = I ' Q + 4 / Z " ( 4 /
2 ; 1 ) > 

where ' and " indicate the appropriate range and restrictions for b, while for / = 2, 
/ 7 \ 

' there must be added a term equal to 81 J = 280. It can be verified that 

\ cardc=i((4/-2)+4/G!iO)̂ ' 
where g is as described in the statement of 6. 6. 

A review of the assembled facts shows that the value of c(l, m, n) is indeed 
given, by the stated formulae. | 

We conclude with the following table: 

I m tl c (/, m, ri) I m n c (/, m, n) 

2 2 2 . 688 3 2 2 3148 
2 2 3 90 3 2 3 189 
2 3 2 1168 3 3 2 41550 
2 3 ' 3 1158 3 3 3 3681 
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