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The generation of affine hulls!)

By V. KLEE in Seattle (Washington, U. S. A.)

0. Introduction. Throughout this paper, E denotes a vector space over a field
@ of characteristic zero, the case of special interest being that in which @ is the
real number field R. A subset 4 of F is called affine iff au+pvéA whenever
u,v€A, a, f€®, and a+f=1. (When @ =R, this requires that 4 contain each line
determlned ‘by any two of its points.) Each intersection of affine sets is affine, and the
affine hull (aff X) of a set X is defined as the intérsection of all affine sets containing
X. Equlvalently, aff X is the set of all affine combinations of X, these belng points

of the form Zax with nEN (natural numbers), x;€X, «;¢®, and Zoc‘-l This

relationship between blank hulls and blank combinations is vahd'not only when
blank means affine, but also when it means linear, positive, or convex (where, for
the last two, ® should be an ordered field). If bla denotes the operation of forming
" the blank hull, then blaX= U bla,X, where bla,X, denotes the set of all

blank combinations of n (or fewer) points of X.

The individual operations bla, are also of interest. When ® =R, aff,X is (X
together with) the union of all lines determined by two points of X, aff; X is (aff, X
together with) ‘the union of all planes determined by three points of X, etc. It is
easily verifield that

bla,,(bla, X ) bla,,X for b]a#aﬂ' (See 1 2)
The present paper is motlvated by the fact that while
aff,, (aff, X) caff,,. X,

the two sets need not be equal. For example, if the affinely independent set ZC E
consists of four points z, ..., z,, then '

. . ) 1

To describe the same exal_hple more geometrically, let a, b, ¢, and d be .the vertices
of a tetrahedron in R3. For each permutation u, v, w, x of these four vertices, let
II(u, v; w, x) denote the plane which contains the line W and is parallel to the

1) Preparation of this paper was supported in part by the Natlonal Science Foundatlon U.S.A.
(NSF—G 18975).
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line wuv. Then .
I(a, b; ¢, d)NT(a, c; b, d)NT(a, d; b, c) = {ib'+lc+ld—la}

. and the set aff,{a, b, ¢, d} ~aff, (aff, {a, b, c, d}) consists of this point - together
with three others which are -similarly situated.

We _study here sets of the form aff, (aff,,(...(aff, X)...)) and others which
are formed in a similar way. Since many of the results are rather technical in nature,
the reader is referred to the text for full statements. However, the general spmt
of our results is indicated by the following corollanes (3 3 and 3. 4):

For all X, aff,,,_; X c aff,, (aff . X); andzfm;én, =aff,, (aff, X) U aff (aff,, X)

1. Results on bla,(bla,X). Let us begin by extendmg the definition of bla X.
For n,,...,n, €N, blag,,.. ,,,m)X will denote the set of all points of the form Z’a,y,
~ for y,ébla,.,X and (o, ... ,,,)EB,,,, where for bla=lin the last condltlon imposes

no restriction, for bla =aff it means that Zoz =1, for bla= pos it means that o;

and for bla=con it means that «; =0 and Zoz,-= 1. Thus, in particular, blamX =
. £ .

=blay, . X with m 1’s and bla,, (bla,X) =blag, ., n X with m n’s.

.....

1.1. Proposition. For all Jour types of operatzon (and for all X) '
bla(,ll iy X C blag X; in partzcular, bla -(bla,X)cbla,, X

Proof. Forp€blay, .. X, letp= 2 Y with y:€bla, X and (aty,..., %,)E€ B,
) . 1 . . '

For each i, y,-' can be expressed in the form 2’ Bi;x; with x;€X and
: Cj=1 : :
(Bis +s Bin) € Bn,. But then of course

’2= Zl' Zaﬂu ijs
M 1= .’_

where it is easily verified that

(0 Bras eees %y Brnys oos O Brmts ..‘.-,a,,,[im,,m)er -1
. . . i
' 1

The next observation is due jio'i'ntly‘ to W. E, BoNNICE and the author.!)

1.2. Proposition. For bla+ aff, bla,,

.....

" )X bla,, X; in particular,
’li .
o

bla,(bla, X)= bla,,,,,X '

Proof. Since this 1s obvious for hnear or pos1t1ve combmatlons we discuss

_only the case of convex combinations. Let k0=0 and k;= > n; for 1=i=m.
r=1

' 1} See also WILLIAM BONNICE and VICTOR KLEE, The generahsatlon of convex hulls, Math
Annalen, 149 (1963), to appear. .
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Consider a point p€con, X — say p= X a;x; with x,€X,a;=0, and > a;=1.
1 1

For 1=i=m, let ;= 2 a;. For ki_1+i§j§ki, define

kiog+1

ﬂj’—f“,/?i when- 0;#0, p;=«; when ¢;,=0.

J=ki1+1

m ki . m
Then p= 2(0,- 2 ,Bjxj), where all coefficients are ‘=0, > ¢;,=1, and
i=1 . R 1

ki
2 B‘=1 When 0’,:#0,’

Ci=kiogtl

2 B;x;=0 when ¢;=0.
J=ki_g+1
Consequently p€cong,, . X.B . '

The proof of 1.2 depends on partitioning the oc, ’s mto m groups such that
there ‘are n; of them in the i group and such that those in each group are.all zero
or have nonzero sum. The same problem arises in connection with affine combi-
nations, but there the desired partition may not exist. In order to discuss the si-
tuation efficiently, we shall introduce the notion of a weighted set and shall study
partitions of such sets.

2. Partitions of weighted sets. Here and subsequently, I" denotes a.fixed (but
arbitrary) ordered abelian group, while <, +, and — are used for the ordering,
addition, and subtraction in both T" and N A weighted point is an ordered pair
'w==(W, w’) for which w €T (w arbitrary); w’ is called the weight of w. A vyeighted
set is a finite set W of weighted points such that for.u, ve W, u=v=u=v". The
wetght w(W) of a weighted set W is the sum of the welghts of its points (u(W) =
= 2’ w'); (W w(W)) is a welghted point. A weighted set will be called good un-

less 1ts welght is zero while at least one of its points has nonzero weight, where
zero is the neutral element of I'.

A partition of a set S'is a finite family of pairwise disjoint subsets of S whose
union is S. For n€ N, an n-partition is one in which each member consists of n po-
ints. An (n,, ..., n,,)-partition is one consisting of m sets which can be ordered in
such a way that (for 1=i=m) the i*h set is of cardinality n;. A partition # of a
weighted set will be called nice iff each of its members is good; thus £ is nice unless
there exist P€# and we P such that w'0=pu(P).

2.1. Theorem. Suppose W is a weighted set and ny, ..., n, € N with Z’n =

=card W. Then W admits a nice (ny, ..., M)~ partztzon if and only if the followmg
three statement are all false:

(S)) m=1 and W is not good;’

(S,;) n;=2 for all i; W is the union of two - sets of odd ca)dmallty such that
all points of one set have the same nonzero weight o and all pomts of the other set
have weight —a;

(S;) there exlsts n=3 such that n;=n for all i, all but one point of W have lhe
same nonzero weight cx and the exceptwnal pomt has weight (1 —n)oc '
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Proof. It is easily verified that if Sy, S,, or S; is true, W does not admit
a nice (ny, ..., n,)-partition. We now assume that W does not admit such a par-
tition, and. wish to show that S,, S,, or S; is true. If m=1, it is evident that W™~
is not good and S, holds, so we assume m=>1. Let k=card W and consider an
enumeration of the points of W in order of increasing weight:

Wi=wi=..=wy.

Let P, be(the set consisting of) the first n, of the w ’s, P, the next n, of them, .

P, the last n,, of them. Then some set P, fails to be good and from the method of -
r—1

construction it is clear that w’ <0 forall we U P;, while w >0 for all w¢ U P,.
r+1

Since m =1, there are three cases to be consrdered
1= r<m" 1<r<m' l<r =m.

However, the first case is treated hke the third, so it suffices to con51der the second”
and third cases. We assume, then that 1<r.

Note that if u€ P, with #’'=0 ‘and w€ P; for i<r, then w =/, for otherwrse
a nice (ny, ..., n,)-partition of W 'results from the partition {_P1, ..., P} upon.
interchanging u# and w. Since. 1 <r, this implies the existence of «=0 such that
w = —a whenever wé W with w’=0. Further, if i<r and v€ P, with v" >0, then
u(P) = —no and hence v = (n;—1)a, for otherwise a nice (ny, ..., n,,)-partition
of W results from interchanging v with a point of P;. Thus there exists #=2 such.
that n;=n for all i<r, and v" = (u—1)a whenever vEP with v >0.

We wish next to show that n,=n, and for this purpose will consider another“
(ny, ..., n,)-partition of W. Let Qr be the first n, of the w;’s (in terms of the given
ordering), Q, the next n, of them, @, the next n, of them, ..es Qy_4 the next n,_,
of them, Q, ., the next n,,, of them, ..., Q,, the last n,, of them. Then Q;= P, for-
i=r and (since 1 <r) there exists s<r such that the werghted set Q is not good )

“If s =1 it follows from reasoning in the preceding paragraph that card Q,=card Q,,.
whence n,=n, =n. If s=1, let R; be the first n, of the w;’s, R, the next n, of them,
and R;= Q, for i¢{1,r}. By hypothesis, some R; fails t0 be good and clearly it is.
R,. But then from the method of construction (usrng the ordering of the w; s) we
conclude that R,=Q,, whence n,=n,=n. _

We have now established that n, =n=2 for 1=i=r, that w = —a for all
wée W with w =0, and that v = (n— l)oc for all v€ P, with v">0. Let [ denote the-.
number of points of P, which are of positive weight. Then

_ 0=uP)=In—Da=m—Da=({-1Dna,
whence /=1. Thus S, holds (with its a the negative of our present a) if r =m and .
n=3, while S, holds if r =m and n =2. If r <m, the reasoning of the above paragraphs.

shows that n; =n for alliand that « =(n— 1) whenever ' =w"=0 for some w€ W,
But then « = (n—1)%0, whence n=2 and S, holds. §

3. The basic theorem on aff(,,

3. 1. Theorem. Let E be a vector space over a field ® of characteristic zero,
Ry, ... By €N, and pEaﬁ"EniX; Then pe€afly, .. . X unless one of the following-
> ' .

Statements is true:
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’

. . i b ' 2m
() m=>1;n,=2 for all i; for each expression of p.in the form 3 wx; with x,;€ X,
. . 1 '
om . .
o, €D, and D a,~=1, there is an odd number 1€ N such that m<I|<2m, 1 of the a;’s
1

-are equal 10 —— 6<I> and the remaining 2m —1 a,’s are equal to~

1 1
(i) m=>1, all n’s have - the same value n=3; for each expressron of p in
the form. Zcxx wzth xEX €D, and Za;l one «; is equal to( _1) E(I) '
.and the others are all equal to ————Ed).
(m—1)n :
(If 1 is the unit element of ® and a,b€N, the point (14+1+4+...+1)=

S ———— -
aterms

S¢S PSS I)E(I) is’ denoted simply by %

PrbowE)mfE Let us suppose first that pEaff(,,l m)X, .whence there exist
ycaff, X and f;€® such that Zﬂ-——-l and Zﬁiyi =p. For each i, there exist
p'oints z"l,. ,z,,, (not necessarily distinct) of X and numbers yl,. .,y,i.,.E(I)'such

_that Z’y,—l and 2 y,z, ;. Now with s-—Z'n,,

1
(xy, ...,xs)=(zl, vees Znyy eves 21 ...,‘z:,"m),

' 1 1
and - (@15 s 0) = (B1Y1s wves BiYnys oes Bu¥ 15 vy BV,
: s : s
‘we have p;Z’cx,x,,x,E_X, and 20:,:1.
" Further, in their natural ordering the indices 1, ..., s are partmoned into m sets

-such that there are n; indices in the i*h set, and the sum ﬁi< = 2 ﬁ,-y,) of the «,’s
' : : <

-corresponding to the i*h set of incides is different from zero unless all of these «,’s
. are zero. From this it is easily verified that (i) and (ii) are both false.
Conversely, we assume (i) and (ii) to be false and want to prove that
peaflyy, ., X Since the field @ is of characteristic zero, its additive group I' is
1somorph1c with a subgroup of a direct sum of a (possibly mﬁmte) number of copies
of the addmve group of rational numbers. Since this direct sum is an ordered group
under the lexrcographrc ordering based on the natural ordering of rational numbers,
‘we may assume without loss of generality that I' is an ordered group (not 1mplymg,
of course, that ® is an ordered field).
Now taking I" as an ordered group, we see from 2. l (and the assvrrptron

‘that (i) and (ii) are false) that p admits an expression in the form p= Z‘ «, X, With

"x,€X,0,€0, 2 a,=1, and such that the weighted set {(r, a,):1§r§s} admrts
. 1 _ R . s .
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a nice (n,, ..., n,)-partition. . We may assume: without loss of generality that the
members of the partition are the sets {(ryo,):5;_y<r=s;} for 1=i=m, where
so=0 and s,——Z n,. Defining o; —Z o,, we see that either g;#0 or a,=0 for all-
) 1
r with 5;_; <r=s,. It then follows as in the proof of 1.2 that pEaff(,,l X b
3.2. Corollary. If the numbers ny,...,n,(EN) are not all the same,
affiy,, .. X = affm : ‘ '

ni

.....

3. 3. Corollary For all X and all Hy, ..., n, €N, aff ) Xcaff,
PILIN

. 1

caff, X; in particular, aﬁ',,,,, X caff, (aff X)caff,,X.
Zni .

1

3.4. Corollary. For m#n, aff,,, X =aff,, (aff,X) U aff (aff,, X).

3.5. Corollary. IfF X is aﬂmely independent and consists of k points, and '
mz2, the cardmalzry of the set.

X =aff,,, X ~ aff,,(aff, X) -
& . .
( ')mn when n=3,
mn . ‘
' ‘ k : . .
is equal to 22m-2 _ when n=2 and m is even,
2m . : R
22m-2 _ when n=2 and m is odd.
2m : 2\ m

3.6. Corollary. Iszsfzmte so is X’. If dim (affX)<mn—l X is empty
If dim (aff X) = mn—1, card X" =c(m, n), where

mn . when n=3,

22m-2 when n=2 and m is even,

c(m, n) = .
. : 1/2m - .

22""2——( > ‘when n=2 and m is odd.

If dim E=mn and m=2 =n, then E containts a set X for which X~ consists of c(m, n)
distinct parallel ,,lines” (genuine lines when ® =R).

Proofs. 4The Corollaries 3. 2, 3. 3, and 3. 4 follow immediately from 3. 1. For
. k mn .
the first part of 3. 5, apply 3.1 (ii) to show that card X’ = (mn) ( 1 ) For the

second and third parts of 3. 5,.apply 3. 1 (D) to show that card X” is equal to mn> _

times the number of sets Y {1, ..., mn} for which card Y is odd and card ¥ <mn—
—card Y. The first three assertions of 3. 6 follow from 3. 1, 3. 3, and 3. 5 respectively.
For the fourth, let F be an (mn — 1)-dimensional linear subspace of E, Y an affinely

AS
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independent set in F with card Y=mn, z€E~F, and X = Y+ ®z. It is eas11y
verified that ‘
aff,, X ~aff,(aff,X) = (aﬁ',,,,,Y~aif (aff,Y)) + @z,

whence the desired conclusion follows from 3. 5. |

4. A qualitative approach For YCE and nf€N, consider the set
bla(":‘y (1))(b1a(" rzvn(z))(""-(bla(",fy o Maiey) Y) ))

With n= ]] (2 ni) it follows from 1. 2 that this set is equal to bla,Y when bla =
j=1

#aff. For bla =aff, the situation is much more complex and a full analysis would

probably cost more than it is worth. In any case, the problem of describing the

above set reduces to one concerning the interaction of operations aff, for various

values of n, since (by 3.2) affi,, .. X =aﬁ“§".X for all X if -the n;’s assume at

leasﬁ two different values, whilé of course aff,, ..., X =aff,(aff,X) if all the n,’s
-have the same value n. ' ‘
From 3.3 it follows that always

aff (aff,(aff, X)) © affy— - X Uafl,p—p-y X-

However, this is a crude approach and becomes cruder as the number of operations - -
‘increases. The present section shows by means of a qualitative approach that always

6)) aff, (aff,,(.. .(aff,,k'X).i. D Caff -1 X
and that if X is finite, so is the set’ ,
@) S affy,, . X ~aff, (aff, (..aff, X)..).

" Section 5 contains a more quantitative analysis, leading to a description of sets
of the form (2) for k=3 which is similar in completeness to that of Section'3 for
the case k=2(cf. 6. 6).

A basic tool is the notion of a welghted partition. When & is a partmon of a
weighted set, the corresponding,: weighted partition is the weighted set #* =
= {(P, u(P)) Pe#}. To illustrate the combinatorial problem which is involved
in the study of sets of the form (2), let us consider a weighted set W consisting of
twelve points, ten of weight 1/6 and two of weight —2/6. Though W admits a nice
3-partition 2, the weighted partition £* must consist of four ,,points” (the sets
PEW), two of weight 1/2 and one of weight —1/2, whence #* does not admit a
nice 2-partition. This corresponds -to the fact that if -an affinely independent set

10 1 1
X C E consists of twelve distinct points x,, ..., x;,, and if p= <Z’ 3 xi> — 3 X
. . . 1 '

—% X,5, then p Qaﬂ'z(aﬁ'z(afg)()), even though p ¢aff,(aff,X) whenever mn =12.

Thus in studying sets of the form (2), trouble is caused (speaking roughly) not only
by weighted sets which admit no nice partitions but also by those whose nice partitions
admit no nice partitions, and so on down the line. To establish (1) we must show
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. that if W is a weighted set of cardinality n,n,...n, with at least one point of zero
weight, then W admits a nice n,-partition 2, such that' 2%, admits a nice n,_, -
partition 2, _,, such that 2{_1,... such that 2§, admits a nice n,-partition P2y~
, The basic lemma is easy to prove, but its statemient requires some additional
notation. Let T be a finite set, § the class of all nonempty subsets of T, and E the
class of all functions on T to I'. For S¢8 and £€5, let S denote the welghted set .
{(s, &s):5€ S} and let ugS denote its weight ((i:S = u(S;) = Z’ &s)). Let ng, ..., n, €N’

-with m=2 and 2’ n; —card T, and let 9 denote the class of all (r, , ..., n,)- partltlons

of T. For each .@E‘B and £€E, let P denote the correspondlng partition of the:
weighted set Ty; that is, Py={S;: S Eﬂ}

4.1. Lemma.’ Suppose A is a finite subset of I and H is the set of all (€8
Such that T, admits at least one nice (ny, ...; n,,,) partztzon 9’@), with P& CA for all
such P&y Then the set H is finite.

Proof. LetIbe the class of all ordered tr1p1es (D £, g) for which £ is a nonempty
subset of B, fis a function whose domam is ‘vaQ and the following conditions
are satisfied:

for each @ED f@ is a function on @ to A

~ for each PeP~Q, gPis a nonempty subset of 2.
For'each : =(Q, f; g) €1, let H, denote the set of a11 n € H which have the- followxng
two propertles
={Q€eP:Q is nice}; whenever SE@E»D then mS=fgS;

for cach ZeP~Q, g2 = {S€P:p,S=0}.
. It is evident that H= U H, and that I is finite. To complete the proof it sufﬁces '

to show (for Lel) that the difference of any two functions in H is constant on X,
for then.it is apparent that each set H, has at most one member. .

- Let e=(Q, f,g)EI and consider two functions & n€H,. Choose Q¢cQ. To "
show that & —# is constant it suffices to show-that whenever u, and u, are points
_ of T which lie in different members U; and U, of @, then &u; —nuy = Euy —nu,.
For such U; it follows from the definition of H, that uU;=p,U; (i=1,2). Let 2
denote the partmon of T which is obtained from @ by interchanging %, and u,.

- Then
= (@~ A{Uy, Uo)U{V1, 72}y
where
Vi = (Ui~ {ud) Ufu} ¢ ¢J)
Clearly . .
: ﬂgVi ="pUp—Eu;+ u;
and ’

,u,,V = ,u,,U —nqu;+ ;.

If #€Q, then (for i=1 and i=2) u:Vi=fpVi=u,V;,and (recalling that uéU ,u,,U)
we conclude that &u; —nu; = &u; —nu;. Suppose, on the other hand, that Z € ~
“Then by the deﬁnmon of H,, neither &, nor 2, is nice. Since @ was nice it follows :
" that ygV 0 for i=1 or i=2 (but not necessarily both), whence V; €gP and
Vi =0. Then as before, fu nu; = Suy—nu;. B A
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“Fora ﬁmte set T and for y EF let A[T) denote the set of all functions & on T
to I such that, Z ét—y For Ay, . nkerrth ]] n;=card T let A, (T; ny, ..., n) '

denote the set of all ¢€A4,(T) for Wthh there exist welghted sets T, =
=Wis1, Wiy .., Wy with W= ¥ for some nice n,-partition 2; of W,+1(2515k)

‘4.2. Theorem. Suppose T is.a finite set, y€T', and ny, ..., nkEN w:th ]] n;=
card T. Then the set A(T)~A[T;ny, ..., ny). is finite. ‘

Proof When k=2, the assertion follows from 2. 1. Suppose 1t 1s known for
k = j—1=2 and consider the case k=] j. Let S be a set of cardinality ]] n; and let
B =A4,(5)~A4 (S ny,...,n;_1). Then B is ﬁmte by the inductive hypothesrs, so
the set A = U nS is also ﬁmte Now wrth card T= ]] n;, let G denote the ‘set. of

all ﬁeAy(T) such that- T, admits no nice -partltlon The set G is finite by 2. 1.
Let H denote the set of all £€ALT) such that 7, admits at least one nice

n;-partition. 2 ,,, but 2§ c A for all such 2. Then H is finite by 4. 1, and. it is
easily verified that I o :
: A(T)~ALT;ny, ...,n)cGUH. |}

4. 3 Theorem For each set XCE,
f"f(,,l,,2 )= 1Xc:af’f (aff 2(...(af’f,,kX)..‘.)).
If X is finite, so is. the set ' , ' ,
aff, . X ~aff, (aff, (...@aff, X)...)).

" Proof. Let r-—]] n;and let T={1, . r} As in the proof of 3.1, we'see that

1f sed; (T;ny, ..., nk) and if x,, ..., x, are (not necessarily distinct) points of X, -
then . '

Zré(r)x.Eaﬂ' (aff, (... (aff,, X)...)).

The second statement of 4. 3 follows at once from this fact in conjunction w1th
r—1

4, 2. F or the ﬁrst part of 4. 3, consider an arbitrary point p Za X, w1th X €X, o€ T,
-1

and Z o, =1. For each BeT, let. the function éﬂeA (T) be deﬁned as follows:

G)=a, for 1=isr—2; &r—D=a,,~F; &0)=P.

Since T is infinite, 4. 2 implies the existence of ST for whrch & EA (T Ry..oy M)
With x,=x,_,, we have

r

= Z&()x € aff x(aﬁ‘nz(...(aff,;kX)...)).I"
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oy
-+ - 5. Troublesome sets: Lemmas. For a welghted set W, W’ will denote the set
{w wE€ W}CF W will be said to have the form (y)*...(y )% iff ‘a;€T,.a;€N,

Za =card W, and a;=card {weW:w =1y} for l<z<k and W has the crude

form (yl)“\..;(y'k)f‘k iff 'y, €0, a;€ NU{0}, 2 a;=card W, and W admits a partition
v , L < : . -

-into pairwise disjoint sets Py, ..., P, such that card P;=gq; and- c{y} for
l=i=k. With a;>0, the first condition requires that W’ ={y;:1=i=k} and the
y;’s are distinct; the second condition requires that W’C{y, 1<z<k} but permits

-a;=0 (with of course P;=&) and y;=7y;, for i#j.

A welghted set W will be called troublesome iff W has the form :
(1) @y (B ...(By)= with r3, 5= 1,

and R -
O<a=min{—f;:1=i=s} or O>azmax {—B;:1=i=s}.

We shall often refer to the expression (T), using its notation without further explanation.

A weighted set W will be called positively (resp. negatively) troublesome iff W
has the form (T) with o:>0 (resp. «<0), doubly troublesome iff it has -the form
(T) with s=1 and B, = —a, singly troublesome iff it has the form (T) with s=1=r,
and t-singly troublesome (for t € N iff it has thé form (T) withs=1=r; and §; = — o
In connection with 2. 1 and with the principal goal of this section;, the doubly and
t-singly troublesome sets are of special interest; unification in the treatment of these
two special types is achieved ‘through the more general notion. Note that a set
which is both positively and negatively troublesome must be doubly troublesome,
but not conversely, and that a troublesome set may be.both doubly and singly
troublesome but need not be either. :

A partition 2 of a weighted set will be called troublesome (resp. doubly troub- :
lesome etc.) iff the weighetd set (#*) is troublesome {resp. doubly troublesome,
etc) When 2 is a partition- of W and y€T, we define 2,={Pc2?:u(P)=y},

P_={PecP:u(P)<0}, and 2, ={PcP:u(P)=>0}. For any family &# of sets,
rF will denote the union of all members of &#. Thus (for example) u(g’ ) is the
union of all members of 2 which have negative weight, while ((#_)*) is the set
of all negative weights attained by members of 2. Since the danger of confusion
is slight, we shall usually omit the parentheses in expressions such as these.

When £ is-a partition of W and x and y are points of W, 2(x, y) will denote
the partition Wthh results-from £ upon mterchangmg X and y. Thus for xcXe®
and yE Ye2,

- P(x,y) = (9’ X, Y})U{(X~{X})U{y} (04 N{y})U{x}}

- When more complicated interchanges are ‘required, they will be described explicitly.
For the remainder of this sectlon we make the :

- STANDING HYPOTHESES: W is a weighted set and /P n,€N; with m=4
and Z n;=card W. W admits a nice (ny,...., ny)-partition, but all such partitions

are troublesome
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Partition will mean an (nl, ey ,,,) -partition of W. A partmon 2 will be called
an o- partltlon iff #* has the form (T) and in addition

N ¥ —y €{—a,0,a} whenever x and y are points of distinct members of P,.
An a-partition P will be called a minimal «-partition iff there is no oc-partttton Q
Jor which Q, is a proper subset of #,.

* * sk
The ﬁrst lemma is

5.1 If .4" isa partttzon and P* has the form (T) ( but requiring only r Z2) then
max 1% =min 1%’ .

Proof. It suffices to consider the case >0, If ucur?; quﬂ ‘and X€EuP, =
=12, then W(u, x) is a partltlon for which

P (u, x)*’ = BU{B:izj}U{B,— W —x),oz+(u —Xx'), oc}

wheré BC {8;}. If ' — X" =0, ‘the partition 2 (, x) is nice but cannot be troublesome
for BJ —(W —x)<p;=—-a<O0<a<a+ (@ —x). The contradlctlon shows that
. w —x"=0 and ylelds the desired conclusion. |

5.2. If 2 -is a partition dnd P* has the form (T) wzth |oe| <max {Iﬁ [ IStss}
then P is an a-partltwn

Pro of, We assume w1th0ut loss of generahty that o >0 If x and y lie in different
members of #,, and x">)’, then

P (x, )*’ = {ﬂ, 1<t<s}U{oc—(x -y, oc—i—(x —v),a}

and 2(x, y) is not positively troublesome since 0 <a<a+(x"—y).'If P(x,y) is .
negatively troublesome, .then s=1 and 0=8,=—a. Smce we knew already that
a=—f,, 1t follows that

|| = Iﬁ1| = max {Iﬂl I=i=s}, . :
- . contradicting the hypotheSIS of 5.2. Thus .Q”(x, y) must fa11 to be nice, whence
a—(x'—y)=0. A .

.5.3. For some o, W admits an a-partition.

Proof. Let & be a nice partition, whence #* has the form (7). Suppose. 2
_is not an a-partltlon whence there exists points x and y in" different members -of
#, such that x’ —y" ¢ {—a, 0, «}. The partition £ (x, y) is nice and hence troublesome.
We assume without loss of generality that >0 and x" —)" >0, whence 2(x, y)*’
contains at least two positive weights and 2 (x, y) must be negatlvely troublesome;
this implies s=1 and B, = —a, whence [31 =—a With 0o—(x" —y)<a, it
© follows that « —(x"—)’) = —a, whence x"—) .= 2o and 2(x, y)* has the form
(— o)+ 1) -2(3a)'. But then r; =2 and Q(x y) is a (—oc) partxtlon by 5.2.§

5. 4. For each oc-partttzon P there is a mzmmal cx-partttton (‘;7, with @, C2,.
Now we add to the

STANDING HYPOTHESES: Q is a minimal a-partztzon of W, with a=0;
zE‘Z €@, with 2 =min1@Q;;y=2z". (The assumption a>0 is only for conve-
nience, since ‘the case <0 can be treated in the same way.)
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"From ({) there follows

5. 5. Either (i) »Q; ——{?,Y-{-a} :
or (i) {y,y+2}cZ' c{y, v+ y+2a} and w(Q,~ {Z}) —{y+a}

The dlscussmn is now d1v1ded into three cases, as follows: ]
(A) y=0; - (B) y<0; y+2aeu@i; (O p<0; ?+20¢ Q.

By addmg the appropriate letter to the number of a lemma, we indicate the addmon
of one of these three conditions to the standing hypotheses

* %k %k

. 5 6A. There exists n€ N such that a=ny and-each member of @, has the form
(y). "In particular, y=0.

Proof. Since y=0 by condition (A), it follows from the definition of y that
all points of v@, have non-negative weight. Consider two points x and y lying in
different. members of ,. The partition @(x; y) is nice but is not troublesome if
x"#y, for then Q(x, y)*’ contains f3, as well as three different non-negative weights, -
and one of the latter is <a= —f,. This shows that x"=)" and consequently
. 1Q; ={y}. The desired conclusions follow. §

5.4 IF Q€8 then_Q’c{y,. —a, =20, y+ﬁj,y+/3-'—a}

Proof. By 5.1, max 1@~ =y. Let U0={uEQ ' <y}, and define the subsets
U; of U, by saying that if u€ U, then :

u€eU, iff Qu, 2) is not nice;

uc U, iff:Q(u, 2) is pos1t1ve1y troublesome

uc U, iff Q(y, z) is negatively troublesome.
Obviously Uy =U,UU,UU,. For ucU,, we have

Q(u, 2)*’ ='BU{Bi'i‘¢j}U{ﬂ-—u’+y, -y +u, o}, ,
with Bc{ﬁj} Clearly u€ U, implies &' = =y+pjord =y—a lfuclU U;, then
a—y+u’ <0, for otherwise @(u, z)* contams the positive weights o and o —y+u

with
o —7 41 <a=min {—Bi.l_S_t_—__s},‘

~and Q(u, z) is not troublesome. If u€ U,, then (since @ is-a minimal o-partition)
Bi—u'+vy=0, whenceﬂj——u +y = aandu’ = y+pj—a.lfucU;,thena —y +u'=
=f; = —a (for i#j, where in fact this situation entails s =2 and r;=1). We have
now proved that Uy {y—a, y— 2a, y+ﬁ1,y+ﬁj—a} |

5. 8,- W is troublesome’ when n=2.
- Proof. Use 5.6, 5.7, and the fact that
max {y—a,y—20,y +8 yHB—a) =y—a=(1-nrl .

5.9, With Q E@,, ,» let a, b, and c denote the number of points of Q whlch are
of weight v, y—a, and y —2a respectively. Let d=0if ;¢ {—o, —20} and otherwise
d=card {ucQ:w = y+p;}. Lete=0if §; = — o and otherwise e = card {uE O =
= y+p;—o}. Then one of the followmg statements is true:
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() d=1,c=e=0; a+1 = (n—1)b;
(i) e=1,c=d=0;a+1 =(n;l)b+n
(iii) d=e=0; (a— (n—l)b (2n—1)c)

' Proof Clearly _
y(a+b+c+d+e)—oc(b+2€+e)+/)’ (d+e) = ,u(Q) = By,
and smce a=ny it follows that ‘
(a+(1—n)b+(1—2n)c+d+(l—n)e)y = (1— —e)p;.

To gain more information about the numbers a, ...,.e, we consider the partmon
‘&, vy Which ‘is obtained: from @ by interchanging two points u and v of Q with
two points which lie in different members of @,. Then -

(u v) = ﬂ U A(u, U)U{O‘};

{_/iiii;éj}chc»{/ii-:Al §.i§s}

where

. and : ' _
A(u,v) = {f;—u =V +2y,a—y+u', 0 —y+0'}.

The possibilities’ of special interest are described in the followiixg table:

u v A(u, v)
(d=2) YT y+B; {—Bj, o+ B}
(e=2) oy +Bi—a YHBi—a - {2a—8;, B3}
Codzl=e) -y yHBi—e o {a— ﬁj’a+ﬁ1’ﬁ1}
(cz1=d) y—2a . +B; © {20, —a, 0Bt
(c21<e) © oy —2a y+B—a © {3e, 0, B}

Recalling that d#0 implies B; ¢ {—o, —2a}, we see that @, is nice in each case
and hence must be troublesome. In the first case, @, ,) cannot be positively trouble-
some since —p;#a and cannot be negatively troublesome since 0=+ f;+ —a.
In the second case, Q, ., cannor be posmvely troublesome since 0<oc<2a B;
and cannot be negatively troublesome since (with e=+0) f;<—o. Similar contra-

dictions ensue in the other three cases. It follows thatd+e=1, and d+e=1 implies
" ¢=0, whence the remammg pOSSlbllltleS for q,...,e are exactly as described
in59.] . :

5. 10A Ifn= 1 each member of @,, has'the form ([3 )Y or the crude form (7)*(— y)°.
Thus W is troublesome

Proof. With n=1, 5.9 (i) is impossible 5 9 (ii) implies a=0, and 5.9 (iii)
becomes (a—c)y=p;. The correspondmg possibilities for the crude form of Q €&,
are (0)®* (8,)! and (y) (0)°(— y)°; to establish 5. 10 we must prove b=0. Suppose
'b=>0 and let u€ Q with &' =0. Then Q(u, 2)* =B;U{B;+7,0,y}, so (Q(u z). is
not troublesome and hence not nice. Since u€ {u} E@(u z), the fact that " =0 does
not account for @(u, z)’s lack of niceness, and it fotlows that ; = — y. Thus p(Q) =

—19, Q contains a point v with o’ = —y, and Q¢/,)=B;U{2y, 0, -7 y} Since 0
appears only as the weight of a onepointed member of @(,, o) &, vy is nice but not
troublesome.. The contradlction implies b=0.
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. 5.11,4. Suppose n=1 and there exists Q€ Q_ with card Q >1. Then Q-has the:
crude form (y)*(—y)° for ce{a+1,a+2,a+3} and each member of Q_~{Q} has
the form' (— y)

Proof Clearly c>a+l for (c—a)y = n(Q)<0. Suppose p(Q) B; and let.

vy € Q with v = — 7. Then @(vl,z) = B; U{(a—c+2)y, — 9, ¥} 1f@(o1,z) is not.

nice, a—c+2 = 0. If (v, z) is pos1t1ve1y troublesome, then (since @ is a- mlnlmal

a-partition) a — ¢ c+2 = 1. If Q(v,, z) is negatively troublesome, then g —c+2 = —1

when a—c+2<0.and —1= —a+c¢—2 when a—c+2>0. It follows that c—a¢
€{1,2, 3}, with ¢.= a+3 only when Q(v,, z) is negatively troublésome.

Now suppose ¢ = a+3 and-let v, and vy be distinct points of Q ~{v,} such
that v; = v3= —17. Suppose some member P of @_ ~{Q} has form other than
‘(= Since Q(v,, z) is negatively ‘troublesome, it is evident that u(P) = -7 and °
hence (using 5. 10) if P does not have the form (— y)! there eXISts w€P with w =y..
But then '

@(m uz)(v35 W)* = BU{ 3))9 3% - ya y}

with Bc {f;:1=i= 1} whence the partltlon Qvy, 013, W) is nice but not troublesome-
_and the contradiction shows that P has the form (-t
Alternatively, suppose ¢ —a € {1, 2} and note that ¢ =2 since card Q > 1. Suppose-
some. member P of Q_ ~{Q} has form other than (—7y).! With ul,vzéQ and
: U1=Uz = —7, we have

@(01 vy — BU{#(P)’ (a—c+4)y, —?, y}

s0 @(,,l vyy 18 nice and .the fact that it is troublesome 1mphes p(P) = —+. Thus there-
- exists we P with w' =7 and we have

Q1,2 (03, W = BU{=3), (a—c+4)7, =7, 7},
a contradicti’on.whieh yields the desired conclusion. | |

_ 5.12,. If all the n ’s have the same value n=2, each member of Qy, has one of
the following crude forms -

B;¢{—0, —20:}) Q) G-+ L)Y

B%-a) (i) GF " (r+B;—a)'; . 3

Bi=-a) i) Gr-2G-apy @) Orie-2)'
Bi=-20 M) 3= ) - (-2
(B, =—3%) (i) (yy=*(y —a)*; (vili) (3" (y ~ )2 (y— 20)*;

(iX) (yy=2(y—2a)2.

If some member 0 of Q_ has the crude form (vii), (viii), or (ix), then Q.~{Q} is .
o nonempty and all its members have the- crude SJorm (iii) or (1V) -

Proof:. Here 5.9 () becomes .
n = a+b+d ——"(n—l)b—1+b+1 = nb
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‘whence b=1, a=n—2, and Q has the crude form (i) above. And 5. 9 (i) becomes

n= at+b+te=n—-1)b+n—14+b+1 = nb+n,

‘whence =0, a=n—1, and Q has the form (ii) above,

For5.9 (m) we have n = a+b+c (and of course a =ny), so f§; = (1 —b—2c)a.
‘Now with g=b, h=c, and g+2h=>1, let &, » denote a partition which is obtained
‘from @ by interchanging g points of welght y—ain Q and A points-of welght y—2a
in Q with g+ #h points of weight y in-a single member of Q,. (When all #;’s have
‘the same value, such an interchange is possible.) Then

R = B;U{B,+(g+2h)a, (1 —g=2h)a, a}.

'Note that 1— —2h<0. Thus if Z, ;, is not nice, f; = —(g+2h)a and g+2h—_
=b+42c—1. lf B;+(g+2h)a<0, then (smce Qisa mlmmal a-partition) R, ) is
negatively troublesome and

/f,+(g+2h)cx = (1 —g—=2ha = —a,

‘whence g + 24 = 2, ﬁj = —3a, and b+2¢c = 4. ]f[i1+(g+2h)a>0 then g+2h =
=b+2c when Z,, ,, is positively troublesome, while negatlve troub]esomeness of -

. Ry.ny implies

—B; —(g+2h)oc5(1 —g—2ha =—

‘'whence g2k = 2 and —f;=a. But then §; = —« and b+2c = 2. .
The preceding paragraph shows that if Q(€Q@_) has the crude form (y)" —b-c
(y —a)(y — 20)°, the pair (b, ¢) must be such that b +2¢ > 1, and such that whenever
g=b,h=c, and 1<g+2h<b+2c, then g+2h = b+2c—1, or g+2h =2 and
b+2c = 4. It is obvious that 5=4 and ¢=2, and a closer examination shows that

(b, ©)€{(0, 1), (0, 2), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)},

whence Q has one of the crude forms (iii)—(ix). Note also that if (b, ¢) €{(0, 2),
(2, 1), (4,0)}, then u(Q) = —3« and there exist g and # as described for which .
#(Q) + (g +2h)a<0. But then #,,,, is negatively troublesome, whence Q_ ~{Q}
is nonempty and all members of Q_ ~ {Q} have weight —a. [}

* % Xk

We considef now the case in which condition (B) is satisfied. In this case, y <0
-and a single member Z of @, contains points of weights y and y + 2« (perhaps also
¥+ a), while the other members of &, consist exélusively of points of weight y + .

5.135. « = —2y. Z has the form (y)'(—3y)!, while all other members of Q,
have the form (— y)2. All members of @ _ have the form (y) with at most one exception,
and the exceptional member Q ( zf there ‘is one) has the form (y)'(3y)! or the form
(y)*. If there is such a Q, then _~{Q} is nonempty.

Proof. Note the existence of n€ N such that each member of @, ~{Z} has
‘the form (y+a)"; with a=n(y+a), we have (1 —n)a=ny and thus n22 -

Let x,z€Z and y€uQ,~Z with X" = y+2a,y =y+a, and z'=y. For each
u€1Qp 1@, let @, denote the partition which results from @ under cyclic permu-
itation of u, x, and y (replacing x by u, y by x, and u by y). Then

Q% = BU{B:i#j}U{B;—u' +y+a, —y—a+u, 2u, o}
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w1th Bc{B;}, so &, is not pos1t1vely troublesome Thus n@_ U (Ujuup,
lsjss

o where U} is the set of all u€ 1@, for which Q(,,) is negat1vely troublesome and U}
is the set of all u€u@;, for which @, is not nice.

Now we-claim that for 1=sj=s,
o U= {rthta)

‘and ‘ S
0 Uiy ={»

The statement (1) is immediate from the definition of U? and the form of @(u),
since (by 5. 1) —y—a+u' = —a for ail uen@ Now suppose ucU}. Since a € 45,
it follows that —y —a+u" = —a, whence ¥’ =y and ﬁl-l-océ@(u) Th1s establishes
(2) and (continuing with the assumption that u€ U}) since f;+a=0 we see that
B;+a = —a, whence it follows that g; = —2a, r;=1, f; =—ua for i;éj, and s=2.

If u¢ QN U} (where Q€Qy), the above reasonmg shows that i’ =7y and there
exists k€N such that each member of Q_ ~ {Q} has the form (y)*, with ky = —a.
Recalling that ny = (1—n)a, we see that k = n/(n—1), whence n=2=k and
a = —2y. Thus each membeér of @, ~{Z} has the form (— y)? while each member
of @_ ~{Q} has the form (y)2. We want to show that Z has the form (y)!(—37)?
while Q has the form (y)'(3y)* or the form (y)*.

From (1) and (2) we know that Q consists of a points of wexght y and b of
welght 3y, with ay+3by = u(Q) = —2a=4y. Hence a=1 and b=1 or a=4 and
b =0; in either case, Q has the desired form. A simple interchange shows that if some
such Q occurs with @_={Q}, then W admits.a partition § for which &* has the
form (2y)2(—2y)“(—4y), an impossibility since § is nice but not troublesome..

We know that Z consists of ¢ points of weight y, d of weight —v, and e of
weight — 3y, with c=1=e. Now suppose e =2 (résp. d=1) and let 2 denote the

_partition which is obtained from @ by interchanging two points of weight —3y
(resp. one of weight —3y and one of weight —y) from Z with the two points of
weight y from a single member of @_ ~{Q}. Then #*" ={4y, 2y, —2y} U 4, where
A={—6y, 6y} (resp. 4={—4y, 4y}). Thus £ is nice but not troublesome, and the
contradiction implies that.d =0 and e=1, whence ¢ =1and Z has the desired form. .

‘For the proof of 5. 13, it remains to cons1der the case in which U U= 1@,

. 1=j=ss

whence (for all j) each member of @ﬂ has the form (y 4+ B} + o))" for some k €N.
With (1—k)B; = k;(y +a) and o = = n(y+a), we have n(l—k)[il = kjo. Now
for uEu@ﬁ , note that .

@(u 2 =Bl {B; z;é]} J{ o, ﬂ]+2cx o}

with Bc{p;}. If @(u, z) is not nice, then B; = —2a and 2n = k,/(k —1). This
implies k;=2 and n=1, whence y—-O in contradiction of our basic assumption
that v<0 If ;+200<0, then (since @ is a minimal a-partition) Q(u, z) must be
negatively troublesome, whence B;+20 = —a and 3n = k;/(k;—1), an impos-
sibility. Suppose, finally, that §; +20c =0. If Q(u, z) is positively troublesome, then,
B;+20 = a, while negative troublesomeness of Q(u,z) implies —a= —f;—2a.
But we know already that ;= —a, so both poss1b1ht1es imply f; = —a. From
this it follows that n = k;/(k; —1), ‘Whence k;=2, n=2, and 2Q. = {y}. Thus
each member of Q_ has the form (y)? while each member of @, ~{Z} has the form
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'(—y)z The argument of the precedmg paragraph shows that Z has the form
(M(=3y)?', and this completes the proof of 5 13. 8 '

. -O® >l- "%
We turn finally to the case in which condmon C is satisfied.

‘5. 14¢. Each set X€ Q, has the crude Sorm (yy*® (y + a)*®with (a(X) + b(X Ny =
= (1 —b(X))oc and b(X)=2. Of course a(Z)=1.

Proof. With ay+b(y+a) = u(X) = o, the equahty (a+b)y = (l—b)y is
lmmedlate b=2 because y<0<oz Further z2¢Z w1th 4 =y (as part of the stand-
. ing hypotheses) B

5. 15¢. Suppose a(Z) =1 for at least two different members Z, and Z, of @,,
or a(Z,) =2 for some Z5 € &,. Then Q is doubly troublesome, card Q_ =2, vQ_ ={y},
and W admits a nice (nl, wwey Ny)-partition which is neither doubly nor singly troub-
lesome.

Proof In the first instance, let z, € Z, and z, EZZ, and in the second 2y, 2 €Z,,
‘with z{ =y =23 in each case. Let Y be a member of- C:v different from the Z S, and
Y1, ¥2€Y with yi = y+o = pj.

Let #= &(y19 l)(st 22) Whence

= {B;: 151<s}U{ oc}UA
with {2oc}cA<:{a 2a} or A={o, 3a}. In the first case, 20 appears as the weight
of two different members of %, so in neither case is # doubly or singly trouble-
some. On the other hand, £ .is nice and hence troublesome, which can happen
only if B8, = —a for all i (whence € is doubly troublesome) and card @_=2.

Now suppose i €1@._ w1th u #y. Then ' <y by 5.1, whence a—y+u <a.
Since
o G(u, 41)—{—a —oa—u -|-y,a—y+u a},

it follows easlly that a —y+u = 0 or a—y+u’ = —a. Now if a member of Q_,
contains a point of weight <y —a, or two points of weight = y —«, then by interchang-
_ ing these with points of weight y +a in a single .member of (Qa we obtain a nice
'partition whose members have weights < —oa, = —a, =«, and =>a. Since this
is impossible, we conclude that each member of Q_, has the crude form (y —a)(y)
with c€{0, I}. But then (c+d)y —ca = —a, SO c=1 implies y=0. ThlS contra-
diction completes the proof. || ,

5.16¢c. Wis rroublesome

Proof. By 5. 14, W contains at least six points of- welght y+a. By 5.1, w=y
whenever we W W1th w <y+a. Thius W is surely troublesome if y +a= —7v. Sup-
‘pose, on the other hand, that «>2(—1y). Then for each X€@Q,, (a(X)+b(X))>
>2(b(X)—1), whence a(X)>l [t then follows from 5. 15 that W has the form
(»°(y +a) with 7=<0<y+aand ez=3=f, so of course W is troublesome. |

5.17c. If all n{ s have the same valiie n, then n=3; each member of Q_ has the
form (y)" while each member of @, has the form (y)*~ 2(y+oc)2

Proof. For each X¢@, we have a(X)+b(X) =n, whence (by 5. 14)
(1 —b(X)) a=ny and b(X) has the same value for all X€@,. Thus the same is also
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true of a(X), and S. 15 applies to show that —a = ny. But then l—b(X) =—1"
.and the desired conclusions follow. Jj

6. Troublesome sets : Theorems The" results of this' section are based on the'
lemmas of Section 5.

6.1. Theorem. Suppose Wis a wezghted set and ny, ..., n, €N with m=4
and Zn =card W. If all nice (nl,. ,nm)-partltzons of W are troublesome, then

elther W itself is troublesome or all n/s are equal t0 2 and W has the form
(=3p(—y)*t2a(p)4+26 (39 for some yE_]‘ {0} and a, be NU{0}.

Proof. If W admits no nice (n,, ..., n,)-partition, 2. 1 implies that W is troub-
lesome. Suppose, then, that W admits a nice (n,, ..., A,,)-partition, and let' & be a
minimal «-partition of W as described in Section 5. Referring to 5.8, 5. 10, 5. 13,
and 5. 16, we see that W can fail to be troublesome only if @ satisfies the condition
(B).. ByIS 13, the only non-troublesome possibility for this case is: that described
above

It would be interesting to have an intrinsic characterization of those weigh-

" ted sets W and m-tuples (n,, ..., n, such that all nice (n,, ..., n,)-partitions of W
are troublesome. (This is not provided by 6. 1, for a troublesome set may admit
nice partitions which are not troublesome). Relevant information is supplied by
5.64, 5.7a5 5.94,5. 11,,5.12,, 5. 135, 5. 15¢ and 5. 17¢. The picture is complete
for condition (B) and could probably be completed without difficulty for (C), but
the case of (4) seems more complicated. We have a .complete solution only when
all the n;’s have the same value. For m=4 and n=2,.let §(m, n) denote the class
of all weighted sets W of cardinality mn such that all nice n-partitions of W are
troublesome. Let §(m, n) denote the class of all W¢§ (m, n) such that W admits
no_nice n-partition, and for D€{A, B, C} let §,(m, n) denote the class of all

W €3 (m, n) such that for.some o €[ ~ {0} w admxts a minimal q-partition which.
satlsﬁes condition (D). Then ‘

F(m,n) = Fy(m, )UF ,(m, ) UF 5(m, n) UF c(m, n)

The class § ~(m, n) is completely described in 2. 1, and ‘the other classes are dCSCI‘l-
bed in the following result.

6.2. Theorem. Suppose m=4, n>2 and Wisa wetghted set of cardmalzty _
mn. Then

(@) We§ 4(m,n) iff ‘W has the crude form ,
(,y)kn+a(n 2)+bn—1)+c(n— 2)+d(n 1)+e(n 3)+f(n 2)+y(n 4)+h(n 3)+i(n— 2) .
_”(.y_a)a+20+3e+f+4g+2h(v_2a)d+f+h+21(y +ﬂ0)a(y+ﬁl__a)l (?+ﬂb—0t)1

Jor some y€T ~ {0}, a=n,, B; of opposzte szgn from «a but of greater absolute value
(0=j=b), Bo# —2a, 3=k<m, and a,b, ... h, IENU{0} with e=0=n=3,
g>0=>n§_4, h>0:>ni3 qnd one of the fqllowmg Jour conditions satisfied: -

(a) O=e=f=h=i, a=1; o

(a;) O=a=g=h=i, bx=l, e+f=1;

(a;) O=d=b=g=h=i, c+d=l, e+f=2;
(as) O=a=b=e=f=

0, c+d=1, g+h+i=1;
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(b)  WeFg(m, n) iff n=2 and W has the form (—3y)'(—y)*+22(y)3+2% or
the form (=3NL(=p)**+22(y)*+2(3y)! for some yET ~{0} and a, be NU{0}.

() Wec(m,n) iff n=3 and W has the- form (y—oc)6+2"(y)5" 6+a(n=2)-+bn
for some y€L' ~{0}, a=ny, and a,beNU{0}. .

Proof. It is tedious but not difficult to verify that if W has one of the stated
forms, then W is a member of the appropriate class &, (m, n). This task is left to
the reader. That the members of §z(m, n) and §.(m, n). must have the indicated
forms is an almost immediate consequence of 5. 13 and 5. 17 respectively, with
a slight change of notation in the latter case and use of 5.15 to show that card

=2 when a>0. This takes care of (b) and (c). For (a) we use 5. 12, but some
additional argument is necessary.

Let' Q be as in 5. 12, whence @, consists of k sets of the form ()", a sets of
the crude form (i) (for various B;§{—a, —2a}), b sets of the form (ii) (for various
B; # —w), ¢ sets of the crude form (iii), ..., i sets of the crude form ( ix), where
.3=k<m and the designations (i)...(ix) ,refer to the statement of 5. 12. From 5. 12
it follows that if g+h+i=1, then g+h+i =1, a=b=e=f=0, and c+d=1.
And e+f=2 in any case, for if e+f=3 a simple interchange leads from & to anot-
her minimal a-partition of W for which g+A+i=1 and e+f=1, in contradiction
of 5.12. Note also that if a=1, then a=1 and e=f=g=h=i=0, for otherwise
a simple interchange leads from @ to another minimal a-partition one of whose
members has a crude form other than those indicated in 5. 12. We now see further
that if =1, then e+f=1, for otherwise an interchange leads from @ to another
minimal a-partition for which a=1 and e+f=1. A review of the assembled facts
shows that one of the four conditions (a,) —(as) must be satisfied. [J-

We next discuss weighted sets all of whose nice n-partitions are doubly or
singly troublesome. While the discussion could be based on 6. 2, it will be simpler
to apply the relevant lemmas.

6.3. Theorem. Suppose m=4, n=2, and W is a wezghled set of cardmalzty
mn which admits a nice n-partition. T hen all nice n-partitions of W are doubly trouble-
some " iff W. has.the crude form (y)™+b@-+ct-1) (y —q)2b(y —2a)° for some
yeL ~{0}, a=ny, and a, b, c€ NU{0} such that a+b+c = m and one of the fol-
Jowing additional restrictions is satisfied: o

n=2; 3=g<m me{4,5), a=m-3,;

~ and e=1. 7 bpZ2 and c=1

n=3;  3=a<m; b=0 and c=1 or b€{l,2} and c=0;

nz4; a=m—1; b=0 and c—l or b=1 and c=0."

Proof. The stated crude form for W 18 equlvalent to W’s being the union
of a sets of the form (), b of the crude form (y)*~2(y— oz)2 and ¢ of the form

(r-t(y —2a)t. If a, b, and ¢ are subject to the restrictions given above, it can be -

‘verified that all nice n-partitions of W are doubly troublesome. .

Now suppose conversely that all nice n-partitions of W are doubly trouble-
- some, and let @ be a minimal «-partition of W. From 5. 15 it follows that & satis-
fies condmon (A) or condition (B) of Section 5, whence 5. 12, and 5. 13, will apply.
Since @ is doubly troublesome, the form- (y)! (3):)1 ‘(for a member of @) of 5.13



Affine hulls - 79>

is eliminated, as are all the forms mentioned in 5. 12 except for (iii) and (iv). Thus
"if 5.12 holds, W clearly has the desired form with 3 =a<m (but ignoring, for the.
moment, the restrictions on b and ¢). And with the aid of a simple substitution (the- ~
— 9 of 5.13 being the y of 6.3), W as described under 5. 13 is seen to have one.
of the two forms listed above for n=2. It remains only to justify the restrlct1ons
on b and c.

If c=2, we may interchange two points of weight y —2a in n@_a with two- .
points of weight y in a single member of @, to obtain from @ a nice r-partition
A of W for which #*'>{—3x, a}, contradicting the assumption that all nice n--
partitions of W are doubly troublesome. If n=3 and c=1=b, a similar contra-
diction arises from an interchange involving one point of welght y—2a, two of”
weight y —a, and three of weight y. If n=3 and b=3, then 1nterchangmg the two
points of weight y —a« in one member of @_, with points of weight y in two other-
members of @_, leads to a nice n-partition § with > {—2a, oc} again an im-
possibility. Finally, if n=3 and b=2, a contradictory part1t'10n is obtained in a
-similar way by choosing the two points of weight y from a smgle member of @_,..
The stated restrictions have now been justified. ||

‘Note that if #=4 and all nice n-partitions of W are. doubly troublesome .then.
all are singly troublesome.

6.4. Theorem. Suppose m=4, n=2, and W is a weighted set Aof- cardinality
 mn which admits a nice n-partition. Then all nice n-partitions of W are singly trouble-
some_iff W has one of the following forms for some y€I ~{0}, a=ny, 6 and ¢ of "
opposite sign from a but |6|=|a| and |g| =2|a|:

=1y —e)'; (Y2 (r—a) (r—0); ()™ 2(y—a);
(=3 =) (only for n=3);
GNLGY™4(—3)*  (only for n=2).

Proof. Again, case (C) is eliminated by 5. 15. Under 5. 12,, the forms (vii),.
(viii) and (ix) are eliminated by the fact that card @_ = 1 (since @ is singly- trouble-
~some). Combining the representations of (i) and (vi) and of (ii) and (1v), we see-
that W has one of the first four forms listed above.

Under 5.13g, W is seen to have the last form listed. Finally, it can be veri--
fied that if W has one of the five stated forms, then all nice n-partitions of W are-
singly troublesome. [}

6. 5. Corollary Suppose m=4, n=2, and W is a wezghted set of cardmalzty:
mn which admits a nice n-partition. Then all nice n-partitions of W are t-singly troub-- -
lesome (for t€ N) iff W has one of the following forms for some y €T ~{0}:

(= A+ Dm); =2y =)' (y —tny)*;
Oy"=3(y—ny)*  (only for n=3, 1=2);
G ER (only for n=2, 1=1).

With the aid of 2. 1, 6 3, and 6. 5 it is possible to glve a detaﬂed descr1pt1on,
of sets of the form aff, (aff (aff, X )) By way of illustration, we prove
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*6.6. Theorem. Suppose. X is an affinely independent subset of E and card X =
3 =Imn, where I, m,n€¢ N ~ {1} Then the cardinality of the set aﬂ’,,,,,,XwaFf,(a w(aff, X))
is eqiial to c(l, m,n) as given by the following formulae:

when n=3 and mz=4, c(l, m,n)=Imn(imn+1);
when n=3 and m=3," c(l,3,n) =—;—ln(9(ln)2+9ln+8);

_when nz3 and m=2, e(,2n) =InQln+3);

when n=2 and m=3, c(l, m, 2)y=23m- 2+(2[m)2 —f, where f=0 when im
1 _

2Im -
= when Im is odd;
2\ Im

L4\ [4l—1
- whenn= 2and m=2, c(},2,2)=2%4- 2+ 2(( _2>+4l(4[_.1>>——g, where

' 4] 41—1
_=—280 when 1=2, g= 0 when.  is even but >2, and g= (21>+4l<21_2.>
when | is odd.

Proof. Let 4 denote the set of all functions £ on. X to ® such that 2 (x=1,

and for each £€A4 let X, dénote the weighted set {(x, &x):x€X } Then c(l m, n)
is equal to card B+card C, where B is the set of all £¢ A4 such that X, admits no
mice n-partition and C is the set of all fEA ~'B such that for each mce n-partltlon
2P of X, the weighted set 2* admits no nice m-partition. From 2. 1 and 3. 5 it fol- *
“lows that

is even and f =

' lmh n=3 .
22m=2- o n=2 and /m is even
card B = o m when
' 22im- 2-—( > n=2 and /m is odd.
) Im _ :
When mZ3 the set C is determmed by 6.5 (w1th t=m—1) in conjunction "

with 2. 1, whence it is seen that

mé4 or n=2

. Imn + lmn (imn—1 ‘
= o /Imn
card. C Imn+-Imn(Imn—1) +( 3 ) when m=3 and n=3.

When m =2, the set C is determlned by 6.3 in conjunction with 2. 1. For
n=3, we see that £€C iff X, has the form (y)?"-2((1 —n)y)2. or the form
(9)?=1((1 = 2n)y)* (where y—lf(2ln—2)) and it follows that .

dC 2In\. (2ln
car =\ 2 + .1'..

When m=2=n, the above con51deratxons show that £€C iff X, has the form
(p)H-28 (— y)z” with b odd, b/, and 1=b=2/-1, or the crude form (y)¢-2e-t
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» (- 'y)” (— 3)))1 with b even, b;él—l and 0=b=2/—2 or (only when also /=2)
the form (y)® ¢ —y)* (—3y)!, where in each case the value of y is determined by
the fact that u(X) =1. Thus for /=3, . .

4/ Al 4/ -1
cardC=% 2 + E 2

where * and ” indicate the approprlate range and restrlctlons for b, while for /= 2

7
* there must be added a term equal to 8<3> 280. It can be verified that

. ! 4] - (41 )
cardC:Z’ 4i—2 + 4] 4i—4 +g,

where g is as described in the statement of 6. 6.
A review of the assembled facts shows that the value of ¢(l, m, n) is lndeed

given by the stated formulae. I
We conclude with the following table:

~

-1 m n  c({,mn) m n v c(l,m,n)
2 2 2 688 3 2 2 3148
2 2 3 90 3 2 3 189
2 3 2 1168 3 3 2 41550 -
2 3 3 3 3 3

1158 13681
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