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Semi-Carleman operators*

By M. SCHREIBER in New York (N.Y:, U.S.A)

1. VoN NEUMANN [1] showed in 1935 that a self-adjoint operator on Hllbert
space may be represented on L,(— s, «; dx) as an integral operator of Carleman
" type if and only if O is a limit point of 1ts spectrum. In this note we show that this
result survives in the non-self-adjoint case. In so doing we are lead to ‘the consi-
deration of what we shall call semi-Carleman integral operators. They are opera-
tors T on Lz(—oo o; dx), given by a kernel K(x, y) by the relation '

- Tf(x) = [ Ko NF0),
such that

) . le(x,y)desMZ(y)w, ae. in y.

~According to standard usage (see [2, p. 397]) Carleman integral operators have
symmetric kernels (K(y, x)=K(x, y)). We drop the requirement of symmetry.
There is a natural choice of domain for such an operator making it closed and
densely defined. We shall prove that such operators always have the point 0 as a
limit point of their spectra, extending (and simplifying the proof of) [I, Theorem
IV], and we shall obtain also a converse to this statement.
We are indebted to Dr. L. Gross for a number of interesting and helpful con-
versations on this subject.
- 2. We shall say that 4 complex number A is a limit point of the spectrum
of an operator T if there exist unit vectors x, (n=1,2,...) which converge weakly
to 0 and such, that

(T =2)x,~0.

(Cf. 15, ne 133].) Suppose that T is closed and densely defined, and that 0 is a
limit point of its spectrum (Wthh we are implicitly assuming is not empty) We
know that we may express T in the form T= U(T"‘T)I/2 where (T*T)'2 is self-
adjoint and U is a partial isometry whose initial domain is the closure of the range
of (I*T)1/2 [3, p. 53], and we claim that 0 is a limit point of (7*T)'/2, For if we have
unit vectors x, tending weakly to O such that Tx,—~0 then [|(T*T)'2x,| =
=||U(T*T)"2x,| = Tx,| =0, so that (T*T)'/2x,—~0, as required. Hence by the
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von Neumann theorem {l, Theorem III] (T*T)!? is unitarily equivalent to

an operator H of Carleman type on L,(— e, «;dx), and therefore T may be .

represented as a partial isometry times a Carleman operator. We can in fact say
more, by following voN NEUMANN’s method adapted to,the present (non-self-
adjoint) circumstances. By [1, Theorem I] there exists a self-adjomt operator X of
arbitrarily small Hilbert—Schmidt norm such that 4 = (T*T)'24+-X is a pure
point operator (in the sense that it has a complete orthonormal set of eigenvectors)
having 0 as a limit point of its spectrum. Thus there exists a complete orthonormal
set_{gn}az1 of vectors and real numbers {2.}u=1 (not necessarily distinct) such

' that Ap,=2A,¢, (n=1,2, ...). We know that 0 is a limit point of {An}n=1:
If it happens that 2 [A4}2 < oo, then, wri‘ting Y,=Up,, we may choose a basis

{Pun=1 Of Ly(— oo, oo} dx) and, defining the unitary operator W by We,=g,,
we write l//,, Wiy, and finally we deﬁne K(x,y)= Z'/Inllx,,(x) (p,,(y) Since U is not

unitary, but only the partial isometry from [Range (T*T)'?} to [Range (T)], we
cannot conclude that the family {i,} (and the same applies to {w,,}_) is orthonormal.

Allwe know s [l =¥, = Ug,|| = 1. Nevertheless [[5, (%, (0) i ()5n(3) dxdy=

=8, ¥, |> = &,n, which is to say that the functions F,(x, y) = w,,(x)(p,,(y) are ortho-
gonal and of norm =1 on the plane. Hence the series defining X is L, convergent
on the plane and [[IKCx,y)dxdy=(K, K)=(Z2F,s ZtaF)= SIPIF)?=
= >'|4,|%. Hence K is _é Hilbert—Schmidt kernel, and the operator B it determines
has the. property Bp, =2, That is, B=W{UA} W-!. (This argument, proving
that UA has a representation on L,(— o, «)as a Hilbert—Schmidt integral-oper-
ator, is slightly different from the usual argument (see [4, p. 35]) because of the
perturbation X, so that U is not necessarily isometric on the range of A =(T*T)/2 4+ X
Note that the argument shows that such a representation is achieved no matter what
basis {p,} is chosen in L,(— oo, «).) Hence WIW-1= B— WUXW-!. Now UX
is of Hilbert—Schmidt type since X is (see [5, p. 157]), so that, as pointed out above,
WUXW-! is an integral operator with a Hilbert—Schmidt kernel L. Hence WTW-1
is an integral operator of Hilbert—Schmidt type with. (nonsymmetric) kernel K — L.
If 34,2 =<, and we know only that {4,},—: has 0 as a limit point, then we
employ the following rearrangement of {4,} (in which we are following voN NEu-

MANN exactly). Let M,,,Jé% (v=1, 2, ...), and let {4, } be‘the remaining members

of {1 Set Iy k)‘= Mpe-say1y for k=2,3,.., and I(v,1)=n,. Then
1 : .

A1, k)|_2k G 1)_2k 5 (k=2,3,...),50 that,ZM,(v pli<eforallv=1,2,.... |

Renumber the system so that v=0, +1, £2,.. Deﬁne Ugp,=y,. Choose a ba-

sis of uniformly bounded functions {6,,};,"’ i of L2 (0,1; dx) and define a unitary

operator W, by Wl(p,, @, and write l//,, Wi,. Now define, for v=20, £1,
+2, .., :

f =), v=r=v41
q)‘v,n(t) - {0 R otherWiSe.
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Then {®, ,} isa complete uniformly bounded orthonormal system in L, (— oo, = ;dXx)
. and the map V: L,(0, 1;dx)—~L,(— =, ==; dx) defined as

: : V @i, =D
is unitary. Let in,k= Vl;,(v.k), and define kernels K, by the relation

@ Ko, 9= 2 i a0 W) @, 1 00).

Now K, is 'square integrable on the strip (v=y=v+1, — e <x <o) because for
each fixed v, 3|4, 1)|2 <<= (see above), so K, defines a Hilbert—Schmidt integral
operator T, from L,(v,v+1;dx) to Lz(—oo =o; dx), with the property that
7,0, A,(v oY,k 1f we now write - .

3) o K(x,y) =-§-Kv(x, »)

as we may since the summands are .supported on disjoint strips, we have a kernel
defined -on the whole plane which defines an operator S such that S®, , =1, )W, &
for all v,k. S is densely defined, since’ @ contains the linear span of the basis
{D,,}= {Vquo,(v k), UA is defined on the linear span of the basis {p;,i}=
={p,}, and we have clearly

VWL UAI(V W) = |
on ‘these dense sets. Now |K(x,»)|*=> |K.(x,»)?, fl](‘v(x, »Edx =
= 3 i 104G <= for a.e. y, and for ‘each fixed 3, 3 [IK,(x, )| ==

= |IK (x, 'y)lzdv where vo=y=v,+1, so that f[K(A WN|*dx<e for a.e. y.
Thus UA has a representation on L,(— s, «o; dx) as .a semi-Carleman operator.
To summarize; we have T = U[(T* )‘/2+X] UX = UA—-UX, where X
is self-adjoint of Hilbert—Schmidt type, and U4 is representable on L,(— oo, o3 dx)
as the semi-Carleman operator S above. Now, just as before, UX goes over by the
same representation on L,(—so, «; dx) (i. €., VW,) into an integral operator of
Hilbert—Schmidt type. Hence, upon adding the kernels, we arrive at the following

Theorem 1. If T is closed, & is dense, and 0 is a limit point of the spectrum
of T, then' T may be represented on L,(— oo, ==; dx) by a semi-Carleman mfegral ,
opPrator ’

We have moted above that operators of Hilbert—Schmidt type have kernels
no matter what representation on L, is chosen, and this is true even if /, is chosen
as the representation space (here the kernel is the matrix). We do not assert this
invariance of representation for the more general operators considered in Theo-
rem 1. Indeed, every bounded operator 4 has a representation on /, as a semi-
Carleman operator, where the kernel is the matrix. For, denoting by {x,}i--
the usual basis in /,, T has the matrlx representation ((Tx,,, Y,,,)) and Zl(Tx,,,x,,,)l

= >'|(x,, T*x, 2 =T* ,,,||2<||T||2 But it 1s not true that every bounded oper-
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ator has a semi-Carleman representation on L,. The identity operator may be
" offered as a counterexample (as may be verified just as for Hilbert—Schmidt oper-
ators, but we shall not do it that way since the .same conclusion will follow from
our Theorem 2 below). Thus it is essentla[ that we employ a non-atomic measure
space in Theorem 1.

3. Suppose we are given a measurable function K(x, y) deﬁned on the whole
plane and satisfying the semi- Carleman condmon (1) Let us wrlte (w1th M as
defined in (1))

D= fE Lz‘(— o0, o} dx) ‘ j Mx)|f(x)] dx< oo}.

Let o, —-{x|M(x)<n} (n-l 2,..) and let aCq, be an arbitrary measurable
set of finite positive measure. Then the characteristic function of  is in €. Sup- .

poseJ gfdx =0 for all f¢%. Then fgdx_O, so that g(x)=0 for a. e. x€o,. But

the complemenf of U o,, has measure 0, whence g(x)=0 for a. e. x. Hence ® is .
dense in L,(— o, e; dx). (This is essentlally the argument used in [2, p. 398] for
Carleman operators, and we have included it for the sake of comp]eteness) If f¢8
then

S G [ o= [[ vzt sy 1762y [ e e, 91 1K G, 1
= [Javaz1 /117G (1K G 2 ) ™ ([ 1K D) =

= [J avdz1 101110 | MOIM @ = | [ 1700 MG df < e

Hence the operator. T given by (TH(x) = [K(x Yf(y)dy for fe® is a denselyA
defined semi-Carleman operator. Let 0, = {x|0<x<l M (x)<n} By (1) the measure
of U,q, is 1, so there exists 7, such that 0 <measure of o,,=1. Then

] ju«x,y)idedy— Jar. [|K(x,y>|2dx—JM(y)z dy=n3,
"o' %o %o .

SO that we may regard K as an element of Lz((— oo, oo)><a ) and K*(x P =K(y, x)
_ asanelement of Ly(g,, X (— oo, «)). As such, K and K* define operators S: L,(0,,) -~
— Ly(— o0, o) and S*: LZ(—oo =) —+ L,(a,,), respectively, of Hilbert—Schmidt type,
with N(S)=n,, N(S*)=ny, where N denotes the Hilbert—Schmidt norm. Let

{(p,,},, 1 be a basis in' L,(o,). Then
V(S = S s+ gl =
=Z (S*Sn (Pn)a =2 l|S<Pn||(—~ »=N(SY =ng,

where the subscripts indicate the rorm employed Hence (S*S)!2: L,(q,,) ~L,(0,,)

is a self—adJomf Hilbert—Schmidt operator. Since Hilbert—Schmidt operators. are
completely continuous (see [4, p. 32]) we know there exists a set {$n}n=1 of unit
vectors in L,(a,,), which are orthogonal (because (S*S$)1/2 is self-ad]omt) such
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that (S*S)2y, -0 as n—. Let U: [Range (S*S)!/2] - [Range S] be the partial
isometry in the polar decomposition of S: S=U(S*S)"2. Then [ SY,l-(o =) =
= U(S* ) 2l (—w, «p =(S* )2l 5,,, =0, 50 SY, 0 in Ly(= oo, ). Define
functions 0, by .

ang

- )“{wn(x) X€ 0y,

) XQU"O.

Then 6, is an orthonormal system in Lz('—— o, ). We have 6,€%D for all ﬁ, for

[ M@0, dx= | MG W) dx= g [ Wa (o)l dx = ngalla,, =no < o».

‘Further, we have.

70,00 = [ K(x, 0,0 dy = J K00 dy=150109,

"0

so 76, = Sy,—0 in LZ(—oo =), Since 6, converges weakly to 0, so we have
proved

Theorem 2. An integral operator of sémi—Carleman type has O as a limit point
of its spectrum (which is thereby, in particular, non-empty ).

From this it follows, as we mentioned earlier, that the identity operator cannot
be represented as a semi-Carleman operator.

4. To complete the circle and achieve a characterization of 'operators of this
type we have to show that semi-Carleman operators are closed. Let T be a semi-
" Carleman operator with kernel K actmg on the domain & defined above, ‘and write

{f‘ K(x, ) f(y)dy € Ly(— o, oo) We have seen above that § €. One may
verlfy that T* is determined by the kernel K*(x, y) K(y, x) acting on &* =

{fl [K*(x y)f(y)dyELz} and that T** is determined by K acting on & (the
steps in the verification are the same, ruutatis mutandis, as in [2, Theorem 10. 1,
p- 398] and we omit them). Hence T has the closed extension T**, and if we adopt
& for the domain of K at the outset then the semi-Carleman operator it deter-
mines is already closed.” With this understanding, we ‘have now shown that an
- operator T is representable on L,(— o, ) as a semi-Carleman opérator if and

only if T is closed, densely defined, and has O as a limit point of its spectrum.
(Any partial isometry or projection with infinite-dimensional null space satisfies

the above criterion, and it is easy to see what the representation is for such operators.
For a partral isometry U, we have formulae (2) and (3) above, where 4, \,=0,
k=23, 4 y=1and ®, , ¥, correspond to bases for the initial and final

spaces of U. Thus K(x,y)= Z’ ¥, (ND, (%), with the vt summand supported
(and square integrable) on (v5y5v+l —co=<x=<o), v.=0, £1, +2,.... For

a projection P the representation is even simpler because then k —(I)v 1, SO P
is represented as the direct sum (on @ L,(v=x=v+1)) of operators of rank 1).
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