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Semi-Carleman operators* 
By M. SCHREIBER in New York (N. Y:, U. S. A.) 

» 

1 . V O N N E U M A N N [1] showed in 1 9 3 5 that a self-adjoint operator on Hilbert 
space may be represented on L2( — dx) as an integral operator of Carleman 
type if and only if 0 is a limit point of its spectrum. In this note we show that this 
result survives in the non-self-adjoint case. In so doing we are lead to the consi-
deration of what we shall call semi-Carleman integral operators. They are opera-
tors r on L2( — °°, <x>;dx), given by a kernel K(x,y) by the relation 

Tf(x)= \ K(x,y)f(y)dy, 
such that J~ 

(1) \\K(x, y)\2dx = M2(y)<o°, a.e. in j . ' 

According to standard usage (see [2, p. 397]) Carleman integral operators have 
symmetric kernels (K(y , x) = K(x, y)). We drop the requirement, of symmetry. 
There is a natural choice of domain for such an operator making it closed and 
densely defined. We shall, prove that such operators always have the point 0 as a 
limit point of their spectra, extending (and simplifying the proof of) [1, Theorem 
IV], and we shall obtain also a converse to this statement. 

We are indebted to Dr. L . GROSS for a number of interesting and helpful con-
versations on this subject. 

2. We shall say that a complex number A is a limit point of the spectrum 
of an operator T if there exist unit vectors x„ (n = 1 ,2, . . . ) which converge weakly 
to 0 and such that 

(Cf. [5, n° 133].) Suppose that T is closed and densely defined, and that 0 is a. 
limit point of its spectrum (which we are implicitly assuming is not empty). We 
know that we may express T in the form T=U(T*T)li2 where (T*T)1'2 is self-
adjoint and U is a partial isometry whose initial domain is the closure of the range 
of (T*T)112 [3,p. 53], and we claim that 0 is a limit point of (T* 71)1'2. For if we have 
unit vectors x„ tending weakly to 0 such that 7x„— 0 then \\(T*T)ll2x„\\— 
= \\U(T*T)l'2xn\\ = | | r x j - 0 , so that (T*T) l l 2xn-~0, as required. Hence by the 
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von Neumann theorem [1, Theorem III] (T*T)1/2 is unitarily equivalent to 
an operator H of Carleman type on L2( — °°°;dx), and therefore T may be 
represented as a partial is'ometry times a Carleman operator. We can in fact say 
more, by following VON N E U M A N N ' S method adapted to, the present (non-self-
adjoint) circumstances. By [1, Theorem I] there exists a self-adjoint operator X of 
arbitrarily small Hilbert—Schmidt norm such that A = (T*Tyi2 + X is a pure 
point operator (in the sense that it has a complete orthonormal set of eigenvectors) 
having 0 as a limit point of its spectrum. Thus there exists a complete orthonormal 
set {<-/?„}r='i of vectors and real numbers {¿„}n°h (not necessarily distinct) such 
that Acpn = Xn<pn (n = 1, 2, ...). We know that 0 is a limit point of {A„}„°°=i. 

If it happens that 2 ] 2 < then, writing i\tn = U<p„, we may choose a basis 

{q>„}7=i of L2 ( — °°; dx) and, defining the unitary operator W by W<p„ = <pn, 
we write \j/„ = W{j/n, and finally we define K(x,y) — ^Xn^/n(x)^n(y). Since U is not 

n 
unitary, but only the partial isometry from [Range (T*T)112] to [Range (J1)], we 
cannot conclude that the family {i¡/„} (and the same applies to {i¡/n}) is orthonormal. 
All we know is ||t/J = ||i/J = \\U<pn\\ S1 . Nevertheless ¡¡4>n(x)q>n(y)\j/m(x)^m(y)dxdy= 
= which is to saythatthe functions Fn(x, y) = fn(x)ip„(y) are ortho-
gonal and of norm S i on the plane. Hence the series defining K is Lz convergent 
on the plane and ^\K(x,y)\2dxdy = (K, K) = {2KFn, 2t-mFm) = 2\k\2\\Fn\\2^ 
= 2\K\2- Hence K is a Hilbert—Schmidt kernel, and the operator B it determines 
has the property Bq>n — ln}j/n That is, B=W{UA}W~1. (This argument, proving 
that UA has a representation on L2( — °°)asa Hilbert—Schmidt integral-oper-
ator, is slightly different from the usual argument (see [4, p. 35]) because of the 
perturbation X, so that U is not necessarily isometric on the range of A = (T* T)112 +mX 
Note that the argument shows that such a representation is achieved'no matter what 
basis { f n } is chosen in L2{-<=>, «=).) Hence WTW~l = B-WUXW~l. Now UX 
is of Hilbert^ Schmidt type since X is (see [5, p. 157]), so that, as pointed out above, 
WUXW^1 is an integral operator with a Hilbert—Schmidt kernel L. Hence WTW~l 

is an integral operator of Hilbert—Schmidt type with (nonsymmetric) kernel K—L. 
If 2 \ K \ 2 = oai and we know only that {A„}r=i has 0 as a limit point, then we 

employ the following rearrangement of {/.„} (in which we are- following VON NEU-
M A N N exactly). Let |2mJS— (v = l, 2, ...), and let {A„v} be "the remaining members 
of {/l„}r=i. Set /(v, k) = m2«-\2V-\) for fc = 2, 3, ..., and /(v, l) = nv. Then 

|A,(>|t)| S2*~2(2v—1)~ 2 ^ " ^ = •••)>sothat.2'^/(v./i)l2< 0 0forallv = l, 2, .... 
Renumber the system so that v=0 , ±1 , ±2 , ... . Define U<p„ = i//„. Choose a ba-
sis of uniformly bounded functions {<p„}r=i of L2(0, 1; dx) and define a unitary 
operator Wx by W1fn = <pn, and write ij/„ = W1il/n. Now define, for v = 0, ± 1 , 
± 2 , . . . , 

'yn(t-v), v S ( S v + 1 
1 0 , otherwise. 
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Then {<!>„,„} is a complete uniformly bounded orthonormal system in L2( — °°;dx) 
and the map V: L2(0, 1; dx) — L2(— <*>, °°;dx) defined as 

V<Pl(v,k)=®v,k 

is unitary. Let H/
v k = Fi¡Jt(V,k), and define kernels Kv by the relation 

(2) = 

Now Kv is square integrable on the strip ( v i j i S v + l, — oo<x<oo) because for 
each fixed v, ^ 00 ( s e e above), so Kv defines a Hilbert—Schmidt integral 
operator Tv from L2 (v, v + 1; dx) to L2 (— °°; dx), with the property that 
T v® v ,k=l l ( v ,k )v v i k . If we now write 

(3) K{x,'y) = Z.Kv(x,y) 
v 

as we may since the summands are supported on disjoint strips, we have a kernel 
defined on the whole plane which defines an operator S such that S1«!),̂  =A((Vik)lFv>fc 
for all v, k. S is densely defined, since' @ s contains the linear span of the basis 
{^v.J =?{'/H/

1? ,,(ViJt)}, UA is defined on the linear span of the basis {<p((v,it)} = 
— {<Pn}> a n d we have clearly 

VW^UA^vwo-^S 

on these dense sets. Now \K(x, y)\2 = £ ]KvCv, y)\2, |A?v(x, y)\2 dx — 
V J 

= 2^/ (v , fc ) l 2 l^v > *( j ' ) l 2 - < ° a f o r a - e - y> a n d f o r e a c h f i x e d y> 2 \Kv(x,y)\2dx--= 
k v 

=• I IKvo(x,y)\2dx where V 0 S ^ S V 0 + 1 , SO that j V ( X , y)\2dx-<oo for a. e. y. 
Thus UA has a representation on L2(— °=>; dx) as a semi-Carleman operator. 

To summarize; we have T= U[(T*T)ll2 + X] - UX = UA-UX, where X 
is self-adjoint of Hilbert—Schmidt type, and UA is representable on L2( — °°, dx) 
as the semi-Carleman operator 5 above. Now, just as before, UX goes over by the 
same representation on L2(—.°°, oo;dx) (i. e., VW{) into an integral operator of 
Hilbert—Schmidt type. Hence, upon adding the kernels, we arrive at the following 

Theorem 1. If T is closed, ®T is dense, and 0 is a limit point of the spectrum 
of T, then T may be represented on L2( — ; dx) by a semi-Carleman integral 
operator. 

We have' noted above that operators of Hilbert—Schmidt type have kernels 
no matter what representation on L2 is chosen, and this is true even if l2 is chosen 
as the representation space (here the kernel is the matrix). We do not assert this 
invariance of representation for the more general operators considered in Theo-
rem 1. Indeed, every bounded operator A has a representation on l2 as a semi-
Carleman operator, where the kernel is the matrix. For, denoting by {x„},T=-~ 
the usual basis in l2, Thas the matrix representation ((Tx„, xmj), and 2\(Txn,xm)\2 = 

n 
= Z\(xn, T*xm)\2 = | | r*x m | | 2 ^| |r | | 2 . But it is not true that every bounded oper-* n 
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ator has a semi-Carleman representation on L2• The identity operator may be 
offered as a counterexample (as may be verified just as for Hilbert—Schmidt oper-
ators, but we shall not do it that way since the same conclusion will follow from 
our Theorem 2 below). Thus it is essential that we employ a non-atomic measure 
space in Theorem 1. 

3. Suppose we are given a,measurable function K(x, y) defined on the whole 
plane and satisfying the semi-Carleman condition (1). Let us write (with M as 
defined in (1)) 

® = {/€ L 2 d x ) | jM{x) |/(x)| dx< 

Let a„ = {x\M(x)^n} (n = 1 ,2 , . . . ) and let a c u , be an arbitrary measurable 
set of finite positive measure. Then the characteristic function of a is in Sup-
pose j gjdx= 0 for all / £ © . Then ^gdx = 0, so that g ( x ) = 0 for a. e. x € < v But 

a 
the complement of U„er„ has measure 0, whence g ( x ) = 0 for a. e. x. Hence @ is 
dense in Z,2( — « > . ; dx). (This is essentially the argument used in [2, p. 398] for 
Carleman operators, and we have included it for the sake of completeness.) I f / t ® 
then 

J | ¡ K { x , y)f(y) dy\dx^\\ dydz | f ( y ) | | / ( z ) | j dx \K(x, y) | | K(x, z) | S 

^\\dydz | f ( y ) | | /(z) I ( j V ( . v , y) |2 dx)"'2 ( | \K(x, z) |2 dxf'2 = ' 

=¡¡dydz\f{y)\j/(z)|M(y)M(z) = | J l/(u) | M{u)du^ < 
Hence the operator. T given by (Tf)(x) = \K(x, y)f(y)dy for / € ® is a densely 
defined semi-Carleman operator. Let o„ = 1, M(x)Sn}. By (1) the measure 
of U„<Tn is 1, so there exists n0 such that 0<measure of <r„0Sl. Then 

J ¡\K(x,y)\2dxdy = ¡dy\\K(x,y)\2dx= ¡M{yYdy^nl, 
"no °na — "no 

so that we may regard K as an element of 'L2{{— °o)x<7„0) and K*{x,y)=K(y, x) 
as an element of L2(o„0 X ( — « ) ) . As such, K&nA Â * define operators S: L2(a„0) — 
~^L2{— OO, and S* : L2(— L2(cr„0), respectively, of Hilbert—Schmidt type, 
with N(S) S «o, N(S*) S «o, where N denotes the Hilbert—Schmidt norm. Let 
{9>„}r=i be a basis in L2(crno). Then 

. {Af((S*S)1/2)}2 = 2ll(^S)1 /2«p„|U2
no = 

n 

= 2 (S*S<p. q>n).n = 2 \\Scpn\\l^=N(Sf ^nl, 
n . 

where the subscripts indicate the norm employed. Hence (5* 5)1 / 2: L2(a„0) — L2(<T„0) 
is a self-adjoinf Hilbert—Schmidt operator. Since Hilbert—Schmidt operators are 
completely continuous (see [4, p. 32]) we know there exists a set {il/n}n=i of unit 
vectors jn L2(G„0), which are orthogonal (because (S* S)1'2 is self-adjoint) such 
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that (5*Sy i 2 i l /„ —0 as n - c o . Let U\ [Range (S*S)1'2] - [Range S] be the partial 
isometry in the polar decomposition of S: S = U(S*S)112. Then ||<StyrJ_(«,«,) = 
= so Sip„ —0 in L2(-00,00). Define 
functions 6n by 

Then 6„ is an orthonormal system in L2(—°°, We have for all n, for 

so T0„ = S\l/„—0 in L2(— 00, Since 6„ converges weakly to 0, so we have 
proved ' 

T h e o r e m 2. An integral operator of semi-Carleman type has 0 as a limit point 
of its spectrum (which is thereby, in particular, non-empty). 

From this it follows, as we mentioned earlier, that the identity operator cannot 
be represented as a semi-Carleman operator. 

4. To complete the circle and achieve a characterization of operators of this 
type we have to show that semi-Carleman operators are closed. Let T be a semi-
Carleman operator with kernel K acting on the domain © defined above, and write 

¿' = { / | f K(x, y)f(y)dy dL2(— 0°, We have seen above that One may 
verify that T* is determined by the kernel K*(x,y)—K(y, x) acting on <%* = 
= | / | \ K*(x, yjf(y)dy£L2} and that T** is determined "by K acting on <? (the 
steps in the verification are the same, mutatis mutandis, as in [2, Theorem 10. 1, 
p. 398] and we omit them). Hence Thas the closed extension T**, and if we adopt 
8 for the domain of K at the outset .then the semi-Carleman operator it deter-
mines is already closed. With this understanding, we have now shown that an 
operator T is representable on L2(— as a semi-Carleman operator if and 
only if T is closed, densely defined, and has 0 as a limit point of its spectrum. 

(Any partial isometry or projection with infinite-dimensional null space satisfies 
the above criterion, and it is easy to see what the representation is for such operators. 
For a partial, isometry U, we have formulae (2) and (3) above, where A,(v k ) = 0 , 
k =2, 3,'..., A{(Vj =.1, and 1 > ^v, 1 correspond to bases for the initial arid final 
spaces of U. Thus K(x,y) = 2 ^v, i()')(I),,iW, with the vth summand supported 

(and square integrable) on ( v S ^ S v + l, - o ° < x < » ) , v = 0, ± 1 , ± 2 , .... For 
a projection P the representation is even simpler because then 4/

Vj, = <t>v , , so P 
is represented as the direct sum (on © L 2 ( v — x — v + 1)) °f operators of ..rank 1). 

JM(x)\0n(x)\dx = \M(X) №„(*)I dx^n0 J №„(*)I dx^nM, 

•Further, we have. 

Ten{x)=¡K(x,y)dn(y)dy = ¡K(x,y)iljn(y)dy = {S^nKx), 
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