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Matrices of normal extensions of subnormal operators 
By. T. ANDO in Bloomington (Indiana, U. S. A.) 

1. A (bounded) operator I o n a Hilbert space § is called subnormal in case 
there exists a normal operator N, called a normal extension of T, acting on a Hilbert 
space it containing § as a subspace such that 

(1) ' N / = 7 / (/€&)• 
A characterization of subnormality in terms of T has been obtained by HALMOS 
[2] and BRAM [1] ; T is subnormal if and only if 

(2) 2 (T'fj> TJft) =0 

for every finite sequence (/•) in ,£). Their construction of the space It, however, 
depends heavily on T. It seems natural to raise a problem whether can be taken 
to be a fixed Hilbert space, independent of T as in SCHAFFER'S construction [4] for 
a unitary dilation of a contraction, and whether N can be constructed on along 
a definite line from T. In this paper this problem will be settled (Theorem 1), producing 
another characterization of subnormality (Theorem 2). At the same time a discussion 
concerning a commutative family of a subnormal operators will be made (Theorem 3); 

Introduction of some notations will simplify later discussions. For any 
positive integer n, .£)" stands for the orthogonal sum of n copies of £), indexed 
by 0, 1, 2, . . . ,« — 1. In other words,, the elements of £)" are the «-sequences <p = 

n — 1 
= {/o } of elements / € with norm \\<p\\2 = 2 ll/ll2- is similarly 

i = 0 
defined. In case n>m, £)m is embedded into by identifying { / 0 , / i , • ••,/„,- J€<£)'" 
with { f 0 , f i , . . . , / m _i , 0, . . . , 0 , 0 } ¡ Q is always.identified with i)1. An operator 
M on (1 ^ n ̂  oo) can be associated with a square «-rowed matrix each of whose 
entries is an operator on ,<o. More precisely, if M(i,j) stands for the (/, y)-th entry of 
M , { G J ^ M L / J means that 

gi = "2 M(hj)fj (0 —' — ! ) • 
i=0 

The requirement that § is invariant under M and the restriction of M to § coincides 
with T can be expressed by the requirement that M(0,0) = T and M(i, 0 ) = 0 for 
all 0. Finally we shall formulate a simple Lemma. 

Lemma 1. If T is subnormal and V is an operator from ¡Q into another Hilbert 
space 9Ji such that V*VT=T, then VTV* is subnormal on sJJc. 
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In fact, since (VTV*)k = VTkV* (A: = 1,2, ...) by assumption, for every finite 
sequence (<p,) in 2)i 

2 ((VTv*ycpj, (VTV*) j<pi) = 2 (VT'V*<pj, I T i v * % ) = 
'J • i,j 

= 2 (v* VT' J7* qj,., r k* (Pl) = 2 (T' Y* (PJ, Tj v* yd s o 
><j i,j 

(the last inequality follows from (2)), hence the criterion (2) yields the subnormality 
of VTV*. 

2. First of all, if N is a normal extension of T, f r o m ( l ) and the normality 
of N it follows that 

(3) N N * / = N* N / = N* Tf, 

(4) (N *f,g) = (T*f,g) (/,*€$), ' 

•(5) ' . . • • * ||7/|| = |]N/||=||N*/II ^ || T*f\\, 

and moreover on account of BRAM'S theorem [1] the norm | |N| | may be assumed 
to be equal to || r| | . 

(5) is equivalent to the positive definiteness of T*T-7T*.' Let S = (T*T-7T*)±, 
then 

( 6 ) l l ( N * - r * ) / | | = U S / I ( / 6 @ , 

because by (4) and (5) 

• | |(N* — T*)f\\2 = | |N* / | | 2 — 2 RE(N*/ , T*f) +1|T*f\\2 = | | 7 / | | 2 - \ \ T * f p = | |S / | | . 

From this it follows that Sf= 0 is equivalent to N*f=T*f, and the latter, in turn, 
is equivalent to the fact that N*/ i s contained in !Q. Now each element (p in § + N * § 
can be written in the form 

9 =f+(N*-T*)g with f,g£§ 

. and this decomposition is unique, because of the orthogonality of with 
(N* - by (4), consequently 

( 7 ) M l 2 = l l / l l 2 + | | ( N * - r * ) g | | 2 . 

Combining (7) with (6), it follows that the operator V which assigns {/, Sg} to (p 
maps isometrically ¿Q + N*^ into iQ2, and can be extended isometrically on the 
"closure 8 of § + N*ip. On the other hand, 8 is invariant under N, because by (2) 

N ( § 4- N*§) c + N*T§ c £> + N*,<p. 

Therefore the restriction M of the normal operator N to the invariant subspace 
8 is subnormal with norm equal to ||r|| by the definition of subnormality. Since 
clearly V*VM = M, Lemma 1 yields the subnormality of T = VMV* and the norm 
||T|| is equal to | |r| | . 

In order to obtain the matrix of T on it suffices to calculate T {/ , Sg} 
( / , because V*{0, h} = 0 whenever S*h(= Sh)= 0 and the orthogonal comple-
ment of the null space of S coincides with the closure of the range of S. To this 
effect, consider the densely defined operator S - 1 , called the partial inverse of S, 
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and this, in turn, means that the matrix in question is given by ( A 

such that S~1S = P and S~l(I—P) = 0 where P denotes the orthogonal projection 
from § onto the closure of the range of S. From (3) and the definition of V it follows 
that 

T{/ , Sg} = \N(f+(N* = 
= V(Tf+(T*T-TT*)g + Q$*-T*)Tg) = {Tf+S2g, STg} 

T s 
0 STS-

fortiori STS~l is bounded. The bounded extension of STS_1 on § will be denoted 
by the same symbol. Moreover, since N*/6 § implies N* Tf = NN*/£ § by (3), it 
follows that Sf=0 implies STf= 0, i.e. ST = STP= STS~l-S. 

Summing up, if T is subnormal, then T*T—TT* is positive definite, STS-1 

(T S \ 
is bounded and ST'= STS~X-S, and the operator I ^ ^TS-11 ° n ^ su'3110rrna^ 

with norm equal to |]T'll. This can be further generalized as follows: 

Lemma 2. Let T be subnormal and let Rn, S„ and T„ be defined by the following 
recurrent formulas: 

Ro= So=0, T0=T, 

Rn = +T„-iT„-i — Tn-iT^-i, S„ = RZ, Tn = SnT„-iSn
l (n = 1 ,2 , . . . ) 

Then, in each step, Rn is positive definite, T„ is bounded and 5„T'n_1 = T„Sn, and the 
operator N„ on with the entries Nn(i,i) — Ti ( 0 s i § « - l ) , Nn(i, i+l) = Si+l 
(OSi^n-2), N~(i,j)= 0 (for all other indices), is subnormal with norm equal to 

Proof by induct ion. The assertions for n = 1 have been just proved above. 
Suppose that the assertions on S t and Tt ( O s i ^ n — 1) arid on N„ have been 
proved. On account of the arguments preceding this lemma, N^Nn — N„Ni is positive 
definite, WN„W - 1 is bounded, where W = (NjNn - N„N*)* and W"1 is its partial 

/N„ W \ 
inverse, and WN„ = WN„W"'W and the operator , ) on the orthogonal 

\ U WNnW J 
sum'§n©§" is subnormal with norm equal to |[N„|| =||7 ,||. Putting N £ N * = A and 
N„N*=B, simple calculations show that 

A(i,i-l)=SiTi_l ( 1 S / S « - 1 ) , 
A{i,i) =S?+T?Ti 
A(/', / + 1) = T*Si+i (0SiSn-2), 
A(i.j) = 0 (for all other indices), 

and similarly 
B(i,i-\). =TiSi (l^i^n-l), 
B{i, i) = T.Tt + Sf

2
+ j (0 / ̂  n - 2), 

B(i,i+l) =Si+iT*+i (Osi^n-2), 
i i ( n - l , n - l ) = r B - _ i J ? _ i 

B(i,j) = 0 (for all other indices). 
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Since, by assumption, 
.. Sft-^TiSt ( l : 5 i s # f - l ) , 

Si+TtT,=T,T? + S}+1 (O^/^h-2), 

all the entries of NjN„ — N„N? are equal to 0 except the (n — l,n — l)th, which is 
equal to S2_l + T^1Tn_1-T„_1T*^1 = Rn by definition. Hence the positive 
definiteness of NiN„—N„NJ implies the positive definiteness of R„. Similarly all 
the entries of WN„W_1 are equal to 0 except the (n — l,n — 1) th which is equal 
to S X - i ^ r 1 = T„ by definition and is bounded. Moreover WN„ = WN„W-'.W 
implies S„Tn-i = TnSn. Finally considering the operator V, with norm one, from 

into defined by \ { { f 0 , f i t {g0,g . . . ' ,gnJ1}} = {f0,A, • 
• ••'fn-l > Sn- l}> 

/N„ W \ _ / N „ W \ /N„. W 

^ V o w ^ w - V - ^ W N „ W - V a n d N " + 1 _ v V 0 W N . W " 1 , v * 

hence by Lemma 1 N„+ 1 is also subnormal with norm equal to ||Nn+1|| = \\T\\. Thus 
induction is complete: 

Inspecting the above proof, from the definitions of R„, S„ and T„, and of N„ 
and from the relations S„Tn-1 = TnSn (n = 1,2, ...), it follows 

(8) • ||Ni+1«p|| = ||Nn9>|| ' (<?€§") 

where, on the right side, <p is considered as an element of + 

Now the matrix representation of a normal extension of T is near at hand, 
using Rn, S„ and Tn in Lemma 2. 

Theorem 1. If T is subnormal, the operator N on with the entries N(i, i) = Tt 
0), N(i, i +1) = Si+1 (/SO), N(i,j)= 0 (for all other indices), is a normal extension 

with norm equal to || T"||. 

In fact, in view of Lemma 2, all P„NP„ are bounded with norm equal to || .r|[ 
« =0 , 1, 2, ..., where each P„ is the orthogonal projection from onto con-
sequently, as readily seen, N itself is bounded with norm equal to || !T||, and is an 
extension of T. Moreover from (8) it follows that 

I I P ^ ^ P ^ l i H I P ^ P ^ I I ; (« = 0 , 1 , 2 , ...> 
hence 

" ||N<p|| =l im ||P„NP„93[| =lim ||Pn+1N*P„(p|| = ||N*<p||. 
n-foo n-»eo 

This shows the normality of N. 
Lemma 2 also produces a characterization of subnormality in terms of Rn, Sn, 

and Tn in it. 

Theorem 2. I f , for an operator T, each R„ is positive definite, each T„ is bounded 
and S„Tn_1—T„S„ (n = 0, 1,2, ...), then T is subnormal. 

In fact, the operator N on ip" in Theorem 1 can be defined on the linear sum 
9JJ of all §"'s, and is an extension of T. Moreover by (8) 

IIN<pii = HN*<pii fae'aft). 
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Since DJc is dense in it follows that N*Nq> = NN* cp (<p € in particular N* jN'f= 
( / € § ) (i',7 = 0, 1,2, ...). Therefore, for every finite sequence (/¡) in 

2 (TJfj, T'fd = 2 ( N * J ' N ' f j J i ) - 2 ( N * { / } , N * ' / , ) = I I 2 N * " / J 2 S O , i,j i,j KJ к 
and the criterion (2) can be applied. 

3. ITO [3] answered to the question when a commutative family of subnormal-! 
operators admits simultaneous commutative normal extensions. At this moment,, 
it seems, however, difficult for us to construct matrices for these simultaneous 
commutative extensions along the line as that developed in § 2. Here we shall confine-
ourselves to a special case, namely, a doubly commutative family of subnormal: 
operators. 

Let (Ta)aea be a doubly commutative family of subnormal operators, that is, 
each Ta commutes with both Ty and T* whenever co^y. Let A denote the space 
of all generalized sequences {/ш} such that all im are non-negative integers and 
2 ia < в denotes the element of A whose terms are all equal to 0. For any to 6 ii: 

men 
and Г 6 A, fflr is the co-th term of Г and F + co stands for the element A such that 
сол = w r + l and ул = 7г for all у ^ со. ¡£>л is the orthogonal sum of copies of 
indexed by all the elements in A; the elements of ¡£>л are the generalized sequences 
cp = { f T \ whose terms are in ^ with norm ||<p||2 = 2 ll/rll2- § is embedded in ip4 by 

гед 
identifying / € § with { / r } where fe=f and / г = 0 (Г^0) . In Theorem 3 below, 
S(a „ and Ta n correspond to S„ and T„ respectively in Lemma 2, starting from Тю 
instead of T. 

Theorem 3. A doubly commutative family of subnormal operators (Та)юеа. 
has simultaneous commutative normal extensions (N0 ))^n on with the entries: 
AUF, Г) = Гю<Шг, Na(T, Г + ш) = S ^ + i , ЛГШ(Г, Л) = 0 for all other indices. 

Proof . Just as in Theorem 1, each Nm is a normal extension of Tm (ш 
For сот^у, putting N(0Ny = A and N.,NCJ = B, simple calculations based on the defi-
nitions of Nffl's show that 

A ( T , Г ) ^Ю, TOFL'Y, УГ' ^ ( F , Г ) 

Л(Г, Г + со) = 5Ш;(иг+1Гу УГ, Я(Г,Г + ю) = Ty!yr-Sa>ar+1, 

A(r,r + y) = Ta!U>rSyiyr+1, В(Г,Г + у) = Syy[.+ 1Taoir, 

А(Г, Г - f c o + y) = S ^ j . + i S ^ + i , В(Г, Г + ш + у) = > y r + 1 S' m i £ I ) r + 1 , 

and all other entries of A and В are equal to 0. Therefore the commutativity of 
N0J with Ny will follows from the commutativity of the family {Sto>i, Tm^}T=0 with 
the family {Sy>i, Ty,;}Г=о • In order to prove the latter commutativity, we shall 
show, by induction,'that Ta = TU1 0 is doubly commutative with all Syn and Ty „. 
n = 0, 1, 2, ... The assertion for n = 0 follows directly from the assumption. Suppose-
that the assertion for n is proved, then Tm commutes with S,h„ + : because, as in [2], 
the latter is uniformly approximated by polynomials of S2

n+T*nTy:n — Ty nT*n, 
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which commutes with TM. This, in turn, implies the commutativity of TA with 1, 
hence with TYN+L. Similarly TM commutes with T*„+L. In quite a similar way it 

:is proved that the family { S ^ , Tm;i}T=6 commutes with the family {S.A;, r y i}r=o-
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