Matrices of normal extensions of subnormal operators

By. T. ANDÔ in Bloomington (Indiana, U. S. A.)

1. A (bounded) operator T on a Hilbert space \mathfrak{F} is called subnormal in case there exists a normal operator \mathbf{N}, called a normal extension of T, acting on a Hilbert space \mathfrak{K} containing \mathfrak{G} as a subspace such that

$$
\begin{equation*}
\mathbf{N} f=T f \quad(f \in \mathfrak{G}): \tag{1}
\end{equation*}
$$

A characterization of subnormality in terms of T has been obtained by HalmOs [2] and Bram [1]; T is subnormal if and only if

$$
\begin{equation*}
\sum_{i, j}\left(T^{i} f_{j}, T^{j} f_{i}\right) \geqq 0 \tag{2}
\end{equation*}
$$

for every finite sequence $\left(f_{i}\right)$ in \mathfrak{K}. Their construction of the space \mathfrak{K}, however, depends heavily on T. It seems natural to raise a problem whether \mathscr{R} can be taken to be a fixed Hilbert space, independent of T as in SCHÄFFER's construction [4] for a unitary dilation of a contraction, and whether \mathbf{N} can be constructed on \mathscr{K} along a definite line from T. In this paper this problem will be settled (Theorem 1), producing another characterization of subnormality (Theorem 2). At the same time a discussion concerning a commutative family of a subnormal operators will be made (Theorem 3).

Introduction of some notations will simplify later discussions. For any positive integer n, \mathfrak{S}^{n} stands for the orthogonal sum of n copies of \mathfrak{F}, indexed by $0,1,2, \ldots, n-1$. In other words, the elements of \mathfrak{F}^{n} are the n-sequences $\varphi=$ $=\left\{f_{0}, f_{1}, \ldots, f_{n-1}\right\}$ of elements $f_{i} \in \mathfrak{F}$ with norm $\|\varphi\|^{2}=\sum_{i=0}^{n-1}\left\|f_{i}\right\|^{2}$. \mathfrak{S}^{∞} is similarly defined. In case $n>m, \mathfrak{S}_{2}^{m}$ is embedded into \mathfrak{S}^{n} by identifying $\left\{f_{0}, f_{1}, \ldots, f_{m-1}\right\} \in \mathfrak{S}^{m}$ with $\left\{f_{0}, f_{1}, \ldots, f_{m-1}, 0, \ldots, 0,0\right\} \in \mathfrak{S}^{n}$. \mathfrak{F} is always identified with \mathfrak{S}^{1}. An operator \mathbf{M} on $\mathfrak{G}^{n}(1 \leqq n \leqq \infty)$ can be associated with a square n-rowed matrix each of whose entries is an operator on \mathfrak{G}. More precisely, if $M(i, j)$ stands for the (i, j)-th entry of $\mathbf{M},\left\{g_{i}\right\}=\mathbf{M}\left\{f_{i}\right\}$ means that

$$
g_{i}=\sum_{j=0}^{n-1} M(i, j) f_{j} \quad(0 \leqq i \leqq n-1)
$$

The requirement that \mathfrak{E} is invariant under \mathbf{M} and the restriction of \mathbf{M} to \mathfrak{S} coincides with T can be expressed by the requirement that $M(0,0)=T$ and $M(i, 0)=0$ for all $i>0$. Finally we shall formulate a simple Lemma.

Lemma 1. If T is subnormal and V is an operator from 5 into another Hilbert space \mathfrak{M} such that $V^{*} V T=T$, then $V T V^{*}$ is subnormal on \mathfrak{M}.

In fact, since $\left(V T V^{*}\right)^{k}=V T^{k} \dot{V}^{*}(k=1,2, \ldots)$ by assumption, for every finite sequence $\left(\varphi_{i}\right)$ in \mathfrak{M}

$$
\begin{aligned}
& \sum_{i, j}\left(\left(V T V^{*}\right)^{i} \varphi_{j},\left(V T V^{*}\right)^{j} \varphi_{i}\right)=\sum_{i, j}\left(V T^{i} V^{*} \varphi_{j}, V T^{j} V^{*} \varphi_{i}\right)= \\
& =\sum_{i, j}\left(V^{*} V T^{i} V^{*} \varphi_{j}, T^{j} V^{*} \varphi_{i}\right)=\sum_{i, j}\left(T^{i} V^{*} \varphi_{j}, T^{j} V^{*} \varphi_{i}\right) \geqq 0
\end{aligned}
$$

(the last inequality follows from (2)), hence the criterion (2) yields the subnormality of $V T V^{*}$.
2. First of all, if \mathbf{N} is a normal extension of T, from (1) and the normality of \mathbf{N} it follows that

$$
\begin{align*}
& \mathbf{N}^{*}{ }^{*} f=\mathbf{N}^{*} \mathbf{N} f=\mathbf{N}^{*} T f, \tag{3}\\
& \left(\mathbf{N}^{*} f, g\right)=\left(T^{*} f, g\right) \quad(f, g \in \mathfrak{G}), \tag{4}\\
& \|T f\|=\|\mathbf{N} f\|=\left\|\mathbf{N}^{*} f\right\| \geqq\left\|T^{*} f\right\|, \tag{5}
\end{align*}
$$

and moreover on account of Bram's theorem [1] the norm \|N\| may be assumed to be equal to $\|T\|$.
(5) is equivalent to the positive definiteness of $T^{*} T-T T^{*}$. Let $S=\left(T^{*} T-T T^{*}\right)^{\frac{1}{2}}$, then

$$
\begin{equation*}
\left\|\left(\mathbf{N}^{*}-T^{*}\right) f\right\|=\|S f\|, \quad(f \in \mathfrak{F}) \tag{6}
\end{equation*}
$$

becaúse by (4) and (5)

$$
\left\|\left(\mathbf{N}^{*}-T^{*}\right) f\right\|^{2} \doteq\left\|\mathbf{N}^{*} f\right\|^{2}-2 \operatorname{Re}\left(\mathbf{N}^{*} f, T^{*} f\right)+\left\|T^{*} f\right\|^{2}=\|T f\|^{2}-\left\|T^{*} f\right\|^{2}=\|S f\|
$$

From this it follows that $S f=0$ is equivalent to $\mathbf{N}^{*} f=T^{*} f$, and the latter, in turn, is equivalent to the fact that $\mathbf{N}^{*} f$ is contained in $\mathfrak{5}$. Now each element p in $\mathfrak{g}+\mathbf{N}^{*} \mathfrak{5}$ can be written in the form

$$
\varphi=f+\left(\mathbf{N}^{*}-T^{*}\right) g \quad \text { with } \quad f, g \in \mathscr{F}
$$

and this decomposition is unique, because of the orthogonality of \mathfrak{F} with ($\left.\mathbf{N}^{*}-T^{*}\right) \underline{G}$ by (4), consequently

$$
\begin{equation*}
\|\varphi\|^{2}=\|f\|^{2}+\left\|\left(\mathbf{N}^{*}-T^{*}\right) g\right\|^{2} \tag{7}
\end{equation*}
$$

Combining (7) with (6), it follows that the operator \mathbf{V} which assigns $\{f, S g\}$ to φ maps isometrically $\mathfrak{S}+\mathbf{N}^{*} \mathfrak{G}$ into \mathfrak{S}^{2}, and can be extended isometrically on the closure \mathfrak{Z} of $\mathfrak{F}+\mathbf{N} * \mathfrak{S}$. On the other hand, \mathfrak{R} is invariant under \mathbf{N}, because by (2)

$$
\mathbf{N}\left(\mathfrak{F}+\mathbf{N}^{*} \mathfrak{G}\right) \subset T \mathfrak{G}+\mathbf{N}^{*} T \mathfrak{h} \subset \mathfrak{H}+\mathbf{N}^{*} \mathfrak{G} .
$$

Therefore the restriction \mathbf{M} of the normal operator \mathbf{N} to the invariant subspace \mathfrak{Z} is subnormal with norm equal to $\|T\|$ by the definition of subnormality. Since clearly $\mathbf{V}^{*} \mathbf{V M}=\mathbf{M}$, Lemma 1 yields the subnormality of $\mathbf{T}=\mathbf{V} \mathbf{M V} \mathbf{V}^{*}$ and the norm. $\|\mathbf{T}\|$ is equal to $\|T\|$.

In order to obtain the matrix of \mathbf{T} on \mathfrak{S}^{2} it suffices to calculate $\mathbf{T}\{f, S g\}$ ($f, g \in \mathfrak{F}$), because $\mathbf{V}^{*}\{0, h\}=0$ whenever $S^{*} h(=S h)=0$ and the orthogonal complement of the null space of S coincides with the closure of the range of S. To this effect, consider the densely defined operator S^{-1}, called the partial inverse of S,
such that $S^{-1} S=P$ and $S^{-1}(I-P)=0$ where P denotes the orthogonal projection from \mathscr{F}_{2} onto the closure of the range of S. From (3) and the definition of \mathbf{V} it follows that

$$
\begin{gathered}
\mathbf{T}\{f, S g\}=\mathbf{V N}\left(f+\left(N^{*}-T^{*}\right) g\right)= \\
=\mathbf{V}\left(T f+\left(T^{*} T-T T^{*}\right) g+\left(\mathbf{N}^{*}-T^{*}\right) T g\right)=\left\{T f+S^{2} g, S T g\right\}
\end{gathered}
$$

and this, in turn, means that the matrix in question is given by $\left(\begin{array}{cc}T & S \\ 0 & S T S^{-1}\end{array}\right)$, a fortiori $S T S^{-1}$ is bounded. The bounded extension of $S T S^{-1}$ on \mathfrak{S} will be denoted by the same symbol. Moreover, since $\mathbf{N}^{*} f \in \mathscr{S}$ implies $\mathbf{N}^{*} T f=\mathbf{N N}^{*} f \in \mathscr{S}$ by (3), it follows that $S f=0$ implies $S T f=0$, i. e. $S T=S T P=S T S^{-1} \cdot S$.

Summing up, if T is subnormal, then $T^{*} T-T T^{*}$ is positive definite, $S T S^{-1}$ is bounded and $S T=S T S^{-1} \cdot S$, and the operator $\left(\begin{array}{ll}T & S \\ 0 & S T S^{-1}\end{array}\right)$ on \mathfrak{S}_{2}^{2} is subnormal with norm equal to $\|T\|$. This can be further generalized as follows:

Lemma 2. Let T be subnormal and let R_{n}, S_{n} and T_{n} be defined by the following recurrent formulas:

$$
R_{0}=S_{0}=0, T_{0}=T,
$$

$$
R_{n}=S_{n-1}^{2}+T_{n-1}^{*} T_{n-1}-T_{n-1} T_{n-1}^{*}, S_{n}=R_{n}^{\frac{1}{2}}, T_{n}=S_{n} T_{n-1} S_{n}^{-1} \quad(n=1,2, \ldots)
$$

Then, in each step, R_{n} is positive definite, T_{n} is bounded and $S_{n} T_{n-1}=T_{n} S_{n}$, and the operator \mathbf{N}_{n} on \mathfrak{S}^{n} with the entries $N_{n}(i, i)=T_{i} \quad(0 \leqq i \leqq n-1), N_{n}(i, i+1)=S_{i+1}$ $(0 \leqq i \leqq n-2), N_{n}(i, j)=0$ (for all other indices), is subnormal with norm equal to $\|T\|$.

Proof by induction. The assertions for $n=1$ have been just proved above. Suppose that the assertions on R_{i}, S_{i} and $T_{i}(0 \leqq i \leqq n-1)$ and on N_{n} have been proved. On account of the arguments preceding this lemma, $\mathbf{N}_{n}^{*} \mathbf{N}_{n}-\mathbf{N}_{n} \mathbf{N}_{n}^{*}$ is positive definite, $\mathbf{W N}_{n} \mathbf{W}^{-1}$ is bounded, where $\mathbf{W}=\left(\mathbf{N}_{n}^{*} \mathbf{N}_{n}-\mathbf{N}_{n} \mathbf{N}_{n}^{*}\right)^{\frac{1}{2}}$ and \mathbf{W}^{-1} is its partial inverse, and $\mathbf{W N}_{n}=\mathbf{W N}_{n} \mathbf{W}^{-1} \mathbf{W}$ and the operator $\left(\begin{array}{cc}\mathbf{N}_{n} & \mathbf{W} \\ 0 & \mathbf{W} \mathbf{N}_{n} \mathbf{W}^{-1}\end{array}\right)$ on the orthogonal sum $\mathfrak{S}^{n} \oplus \mathfrak{S}^{n}$ is subnormal with norm equal to $\left\|\mathbf{N}_{n}\right\|=\|T\|$. Putting $\mathbf{N}_{n}^{*} \mathbf{N}_{n}^{*}=\mathbf{A}$ and $\mathbf{N}_{n} \mathbf{N}_{n}^{*}=\mathbf{B}$, simple calculations show that

$$
\begin{array}{lll}
A(i, i-1)=S_{i} T_{i-1} & (1 \leqq i \leqq n-1), \\
A(i, i) & =S_{i}^{2}+T_{i}^{*} T_{i} & \\
A(0 \leqq i \leqq n-1), \\
A(i, i+1)=T_{i}^{*} S_{i+1} & & (0 \leqq i \leqq n-2),
\end{array}
$$

$$
A(i, j)=0
$$

and similarly

$$
\begin{array}{ll}
B(i, i-1) & =T_{i} S_{i} \\
B(i, i) & =T_{i} T_{i}^{*}+S_{i+}^{2} \\
B(i, i+1) & =S_{i+1} T_{i+1}^{*} \\
B(n-1, n-1) & \doteq T_{n-1} T_{n-1}^{*}
\end{array}
$$

$$
B(i, i) \quad=T_{i} T_{i}^{*}+S_{i+1}^{2} \quad \ddots(0 \leqq i \leqq n-2)
$$

$$
B(i, i+1) \quad=S_{i+1} T_{i+1}^{*} \quad(0 \leqq i \leqq n-2),
$$

$$
B(i, j) \quad=0 \quad \text { (for all other indices). }
$$

Since, by assumption,

$$
\begin{aligned}
S_{i} T_{i-1} & =T_{i} S_{i} & & (1 \leqq i \leqq n-1), \\
S_{i}^{2}+T_{i}^{*} T_{i} & =T_{i} T_{i}^{*}+S_{i+1}^{2} & & (0 \leqq i \leqq n-2),
\end{aligned}
$$

all the entries of $\mathbf{N}_{n}^{*} \mathbf{N}_{n}-\mathbf{N}_{n} \mathbf{N}_{n}^{*}$ are equal to 0 except the $(n-1, n-1)$ th, which is equal to $S_{n-1}^{2}+T_{n-1}^{*} T_{n-1}-T_{n-1} T_{n-1}^{*}=R_{n}$ by definition. Hence the positive definiteness of $\mathbf{N}_{n}^{*} \mathbf{N}_{n}-\mathbf{N}_{n} \mathbf{N}_{n}^{*}$ implies the positive definiteness of R_{n}. Similarly all the entries of $\mathbf{W N} \mathbf{N}_{n} \mathbf{W}^{-1}$ are equal to 0 except the ($n-1, n-1$) th which is equal to $S_{n} T_{n-1} S_{n}^{-1}=T_{n}$ by definition and is bounded. Moreover $\mathbf{W N}_{n}=\mathbf{W N}_{n} \mathbf{W}^{-1} \cdot \mathbf{W}$ implies $S_{n} T_{n-1}=T_{n} S_{n}$. Finally considering the operator V, with norm one, from $\mathfrak{S}^{n} \oplus \mathscr{S}^{n}$ into \mathfrak{S}^{n+1} defined by $\mathbf{V}\left\{\left\{f_{0}, f_{1}, \ldots, f_{n-1}\right\},\left\{g_{0}, g_{1}, \ldots, g_{n-1}^{\prime}\right\}\right\}=\left\{f_{0}, f_{1}, \ldots\right.$ $\left.\ldots, f_{n-1}, g_{n-1}\right\}$,

$$
\mathbf{V} * \mathbf{V}\left(\begin{array}{cc}
\mathbf{N}_{n} & \mathbf{W} \\
0 & \mathbf{W N}_{n} \mathbf{W}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{N}_{n} & \mathbf{W} \\
0 \mathbf{W N}_{n} \mathbf{W}^{-1}
\end{array}\right) \text { and } \mathbf{N}_{n+1}=\mathbf{V}\left(\begin{array}{cc}
\mathbf{N}_{n} & \mathbf{W} \\
0 \mathbf{W} \mathbf{N}_{n} \mathbf{W}^{-1}
\end{array}\right) \mathbf{V}^{*}
$$

hence by Lemma $1 \mathbf{N}_{n+1}$ is also subnormal with norm equal to $\left\|\mathbf{N}_{n+1}\right\|=\|T\|$. Thus induction is complete.

Inspecting the above proof, from the definitions of R_{n}, S_{n} and T_{n}, and of \mathbf{N}_{n} and from the relations $S_{n} T_{n-1}=T_{n} S_{n}(n=1,2, \ldots)$, it follows

$$
\begin{equation*}
\left\|\mathbf{N}_{n+1}^{*} \varphi\right\|=\left\|\mathbf{N}_{n} \varphi\right\| \cdot \quad\left(\varphi \in \mathfrak{G}^{n}\right) \tag{8}
\end{equation*}
$$

where, on the right side, φ is considered as an element of \mathfrak{S}^{n+1}.
Now the matrix representation of a normal extension of T is near at hand, using R_{n}, S_{n} and T_{n} in Lemma 2.

Theorem 1. If T is subnormal, the operator \mathbf{N} on \mathfrak{S}^{∞} with the entries $N(i, i)=T_{i}$ $(i \geqq 0), N(i, i+1)=S_{i+1}(i \geqq 0), N(i, j)=0$ (for all other indices), is a normal extension with norm equal to $\|T\|$.

In fact, in view of Lemma 2 , all $\mathbf{P}_{n} \mathbf{N} \mathbf{P}_{n}$ are bounded with norm equal to $\|T\|$ $n=0,1,2, \ldots$, where each \mathbf{P}_{n} is the orthogonal projection from \mathfrak{S}^{∞} onto \mathfrak{S}^{n}, consequently, as readily seen, \mathbf{N} itself is bounded with norm equal to $\|T\|$, and is an extension of T. Moreover from (8) it follows that

$$
\left\|\mathbf{P}_{n+1} \mathbf{N}^{*} \mathbf{P}_{n} \varphi\right\|=\left\|\mathbf{P}_{n} \mathbf{N} \mathbf{P}_{n} \varphi\right\| \quad:\left(p \in \mathfrak{G}^{\infty}\right)(n=0,1,2, \ldots)
$$

hence

$$
\|\mathbf{N} \varphi\|=\lim _{n \rightarrow \infty}\left\|\mathbf{P}_{n} \mathbf{N P}_{n} \varphi\right\|=\lim _{n \rightarrow \infty}\left\|\mathbf{P}_{n+1} \mathbf{N}^{*} \mathbf{P}_{n} \varphi\right\|=\left\|\mathbf{N}^{*} \varphi\right\| .
$$

This shows the normality of \mathbf{N}.
Lemma 2 alsó produces a characterization of subnormality in terms of R_{n}, S_{n}, and T_{n} in it.

Theorem 2. If, for an operator T, each R_{n} is positive definite, each T_{n} is bounded and $S_{n} T_{n-1}=T_{n} S_{n}(n=0,1,2, \ldots)$, then T is subnormal:

In fact, the operator \mathbf{N} on \mathfrak{S}^{∞} in Theorem 1 can be defined on the linear sum \mathfrak{M} of all \mathfrak{S}^{n} 's, and is an extension of T. Moreover by (8)

$$
\|\dot{\mathbf{N}} p\|=\left\|\mathbf{N}^{*} q\right\| \quad(p \in \mathfrak{M}) .
$$

Since \mathfrak{M} is dense in \mathscr{S}^{∞}, it follows that $\mathbf{N}^{*} \mathbf{N} \varphi=\mathbf{N N}^{*} \varphi(\varphi \in \mathfrak{M})$, in particular $\mathbf{N}^{* j} \mathbf{N}^{i} f=$ $=\mathbf{N}^{i} \mathbf{N}^{* j} f(f \in \mathfrak{G})(i, j=0,1,2, \ldots)$. Therefore, for every finite sequence $\left(f_{i}\right)$ in \mathfrak{N};,

$$
\sum_{i, j}\left(T^{j} f_{j}, T^{i} f_{i}\right)=\sum_{i, j}\left(\mathbf{N}^{* j} \mathbf{N}^{i} f_{j}, f_{i}\right)=\sum_{i, j}\left(\mathbf{N}^{* j} f_{j}, \mathbf{N}^{* i} f_{i}\right)=\left\|\sum_{k} \mathbf{N}^{* k} f_{k}\right\|^{2} \geqq 0,
$$

and the criterion (2) can be applied.
3. Irô [3] answered to the question when a commutative family of subnormal: operators admits simultaneous commutative normal extensions. At this moment, it seems, however, difficult for us to construct matrices for these simultaneous commutative extensions along the line as that developed in § 2 . Hére we shall confineourselves to a special case, namely, a doubly commutative family of subnormal: operators.

Let $\left(T_{\omega}\right)_{\omega \in \Omega}$ be a doubly commutative family of subnormal operators, that is, each T_{ω} commutes with both T_{γ} and T_{γ}^{*} whenever $\omega \neq \gamma$. Let Δ denote the space of all generalized sequences $\left\{i_{\omega}\right\}$ such that all i_{ω} are non-negative integers and $\sum_{\omega \in \Omega} i_{\omega}$. θ denotes the element of Δ whose terms are all equal to 0 . For any $\omega \in \Omega$: and $\Gamma \in \Delta, \omega_{\Gamma}$ is the ω-th term of Γ and $\Gamma+\omega$ stands for the element Λ such that $\omega_{\Lambda}=\omega_{\Gamma}+1$ and $\gamma_{\Lambda}=\gamma_{\Gamma}$ for all $\gamma \neq \omega$. $\mathfrak{\bigvee}^{\Delta}$ is the orthogonal sum of copies of \mathfrak{g}; indexed by all the elements in Δ; the elements of \mathscr{S}^{Δ} are the generalized sequences $\varphi=\left\{f_{\Gamma}\right\}$ whose terms are in \mathfrak{G} with norm $\|p\|^{2}=\sum_{\Gamma \in \Delta}\left\|f_{\Gamma}\right\|^{2} . \mathfrak{S}$ is embedded in \mathfrak{S}^{Δ} by identifying $f \in \mathfrak{F}$ with $\left\{f_{\Gamma}\right\}$ where $f_{\theta}=f$ and $f_{\Gamma}=0(\Gamma \neq \theta)$. In Theorem 3 below; $S_{\omega, n}$ and $T_{\omega, n}$ correspond to S_{n} and T_{n} respectively in Lemma 2 , starting from T_{ω} instead of T.

Theorem 3. A doubly commutative family of subnormal operators $\left(T_{\omega}\right)_{\omega \in \Omega}$ has simultaneous commutative normal extensions $\left(\mathbf{N}_{\omega}\right)_{\omega \in \Omega}$ on \mathfrak{S}^{Δ} with the entries: $N_{\omega}(\Gamma, \Gamma)=T_{\omega, \omega_{\Gamma}}, N_{\omega}(\Gamma, \Gamma+\omega)=S_{\omega, \omega_{\Gamma}^{+1}}, N_{\omega}(\Gamma, \Lambda)=0$ for all other indices.

Proof. Just as in Theorem 1, each \mathbf{N}_{ω} is a normal extension of $T_{\omega}(\omega \in \Omega)$. For $\omega \neq \gamma$, putting $\mathbf{N}_{\omega} \mathbf{N}_{\gamma}=\mathbf{A}$ and $\mathbf{N}_{\gamma} \mathbf{N}_{\omega}=\mathbf{B}$, simple calculations based on the definitions of \mathbf{N}_{ω} 's show that

$$
\begin{array}{rlrl}
A(\Gamma, \Gamma) & =T_{\omega, \omega \Gamma} T_{\gamma, \gamma \Gamma}, & & B(\Gamma, \Gamma)=T_{\gamma, \gamma \Gamma} T_{\omega, \omega_{\Gamma}} \\
A(\Gamma, \Gamma+\omega) & =S_{\omega, \omega_{\Gamma}+1} T_{\gamma, \gamma \Gamma}, & & B(\Gamma, \Gamma+\omega)=T_{\gamma, \gamma \Gamma} \cdot S_{\omega, \omega \Gamma}, 1 \\
A(\Gamma, \Gamma+\gamma) & =T_{\omega, \omega \Gamma} S_{\gamma, \gamma \Gamma+1}, & B(\Gamma, \Gamma+\gamma)=S_{\gamma, \gamma \Gamma+1} T_{\omega, \omega_{\Gamma}}, \\
A(\Gamma, \Gamma+\omega+\gamma) & =S_{\omega, \omega_{\Gamma}+1} S_{\gamma, \gamma_{\Gamma}+1}, & B(\Gamma, \Gamma+\omega+\gamma)=S_{\gamma, \gamma \Gamma+1} S_{\omega, \omega \Gamma+1},
\end{array}
$$

and all other entries of \mathbf{A} and \mathbf{B} are equal to 0 . Therefore the commutativity of \mathbf{N}_{ω} with \mathbf{N}_{γ} will follows from the commutativity of the family $\left\{S_{\omega, i}, T_{\omega, i}\right\}_{i=0}^{\infty}$ with the family $\left\{S_{\gamma, i}, T_{\gamma, i}\right\}_{i=0}^{\infty}$. In order to prove the latter commutativity, we shall show, by induction, that $T_{\omega}=T_{\omega, 0}$ is doubly commutative with all $S_{\gamma, n}$ and $T_{\gamma, n}$. $n=0,1,2, \ldots$ The assertion for $n=0$ follows directly from the assumption. Suppose: that the assertion for n is proved, then T_{ω} commutes with $S_{\gamma, n+1}$ because, as in [2], the latter is uniformly approximated by polynomials of $S_{\gamma, n}^{2}+T_{\gamma, n}^{*} T_{\gamma, n}-T_{\gamma, n} T_{\gamma, n}^{*}$
which commutes with T_{ω}. This, in turn, implies the commutativity of T_{ω} with $S_{\gamma, n+1}^{-1}$, hence with $T_{\gamma, n+1}$. Similarly T_{ω} commutes with $T_{\gamma, n+1}^{*}$. In quite a similar way it is proved that the family $\left\{S_{\omega, i}, T_{\omega, i}\right\}_{i=0}^{\infty}$ commutes with the family $\left\{S_{\gamma, i}, T_{\gamma, i}\right\}_{i=0}^{\infty}$.

References

[1] J: Bram, Subnormal operators, Duke Math. J., 22 (1955), 75-94.
[2] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math., 2 (1950), 125-134.
[3] T. Itô, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ., Ser. I, 13 (1958), $1-15$.
[4] J. J. Schäffer, On unitary dilations of contractions, Proc. Amer. Math. Soc., 6 (1955), 322.

