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Ergodic theorems for gages 
By I. KOVÁCS in Szeged 

To Professor Béla Szőkefalvi-Nagy on his 50th birthday 

Introduction 

The theory of "non-commutative integration" which summarizes various 
• analogies between the theory of measures and the theory of von Neumann algebras 

has been investigated by several authors in the last decade (especially cf. [3], [8] 
and [10]). • " 

The purpose of the present work is to extend some of the notions and results 
of ergodic theory to the case of non-commutative integration. 

§ 1 is devoted to general preliminaries. In § 2 a special case of the Riesz con-
vexity theorem is extended to non-commutative Lp-spaces. This result is applied 
in §3 where a •non-commutative analogue of the concept of measurable transfor-
mation is introduced and a non-commutative extension of the von Neumann— 
Dunford—Miller mean ergodic theorem is given. In § 4 an ergodicity concept for 
"gages" on a von Neumann algebra A with respect to a group of ""-automorphisms 
of A is introduced, and it is shown that the extreme points of the convex set formed 
by the probability gages on a von Neumann algebra A, which are invariant under 
a group of ""-automorphisms of A, are precisely the ergodic ones. 

The proofs are modelled on the corresponding proofs in the ordinary integ-
ration theory supplemented by some devices necessitated by the non-commutative 
character of the situation. The key role in the course of our proofs is played by a 
method of J . DIXMIER used in § 3 of [3]. 

The results of this paper were announced in [6]. 

§ 1. Definitions and preliminaries 

1. Let § be a. complex Hilbert space. A von Neumann algebra1) on § will 
mean a self-adjoint algebra of bounded, every-where defined linear operators on 

which is closed in the weak (or strong) operator topology, and contains the 
identity operator of § 2 ) . I n what follows, AP will denote the set of the projec-
tions of the von Neumann algebra A. 

') For the .theory of von Neumann algebras cf. [4], chap. I, §§ 1 
in each particular case will be omitted. 

2) For any Hilbert space £), will denote its identity operator. 

—6. Reference to this book 
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Let A be a von Neumann algebra. A non-negative valued function <p on A+ 3) 
is called a trace on A+, if it has the following propsrties: 

(i) if S, r<EA+ and ),, /¿SO; then cp(lS+pT) = X<p(S) + n<p{T)\ , • 
(ii) for every T6A+ and for every unitary operator (Jin A: <p{UTU~l) = q>{T). 
A t r a c e o n A+ is said to be a) faithful if the conditions cp(T) = 0 

imply T—0; b) normal if, for every increasing directed set FfA + with sup S — T^ A+, 
seF 

• we have <p(T') = sup <p(S); c) finite if (p(T) < + <*> for every A+; d) semi-finite 
se F 

if, for every T£ A+, T^O there exists S£A+, S^O such that S ^ T a n d (p(S) <.+ «>. 
Let A be a von Neumann algebra, arid let cp be a trace on A+. The set of ele-

ments T of A+ for which <p(T)< is the positive portion of a two-sided ideal 
ttt,,, called the two-sided ideal associated with <p. <p can be uniquely extended to a 
positive linear form <p on m,,, and for every S im, , , T£ A, we have q>(ST) = <p(TS). 
If <p is normal, then for every S^m,, the linear form T— <P(ST) (T£ A) is strongly 
continuous op the unit sphere of A. If (p is finite, evidently we have mp = A (in 
this case (p is a positive linear form on A). 

Let now q> be a semi-finite faithful normal trace on A+. For any S, 7" On*4), 
we define (S\T);P = (p (T* S). Then m* becomes a unitary algebra5) with inner product 
(S\T)y. Let be .the completion of the pre-Hilbert space m*. For any. R 
the mapping S —R.S (resp. S — SR) can be uniquely extended to a bounded linear 
operator 0(/?) [resp. *F(i?)] on <t (resp. *F) is a *-isomorphism6) (resp. 
*-antiisomorphism), called canonical *-isomorphism (resp. *-antiisomorphism) be-
tween A and the left ring R9 (resp. right ring Rd) of m*. 

2. Under a non-commutative measurable space we shall mean a system (§, A) 
"composed of a complex Hilbert space § and a von Neumann algebra A on A gage-
space (§, A, m) 'is a non-commutative measurable space (§, A) with a non-negative 
valued function m on Aft which is completely additive, unitarily invariant and 
such that every projection in A . is the supremum of the projections on which m is 
finite. (We say that m is completely additive, if m{P) = 2 m{P() for any set (P(),gj 

of mutually orthogonal projections in A with 2 P>= a n d w e s a y that in is unit-

arily invariant if for every unitary operator UdA and projection AP, we have 
m{UPU'i) = m(P).) The function m is called a "gage" (a "non-commutative 

3) For any set M of linear operators in a Hilbert space M+ denotes the positive portion 
of M, i. e. the set of all non-negative symmetric elements of M. 

4) Let in be a two-sided ideal in a von Neumann algebra A. If T runs over m+ then 
Ta ( 0 - = c a + oo) runs over the positfve portion of a uniquely determined two-sided ideal of A: 
it will be denoted by m® (c/. [2]). 

5) A unitary, algebra R is an algebra over the complex numbers, on which an involutive anti-
automorphism x* and an inner product (x |>>) are defined, such that R becomes a pre-Hilbert 
space satisfying the following axioms : (i) ( x — ( y ^ l * * ) ; 0 0 (xy\z) — (y.\x*z); (Hi) the mapping 
x xy with fixed y is continuous; (iv) the set of elements of the form xy is dense in R (x, y, z arbit-
rary in R). Let i)R be the completion of the pre-Hilbert space R. For every x e R there exists a bound-
ed operator Ux (resp. Vx) on fiR satisfying Uxy=xy (resp. Vxy — yx) for every The weak 
(or strong) closure of the operators Ux (resp. Vx) is a von Neumann algebra R® (resp. Rd), called 
the left (resp. right) ring of R. The commutant (R9)' of R" is identical with Rd (c/. [4], chap. I, § 5). 

6) A * -isomorphism is an isomorphism (in algebraical sense) preserving the adjunction. 
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measure") of A. It is evident that the restriction on AP of a semi-finite normal trace 
on A+ is a gage of A. Conversely, one can show (cf. [1]) that every gage of A can be-
uniquely extended to a semi-finite normal trace on A+. For any gage m, <pm will 
denote this extension. 

A gage space (§, A, m) is said to be finite (resp. regular) if <pm is finite (resp.. 
faithful). . . . 

In any gage space (§, A, m) there exists, by virtue of the complete additivity 
of m, a maximal among those projections of A on which m vanishes; let it be denoted 
by Fm. It belongs to the centre of A. /§ — Fm is called the support of m. In the-
following it will be denoted by Em. Then for every P£kp we have m(EmP) = m(P). 
(§, A, m) is regular if and only if ism = /§ . , 

Let (§, A) be a non-commutative measurable space. A closed linear operator 
T on § is said to be "measurable" with respect to A if: 

(i) T is affiliated7) with A; 
(ii) there exists a sequence {Pn}n= 1 of projections of A such that, for every 

n, P„!Q CIT)t (SDr denotes the domain of T), I$—Pn is algebraically finite8), and 
/£ — Pn \ 0 strongly (« — oo). It is evident that A c 33 (A). Defining the "strong sum" 
and "strong product" of any two S, T£ 33(A) by the closure of their usual sum 
and product, respectively, 23(A) is a selfadjoint algebra relative to.the strong sum 
and product, the usual operation of multiplication by scalars, and the adjunction.. 
In what follows, when sum or product of measurable operators occurs, always-
the. strong-sum or strong product is understood, respectively. 

Let (JQ, A, m) be a gage space. For every T£2i(A )+ , we put 

m(T)= sup 99m(S). 
. . : s em; m , s s r 

Then m can be uniquely extended to a complex (possibly infinite) valued linear 
form on 33(A) (identical with <pm on niVm), designated by the same letter m. An ele-
ment jH^SiA) is said to be infegrable (with respect to m) if m(\T\) < +°° 9 ) . An 
element is said to be pth power integrable if \T\P is integrable. Let L p (m) 
(1 +°° ) denote' the set of all pih power integrable operators of 33(A). The 
Lp-norm of T£L"(m) is defined as [m{\T\p)]l!p, and denoted by ||R||P. 

Let (§, A, m) be a regular gage space. Then, for every +<=°, Lp(m) 
is a Banach space with the Lp-norm defined above. Further we have: 

(i) is dense in Lp(m) ( l s ; < + a > ) ; 

(ii) if l < ^ < + ° ° a n d — + i = 1, there is-an isometric isomorphism between 
p q 

the dual space [Lp(m)]* of Lp(m) and Lq(m) in which corresponding elements 

7) A closed, densely defined linear oparator T in a Hilbert space § is. said to be affiliated with 
a von Neumann algebra A on § (in sign T-qk) if it commutes with every operator of A'. 

8) A projection Pi A is called algebraically finite if there exists no partially isometric operator 
ViA such that V*V=P, VV*=Q<P.~ 

9) Every closed densely defined operator T in a Hilbert space can be uniquely written as a 
product of a partially isometric operator with the closure of the range of |r | = ( T l T)^ as initial 
domain and the closure of the range of T as final domain. The decomposition T= W\T\ is called 
the polar decomposition of T. If TqA (A being a von Neumann algebra), then WE A, \T\r/A. Hence, 
if TeS(A), we have |r|e33(A). 
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F^Wim)]* and SF£Lq(m) are related by the identity 

F(T) = m(TSF), T£L"(m). 

The dual space Lr(m) of L1 (m) is identical with the Banach space A considered 
with the usual operator norm; 

(iii) if y + — = 1, where l ^ p , theri m(ST) = m(TS) for S6Lp(m), 

T € L ' ( W ) ; ' . . 

. . (iv) | w ( 7 ,
1 r 2 . . . p | ^ w ( | r 1 r 2 . . : 7 ; | ) s ' | | r 1 | | p i | | r 2 | | p 2 . . . | | 7 ' j p n , T^V'im) with 

i=iPt 
For the enumerated facts concerning the theory of the non-commutative in-

" tegratiori, we refer the reader to [3], [8] and [10]. 
Let {!Q, A, m) be a gage space. An element J of A is said to be quasi-simple 

if it has the form T= VT0 where T0 is a finite linear combination of mutually ortho-
gonal projections in tnP m:r0 = 2~hPj> P'P><- 0 0 ^ k ) , P j £ a n d V is a par-

. ' J-1 ™ 
tially isometric operator in A whose initial domain contains the subspace (PL + .'..+ 
+ P„)$Q. It is easy to see that for a quasi-simple element T=VT0 = 

n 
— V 2 ^jPj we have 

j= l
 . . 

\T\= 2 \ij\Pj-, 
j= i . 

if 1 + . • 1 

\T\>=2\kj\>P-j and : i m | p = r 2 \lj\>m(Pj)[ ; 
J=L . L / = 1 J 

further ||7'L.= ||7'||-=sup(|A1|, W ) . • 

In what follows the terms and symbols introduced here will be used without 
further references. 

§ 2. A convexity theorem for finite regular gage spaces 

' The following lemma which will be often applied throughout this paper is 
due to J. DIXMIER (cf. [3], § 3) . For the convenience of the reader we recall its proof. 

L e m m a 2. 1. Let (§, A, m) be a regular gage space. Then the set of the quasi-. 
simple elements of .A is dense in Lp(m) for l S / > < 

Proo f . As mrPm is dense in Lp(m) for 1 ^/?.<•+ oo (cf § 1.), it is enough to show 
th at every element of t n ^ is the limit in Lp-norm of a sequence of quasi-simple 
elements .of A. • - • 

Let Tbe an arbitrary element of Let T= W\T\ be the polar decomposition 
of T. Using the spectral representation of | r | , we can determine a sequence {r„}|T=i 
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of elements of A+ commuting with T such that: 1) 2) TTn is quasi-
simple for every n = l , 2, . . .; 3) Tn\I§ strongly as 

By the uniqueness of the polar decomposition, we can see that \T—TTn\ = 
= \T(I$-Tn)\ = \T\(h-T„). Therefore \\T-TT£ = m(\T\'(I^-T„y) .= 
<pm(\T\p(h-Tny). As \T\rem<Pm, Tny ^ and (/,6 - T„) i 0 strongly, we 
have | | r - 7 T J p - 0 as (cf. §1.) 

To facilitate the statement of the next lemma which is a companion result 
to Lemma 7 of VI. 10 of [5], it will be convenient to introduce the following no-
tations. 

D e f i n i t i o n 2. 1. Let (§, A, m) be a finite regular gage space. If a ^ R 1 1 0 ) and 
a. > 0, we define A (a) to be the set of quasi-simple elements T of A for which 

J. 

If A = 0, the condition ( * ) is replaced by 

( * - * - ) i m i = n . : ; 

D e f i n i t i o n 2. 2. Let (few, A01, mU)) be a finite regular gage space for each 
7 = 1, 2. Let sd be the product of A ( 1 ) and A ( 2 ) : si = A ( 1 > X A ( 2 > . If a = (a t , a2) € R2 

with axSO, we define j^(a) to be the set of all elements T = (7'1, T2) of 
with Tj € Au> (aj). 

Lemma. 2. 2. With the notations of the preceding definitions, let F be a com-
plex valued bilinear form on si — A(1) X A(2) and let 

(1) M{ a ) = sup IF(ST)!.11) 

Then log Af(a) is a convex function12) of & = {ai, a2) for = 1, 0 
P r o o f . Let denote the totality of all T = ( 7 \ , T2) in s/(a) for which 

T t &0, r 2 s 0. First we prove that 

(2) M( a ) = sup |F(STa)[, 
se^i.Te^MD 

where Ta = (Ti',T2
2) and s / ( l ) = s f ( l , 1). To see this we have to show that the 

sets = {ST}se^i,Te^ia) and S i = {STa}S6^,,Te^(i, are identical. Let T = (TUT2) = 

= ^ 2 ' W , be an arbitrary element of 1). Then, for every 

a = (a 1 ; a 2 ) with a^0,a2^0, T = P?, J h ^ / W ' ) 

an element of sf+(a)cjaf(a), and it follows that StciaJll. Let now T = (Tl,T2) = 

10) Rk (£ = 1,2) denotes the. ^-dimensional real Euclidean space. 
") For a von Neumann algebra A, Ai denotes its unit sphere. 
12) Let C be a convex subset of R2, and let M be a function defined on C having values which 

' are either real or M is said to be convex if'for any u, veC 

M(au + (1 - a)«) ̂  aM(u) + (1 - a)M(v) 
whenever O s a s l , 
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= ( v í 2 ¿ P p ? , VI Z k f p ^ . be arbitrary in j*(a). First suppose that 

(¡¡>0, a2>0. It is evident that 

Putting 

• 1 1 . 
T=(T' 1 > r 2 ) = ( | r í K i r í h ) , , 

we have and T' = S T \ If ai = a2 = 0, then we have 
and T' = T'T° for every T € ^ + ( 1 ) ( 0 = (0,0)). As = it-follows that 

• 3\i c §Sl. The cases when either ax > 0 , a2 = 0 or ax = 0 , a2 >0 , can be treated 
by a similar way. Hence S\i = SÍÍ which proves (2). 

Let now b = (bub2)£R2 and T = ( 7 ,
1 , T 2 ) £ s / + ( 1 ) be arbitrary. Put T ib = 

= (T\h\T2
T). Then for every a = (A1, a2)£R2 with ű jSO , a2 —0, we have 

sup' |F(STa+ib)| = sup |F(ST i bTa) |sM(a). 
se-t/i.Te-^ + U) S£^,,Tej3?+(i) 

Therefore, 
sup { sup |F(ST a + i b ) | }^M(a) . 

On the other hand, it is clear that 

sup { sup |F(STa + i b)|}=iM(a). 

Hence sup{ sup | f (ST a + i b ) |} = M(a). 

Let now T = (T1,T2)e^+(i) be arbitrary. Then, for every b = (bu b2)£R2 

and a = (a1; a2)€R2 with ax SO, a2 — 0, T a + i b = (r? ,+ii", H2*'"2) belongs to s/(a). 

.In fact, if fk= Z >.fpf (k= 1,2), then rk
k+ibk = Z ( i f y ^ ^ p f w h i ch means 

/ = ! • . 7=1 
1 

that Tlk+ibk is a quasi-simple element of Aw . Further, m(k\\Ta
k

+iK\^)^ 
. S | | e i M o 8 T Í mw(\Tk\)^ 1 if and | |rf+ i 6*| | = ||eiMog7"fc|| = 1 if ak = 0 1 3 ) . Con-
sequently, 

|í"(STa+ib)| ^ sup |F(STa+ib)| ú M(n). 
ben-

It follows that 
M(a) = sup { sup |F(STa+ íb) |} ^ 

be«2 S6^i,T6rf+(i) 

= sup { sup [sup |F(STa+ib)|]}=. 
be«2 se^i,Te^+(i /b6R2 

sup {sup|F(ST a + i b ) | }^M(a) . 
se^i ,T6^ + a) be«2 

3) We may suppose that r k > 0 for £ = 1 , 2 . 



.Ergodic theorems for gages 109 

Hence we have ' 

(3) M(a) = sup {sup |F(STa+ib)|}. 
se^^Te^+o) beR2 

Let z = (zj, z2) — (a1 + ibl, a2 + ib2) and let T = ^ 2 >-pPf, 2 

£ si+(l). We may suppose that every AJ]>0 (J= 1, ..., nk; k= 1, 2). Then, for 
every S = (SU S2)£silf we have 

ST2 ( ^ / V ' S ^ , 1 = 

= ( 2 e ^ ^ S . P f , 2 e^°sVyS2Pf 
\ j = 1 . /= 1 

As Fis bilinear, F(STZ) can be written as a finite sum 2nf„ ( z i , z2) F(B„) with B„ £ si, 
where /„(zj, z2) is an analytic14) function of the complex variables (zL, z2) and is 
bounded on the strip O S a j S 1 (/ = 1, 2). Hence, by VI. 10. 4 and VI. 10. 2 of [5], 
and the increasing nature of the logarithm, we obtain that 

log M(a) = sup log {sup |F(STa+ib)|} 
se^.Te."*+(i) b£R2 

is a convex function of »•=(a1,a2) for O g a ^ l , 0 S a 2 = f Hence Lemma 2 .2 
is proved. 

The next theorem can be considered as a non-commutative extension of a 
special case of the Riesz convexity theorem (cf. [5], VI. 10. 11). 

Theorem 2. 1. Let (§, A, m) be a finite regular gage space, and let $ be a li-
near-mapping of A into itself If for a given-p $ has an extension to a 
bounded linear mapping of the Banach space Lp(m) into itself, let ||3>||P denote the 
norm of this extension; if no such extension exists, let ||0||p = Then log ||<t>|| l / a 
is a convex function of a for O^a^l l. 

Proof . It is evident that 

F<J) = F(Tl,T2)=m(<S>(T1)T2) 

is a complex valued bilinear form on — AXA. Let a = — a = 0 
P 

if p = + and let] 

M(a, \-d)= sup |F(ST)|. 
s e ^ T e ^ o u - « ) 

Now we are going to show that ||3>||i/a = M(a, 1—a). If both of M(a, 1—a) and 
1l®!li/a a r e identically infinite, our assertion is trivial. Therefore, we show that 

14) Let G be an open set in the space of the complex variables (z i, z2). A complex valued func-
tion/defined on G is said to be analytic in G if / is continuous and the first partial derivates dfldzt 

i(i = l ,2 ) exist at each point of G. 
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M {a, 1 - a) is finite if and only if f| <C> |j A is finite and in this case we have M(a, I—a) 

For any a€[0, 1] we have 

M(a, l - a ) = sup |F(ST)|= sup I r o ^ C S ^ S ^ ) ! 

^ sup l l^ l i l i r j , . 1 1 ® ^ ) ^ 
l s TeJi(o 1 -a) 

l sup l i o ^ r o i l , 
SB3SU Teá?(a,l-a) K)-

As ||51r1||p^-||S'1|[||r1||p^l and Aj contains the identity operator, by virtue of 
Lemma 2. 1 we have 

||®||p = sup ||®(7\)||ps; ' sup •||®(S'1r1)||1,^ 

• s . . sup | |®(r)| |p=||®||p , 
. r&rf.imipsi 

which implies . sup | |®(51r1) | |p= ||®||p. 

Hence ; M(a,l~a)^ sup 110(5^)11 = II® ||p. 
l - a ) 

It follows that if ||®|li/0 is finite for a given a £ [0, 1], then M(a, 1 — a) is finite and 
M(a, 1 — a)^ ||®||i/a. Conversely, suppose that M(a, 1— a) , is finite for some a in 

[0,1]. Let p = —(p = + °° if a = 0), and let — + \ = 1. Then for every quasi-simple 
a • P P -

element T[ of A, the linear form 

HTi{R) = m(^(Ti)R) (J? E A) 

is bounded in Lp'-norm on a dense subset of Lp'(m), namely on A c Lp' (m). In 
fact, , 

\\HT{\\P.= sup |m(®(ri)i?)= sup l i r i t l / n f ® ! ^ - ) ^ ) 
RG^ci-a) Re^(i-o) \ \ l M i l l p / / 

s n r i l l , sup | w ( ® ( 5 1 r 1 ) 5 2 r 2 ) | = | | r i | | p M ( a , l - a ) 
-a) 

(S = (5"I,S2), T = (T1,T2)). Consequently, HT> can be.uniquely extended to all 
~L"'(m), i. e. HTie(Lp'(m))*. Hence there exists an element g € L p ( w ) with || £>||pS 
SM(a, 1 — a) \\Ti\\p (cf. § 1) such that 

HT[(R) = m(®(T{)R) = m(QR) 

for all ReLp'(m). It follows (cf. §1) that Q = Q>{Tl). Hence 

ll®(Fi)||p = M(a, 1—a)||ri||p ' . 
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for all quasi-simple elements T[ in A. Hence 

ll^llp — M (a, 1 —a) 
and we can conclude that !(*&|| i/a = Af(a, 1—a) for 0 == ¿z =i 1. By Lemma 2. 2, 

log M(a) = log [ sup |F(ST)|] 
s e ^ j . T e ^ c a j 

is a convex function of a = (a 1 ,a 2 ) f ° r O S f l i S l , 0 ^ a 2 ^ 1, therefore log ||®||1/4... 
is also convex for O s a s l , and the proof is completed. 

§ 3. The non-commutative mean-ergodic theorem 

We begin this section by giving a non-commutative analogue of the concept: 
of measurable transformation. • : • t 

Let (X , S) be a "measurable space", i. e. a set X and a <r-algebra S of "subsets, 
of A'. Denote by S(A') the algebra of all complex valued functions / (x ) defined, 
on X which are measurable with respect to S. Let T be a measurable transformation 
of (X , S), i. e. a mapping of X into itself such that the inverse image of every element 
of S by T belongs to S. By / (x) (•/(*)) =f(Tx)',.T defines an endomorphism 9 of 
33 (X). By the nature of the theory of gage spaces as a non-commutative extension 
of the classical theory of integration over an abstract measure space, it will be na-
tural to define a non-commutative measurable trasformation as a mapping of the -
set of all measurable operators into itself with analogous algebraical and topolo-
gical properties as 9. 

D e f i n i t i o n 3. 1. Let (§, A) be a non-commutative measurable space. A meas-
urable transformation of (§, A) is a *-endomorphism (homomorphism into 
itself which preserves the adjunction) 6 of 33 (A) with the following properties: 

(i) 0(/.cO = /i,; • 
(ii) the restriction of 9 to A is a normal15) *-endomorphism of A sending.; 

the set of all algebraically finite projections of A into itself. An invertible measur-
able transformation "of (§, A) is a *-automorphism of 33(A), whose restriction 
to A is a *-automorphism of A. 

It follows immediately from the preceding definition the 

P r o p o s i t i o n 3. 1. Let (§, A) be a non-commutative measurable space and let 
9 be a measurable transformation of (§, A). If a sequence {Tn}„=i of elements of 
33(A) converges nearly everywhere16) (relative to k) to an element T o/33(A) then 

converges nearly everyhere to 0(T). 

is) A *-endomorphism 0 of A is said to be normal if it has the following property: if Ti A* 
is the supremum of an increasing directed set F of elements in A+, then we have 0(T) = sup S. 

SgF 
16) A sequence {iV}^ j of elements of 93(A) is said to be convergent nearly everywhere (relative-.: 

to A) to an element T of 8 (A)) if for every e > 0 there exists a sequence {Pn}~= i of projections in 
A such that i»„ t as « - - , 11(7 — 7;)P„I1< e (n = 1, 2 , . . . ) and P„ is algebraically finite-, 
for every/i = ] , 2 , . . . (c/.. [9], def. 23).' 
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The next proposition can be proved by the same way as Theorem 1 in [8], hence 
the details are omitted. 

P r o p o s i t i o n 3. 2. Let (§, A) be a non-commutative measurable space, and let 
0O be a normal *-endomorphism of A with the following properties: (i) 0o(/§) = /§; 

•(ii) 60 sends the set of all algebraically finite projections of A into itself 
Then 0o can be uniquely extended to a measurable transformation 6 of (§, A). 

The preceding propositions imply 

P r o p o s i t i o n 3. 3. Lét 0 be a measurable transformation of the non-commutative 
.measurable space (§, A). Then 6. is uniquely determined by its restriction to A. 

Now we formulate our main result which can be considered as a non-commutative 
•extension of the von Neumann—Dunford—Miller mean ergodic theorem (cf. [5], 
VIII. 5.9.). 

Theorem 3. 1. Let A ,m) be a finite regular gage space, and let 6 be a 
measurable transformation of (§, A). Suppose that, for every projection P £ AP and 

Jor every n = 1 ,2 , . . . , d satisfies the inequality 

••(3.1) - "Z m(9j(P))^M-m(P) 
n ]= o 

with a constant M independent of P andn. Then, for every p with 1 ^p < + T—Q(T) 
.is a continuous linear mapping of Lp(m) into itself and the, sequence of operators 
f 1 n - l 
•(— 2 8J(:)( 'is strongly convergent in the Banach space Lp(m). 
I n j=o J n=l 

The following lemmas are required for the proof. 

Le mma 3. 1. (cf [5], VIII. 5. 3). Let T be a bounded operator in an arbitrary 
í 1 1 " complex Banach space'3c. If the sequence S — 2 TJ f is bounded (in norm), 
TNJ =O J„=1 

then it converges strongly in 3c if and only if — T"x —0 asn — for x in a fundamental 

f l - 1 } " set17) in 3c and the sequence S — Z- TJx> is weakly18) sequentially compact19) 
l"j=0 Jn=l . 

Jor x in a fundamental set in 1. 

Lemma 3 .2 (cf. [12], th. 3). Let (§, A, m) be a finite regular gage space, 
and let K be a bounded subset of L'(m). I f , for any sequence of projections {P„}n= i 
in A with P„i 0 (« —oo), m(TPn) converges to zero uniformly with respect to T£ K, 
then K . is weakly sequentially compact. 

17) A subset © of a Banach space X is said to be fundamental in X if the linear subspace span-
ned by (S is equal to i . 

1S) By the weak topology of X is understood the weak topology induced by the dual of X. 
") A subset Si of X is said to be sequentially compact if every sequence of points in 8. has 

a subsequence converging to a point of X. 
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L e m m a 3. 3. Let (§, A, m) be a finite regular gage space, and let 9 be a meas-
urable transformation of (H, A). Suppose that, for every P£ Ap, m satisfies the 
inequality 
(3.2) . m(0(P))^Km(P) 

with a constant K independent of P. Then for every p with 1 T-~9(T) 
is a continuous linear mapping of Lp(m) into itself. 

P r o o f . For the sake of brevity, denote by A0 the set of all quasi-simple elements 
of A. It is not hard to see that 6 maps A0 into itself. Further, for every T£A0 with 

T=V 2 >-jPj we have 

. • \d(T)\p=9(\T\p) = 2 I i j \ ' e ( P j ) , • 
. j=i • 

and . • 

llfl(r)llp = [ i \Xj\"m(9(Pj))^. 

Hence, by (3. 2), we have 

(3.3) ( l ^ p < + ~ ) . 

Let now A be arbitrary. As in the proof of Lemma 2.'1,-we can determine a 
sequence {r„}r=i of elements of A+ commuting with |T| such that: 1) 0 ^ T„ ^ /5; 
2) rr„€A 0 ; 3) r„t/fi strongly as n — It follows that \TTn\" = \T\pTn\\T\' strongly 

I -
 1 

as 72-oc'. As (pm is normal, we have \\TT,,\\p=mQTT„\'>y = 9m(|TTn|"f | J | = 

= m(\T\<>f=\\T\\p (» -»«) . Further, \9(TTn)\>> = 9(\TTn\<-) for every l = £ / ; < + o o 
Since 9 is normal on A (cf Def. 3.1), \0{TTn)\"\ \0(T)\" as n - 00 and thus 

1 1 
lim ||0(7T„)||p = lim m(\9(TT„)\p)''= m(\9(T)\!'y = ||0(!T)||P. Since TTn£A0, by (3,3) 
fl—.00 rt->co 

we have 
J. ' \\9(TTn)\\P^K"\\TTn\\p.. 

Thus, we. obtain 
1 • 1 . 

| |0(r)||p = lim | | 0 ( 7 T „ ) | | p ^ ^ l i m ||7T„||P = ^ | |r| |p , R-too Jt~* 00 • 

i. e. ; -
1 

(3.4) . . . . | |0(r) | |p^A-p | |r | |p ( l S / 7 < + ~ ) 

for every J € A. The inequality (3. 4) shows that the restriction of 9 to A, denoted 
by 90, is a continuous linear mapping of A into itself with respect to the L"-norm. 
Since A is dense in L"(m), 90 can be uniquely extended to a continuous linear mapping 
0! of V(m) into itself. Now, using the fact that every sequence {r„}r=i of elements 
of A which converges in L"-norm to a measurable operator T contains a subsequence 

A 8 
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converging nearly everywhere to T (cf. [8] and [10]), it can be seen as in the clas-
sical case that d1(T) = 9(T) for every TeL"(m). Thus Lemma 3 .2 is proved. 

Proof of Theorem 3.1. If « = 2, the inequality (3.2) gives m(0(P))^ 
l)m(P) for any projection P in A. Hence, by Lemma 3. 3, 0 is a bounded 

linear operator in L"(m) + To complete the proof of Theorem 3. 1, 
we have only to show the following (cf. Lemma 3. 1): 

a) for every T£Lp(m), 

1 

I n - i 
- 2 0j(T) n j=p 

lM'\\T\\p ( » = 1 , 2 , . . . ) ; 

,b) — 9"(T) converges strongly to zero as « — » for T in a fundamental set 

in L"(m); 

c) the sequence 
Í 1 " - 1 

2 " 
I " j-1 

0J(T)f of elements of Lp(m) is weakly sequen-
J«=i 

tially compact for T in a fundamental set in Lp(m). 
Let us prove a). First we show that 

(3. 5) 
I B-l 

- 2 em n J = 0 
^ M \ \ T \ U ' ( « = 1 , 2 , . . . ) , 

for every A. The reasoning in the proof of Lemma 3. 3 shows that it is enough 
to prove (3. 5) for the quasi-simple elements of A. Let T= VT0 be an arbitrary 

N 

element of. A0 with TQ = 2 Then we have 
. ;=i 

I n-i 

- 2 0J(T) n j = 0 
i n2 0KV)e>(?A s - i "zmv)\\ l l f lTOUx^ 
n j = 0 ||l n j=o 

^ 2 2 \ iM0 J (P i ) ) = 2 ± 2 « ( 0 ' W ) ] : n j= 1 ¡ = 1 ¡ = 1 |_ n j=i 'J 

which proves (3. 5). Further, for every T£A we have 

(3. 6) 
1 » - i . 

- 2 n j=o 
¿ 1 2 ii0y(Dii ^ 2 i m i = i m i -

« ;=0 « y=0 

j n-1 
Putting ®„(-) = — 2 0y(O for every'« = 1,2, ..., we have obtained 

« y=o 
I I O J / ^ M , i i o j u ^ I . 

As ®„(0 is a linear mapping of A into itself, Theorem 2. 1 now gives 

1 1 
log II®,«.á 1 - T log II®JU + - log'll®J| 1 ^ log ||®„||f -ElogMp , . 

and so 

which gives a); 
ll®JI 

l 
( « = 1 , 2 , ; . . ) , 
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To prove b), we note that the set AP is fundamental in every Lp(m) for 
l S j 9 < +00 (c/. [9], [11]). Now, if P€A F , we have 

~ e-(p) 
1 - 1 • 1 1 i 

= - rw(|0n(P)|p)] " = - [»i(0"(P))lp ^ - [i»(/4)] p - 0 as n - » , 
n n n 

whence b). 
Finally, c) follows from Lemma 3. 2. Indeed, let Pn € AP such that P„ 10 strongly 

as n — T h e n , for every Q£AP , 

^ [ j k £ \ \ 0 j m j M i ^ l l / j i - M O - O as « — 0° 

(k= 1 , 2 , . . . ) 

independently from and this completes the proof of Theorem 3 .1 . 

§ 4. An ergodicity concept for gages 

In his paper [ 1 1 ] , H. U M E G A K I introduced a concept of ergodicity for "traces" 
of a D*-algebra R (a normed "-algebra over the complex number, with an approxi-
mative identity) which are "stationary" (i. e. invariant) concerning a group of 
*-automorphisms G of A. He called a stationary trace of R ergodic if it is not a linear 
combination with positive coefficients of two other linearly independent stationary. 
traces of R, and he characterized the ergodic traces with the aid of'the two-sided 
representations corresponding to them. The ergodicity concept for gages introduced 
by us is analogous to that for measures in the ordinary integration theory20). 
We shall show the relation between our definition of ergodicity and UMEGAKI'S, the 
latter definition being considered in the ease when R is supposed to be a von Neumann 
algebra. • 

Let (§, A, m) be a gage space, G a group of invertible measurable transformations 
of (§, A) (cf. Def. 3. 1). In what follows, an element T693(A) is said to be (m, G)-
invariant if for every 0£G we have Em6(T)=EmT (Em is the support of m). T is 
said simply to be G-invariant if for every 6£G we have 6(T) = T. 

Our ergodicity concept for gages is given by the following 

D e f i n i t i o n 4. 1. Let A, m) be a .gage space, G a group of invertible 
measurable transformations of A), m is called G-ergodic if for every (m, G)-
invariant projection P of ADA' we have either m(P) = 0 or m(I§ — P)= 0. 

Analogously to the classical case we have 

T h e o r e m 4. 1. Let ( f t , A, m) be a gage space, G a group of invertible measurable 
transformations of (§, A). In order that to rn be G-ergodic it is necessary and sufficient 

20) Let (X , S, fi) be a measure space, and let G be a group of one-to-one mappings, of X 
onto itself and which at the same time is a group of automorphisms of S. We recall that fi is said 
to be G-ergodic if for any EeS such that [EuO(E)] — [En()(E)] has /¿-measure 0 for every Oi G, 
we have either ¡j.(E) — 0 or fi(X-E) = 0. /i is G-ergodic if and only if every S-measurable func-
tion f(x) such that, for every 06G, f(0(x))=f(x) almost everywhere, is equal to a constant 
almost everywhere. 
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that every (m, G)-invariant element T of 23(A) affiliated with AHA' be a scalar multiple 
of Em. 

Proof . If the condition of Theorem 4 is fulfilled, then every (m, G)-invariant 
projection P in AHA' satisfies the equality E,„P = XEm with some scalar X. Since 
-Em € (A HA'), EmP is a projection, so we have either X = 1 or A = 0. Hence either 
m(P) = rn(EmP) = 0 or m{h~P) = m(Em(I%-P)) = m{Em) - m{EmP) = 0. This 
means thát m is G-ergodic. Conversely, suppose that m is G-ergodic. Let T£(AC)A') 
be a self-adjoint (m, G)-invariant operator with T=^XdEx. Since Em £ (A H A'), 

we have EmT=\ Xd(EmE-k), and Em9(T)=\Xd(Em9(Ex)) for every 0€G. As 
E„,(0(T))=EmT, it follows from the uniqueness of the spectral representation that 
Em0(Ex)=EmEx for every X and OfG. Since E^(Af]A'), we obtain, by the G-
ergodicity of m, that for every X either m(Ex) = 0 or — £^) = 0, i .e . either 
EmEk=0 or EmEx = Em. This means that the spectral family of EmT- contains only 
two projections, namely 0 and Em. Hence we have EmT=X0Em. Let now T£ (A Pi A') 
be an arbitrary (m, G)-invariant operator. It is easy to see that T can be written 
as a linear combination of two self-adjoint (m, G)-invariant operators in AHA'. 
Hence Tis also a scalar multiple of Em. Finally, let T be an arbitrary (m, G)-invariant 
operator in 23(A)-affiliated with A HA'. Let T= W\T\ be the polar decomposition 

of T with T=\xdE,_. It is known that W^(AC\A'), and ¿^(APlA') for every X. 
Further, -as Em9(T) = Em9(W)9(\T\) = (Em9(W))(Em0(\T\) = EmT=EmW\T\ = 
• = (EmW)(E,„\T\), it follows from the uniqueness of the polar decomposition that 
Em9(W) = EmW and Em6(\T\) = Em\T\ for every 06C. Since WZ(AHA'), we have 
EmW = aEm. Since 0{\T\)=\IdOiE,) (cf. [9]), Em0(\T\)=\Xd(Eme(Ek% similarly 
as above, it may be seen that the spectral family of Em\T\ contains only two pro-
jections: 0 and Em. Thus we obtain Em\T\ =PEm, which proves Theorem 4. 1. 

D e f i n i t i o n 4 .2 . Let (.£), A, m) be á gage space, G a group of invertible 
measurable transformations of A), m is said to be G-invariant if for every pro-
jection P of A and for every 0 £ G we have m(9(P)) = m(P). 

Let now A be a von Neumann algebra, G a group of *-automorphisms of A. 
Lét PG denote the set of all G-invariant probability21) gages on (ÍQ, A), and PG = 
= { 9 ) M : FFJ£P G } . It is evident that P G is a convex subset of A * 2 2 ) . The next theorem 
characterizes the G-ergodic elements of PG as follows 

T h e o r e m 4.2. m£PG' is G-ergodic if and only if cpm is an extreme23) point 
of P G . 

Proof . First we note that if w£P G then Em is G-invariant. Indeed, for every 
0 € G we have m(/.£, - 0(EJ) = m(/e) - w ( 0 ( E J ) = m(EJ -m(EJ = 0. This means' 
that / 6 -0 (E m ) iS / . £ , -£„ , (0eG). It follows that I.t,-Em^lil-0-i(Em) for every 

21) A gage in of A is said to be a probability gage if m = 1. 
22) For a von Neumann algebra A, A* denotes the dual space of A when A is considered as 

a Banach space with [|71 as its norm. 
23) <pm is an extreme point of PG if it is not a middle point of any segment belonging to PG. 
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06G. As the mapping 0 —0_1 of G onto itself is one-two-one, we have — 
£I& - 0(Em) (0 6G). Thus we have £m = 0(£,„) for every 0 (EG. 

Further, if m6'PG then for every TeA and 0 6G we have q>m(Q(T)) = <pm(T). 
In fact, let r be an arbitrary element of A+. As in the proof of Lemma 2. 1, we can 
choose a sequence {Tn}^= i of elements of A+ such that: 1) 0 2 ) T„\I§ 
strongly; 3) 7T„ is a finite linear combination of elements of AP with positive coeffi-
cients. The G-invariance of m implies that (pm(9(TT„)) = (pm(TTn). As 0 is a *-auto-
morphism, it follows that 0 ( 7 ; ) t V Thus 0(TTn) = O(T)0(T„)\0(T). By the norma-
lity of <pm, we have <pm(0(T)) = ]\m <pm(0(7T„)) = lim cpm(TT„) = <pm(T). Since every 

element of A can be written as a finite linear combination of elements in A+, our 
assertion follows. ' 

For m 6 PG, consider the von Neumann sub-algebra AEm — {T£A:TEm = 7"} of A. 
We note that the restriction of <pm to A£m, denoted by the same letter <pm, is a finite 
faithful normal 

trace on A%m. Let Rm be the unitary algebra associated with <pm, 
and let 4>m be the canonical *-isomorphism between AEM and the left ring Rg, of 
Rm . Since 9(Em)=Em for every 0 6G, it is easy to see that the mapping T9'(T) — 
= Om[0(Om1(7'))] defines a *-automorphism 9' of R® for every 0, and so G induces 
through <J>m a group of *-automorphisms G' ofRg,. Further, it is not hard to 
see that an element T6R® is G'-invariant if and only if OmX(r) is G-invariant. 

Let now V„, be the set of all bounded linear operators V on §R m for which 
. • {V0(S)\9(T))im = (VS\T)im 

for all S, 7 ,6Rm, 0 6 G. It is easy to see that V,„ is a von Neumann algebra on 
By a theorem of H. UMEGAKI (cf. [11 ] , Th. 5 ) , <p,„ is an extreme point of P G if and 
only if (V,„ H R® H R£) = {a/f,-R .}. Hence we have to prove that m6PG is G-ergodic 
if and only if (V m TlRtnRi) = {a/$Rm}. 

First we show that for an element r6(R® HR^) we have T£-Vm if and only 
if T is G'-invariant. Suppose that T e ^ ' D R * ) is G'-invariant. Then <&~l(T) is 
G-invariant. Thus, for every 06 G and R, S 6 R,„ we have 

<r0( i? ) |0 (5 )>^ m =,p m (0^)a) - 1 ( r )0 ( J R))=^(0(5*$- 1 ( r ) /? ) )= ; 

= ?m{S*<i>-1(T)R) = (TR\S)-m,. 

which gives that T£Vm. Conversely, suppose that T£(Vm DR» flRj,). Then for 
every 0 6G and R, S6R m , we have 

^ ( O : 1 (D0(H)0(S*)) = «¿m(0(S*)d>-1 (T)9(R)) = <:T0(R) \ 0(S))im = <TR \ S\m = 
= <pm(S*<S>^(T) R) = <pm(®~1 (T)RS*) = <p (0(O"1 (T))0(R)O(S*j). 

In particular, for' S = Em£Rm we have 

¿m(0(<l>-1 (T))0(R)) = ¿m(<5~1 (T)0(R)). . 
Thus for every 0 6 G and i?6R,„, 

1 CO-0(®« : 1 CD] 0 (R)) = 0. 

It follows that <bml(T) = 0(<D~1(r)) for every 0.6 G, which gives that T is G'-invariant. 
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Suppose n o w that m f PG is G-ergodic, and let 7 7 6 ( V B i n R j J P R £ ) be arbi-
trary. Then $ ~ 1 (T) as an element of A Pi A' is (m, G)-invariant. By Theorem 4 . 1 , 
®~HT) = <xEm. Hence T=a.Q>m(Em) = zI^m, which gives that ( V m P R£ P R „ ) = 
= { a / Ê R J . Conversely, suppose that (V^PlR® PiR^) = . { a / § H J , and let ( A P A ' ) 
be (m, G)-invariant. Then TEm is a G-invariant element o f A£ PAÉ . It fo l lows 
that <$>m(TEm) Ç (V,„ P Ef„ P R£), therefore (TEm) = «/.f,Rm = a® ™(£m). Thus TEm = 
= aE m , which completes the proof of Theorem 4 . 2 . 
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