Equivalence of a problem of set theory to a hypothesis concerning the powers of cardinal numbers

By G. FODOR in ${ }^{\circ}$ Szeged

To Professor Béla Szökefalvi-Nagy on his 50th birthday .

Let E be an arbitrary set of power \aleph_{α} and suppose that with every element x of E is associated a non empty set $f(x)$ such that for any $x \in E$ the power of the set $f(x)$ is smaller than a given cardinal number \aleph_{β} which is smaller than \aleph_{α} and $f(x) \neq f(y)(x \neq y)$. We say that the subset Γ of E has the property $T(\mathfrak{q}, p)$, where \mathfrak{q} and \mathfrak{p} are two cardinal numbers. such that $\mathfrak{p} \leqq \mathfrak{q} \leqq \aleph_{\alpha}$, if

$$
\overline{\bigcup_{x \in \Gamma} f(x)}=\mathfrak{q} \quad \text { and } \quad \overline{\substack{x, y \in \Gamma \\ x \neq y}} \mid \overline{(f(x) \cap f(y))}<\mathfrak{p}
$$

We define the ordinal number β_{0} as follows:
Let β_{0} be the smallest ordinal number $\varrho<\beta$ such that the set $E^{(0)}$ of the elements $x \in E$ for which $\overline{f(x)}<\aleph_{e}$ has the power \mathcal{K}_{α}.

Consider now the following propositions.
(I) Under the above conditions E has a subset Γ with the property $T\left(\aleph_{a}, \aleph_{a}\right)$.
(II) For every ordinal number $\gamma, \beta<\gamma<\alpha$, the inequality

$$
\left(\mathcal{N}_{\gamma}^{N_{\mathcal{B}_{0}}}\right) \mathbb{S}_{0}<\mathcal{N}_{a}
$$

holds, where $\aleph_{\gamma}^{N_{\beta_{0}}}=\sum_{e<\beta_{0}} \mathcal{N}_{\gamma}^{N_{e}}$.
We shall prove in this paper the following
Theorem. The propositions (I) and (II) are equivalent.
We shall use the following notations. For any subset Γ, of E let

$$
\Pi_{\Gamma}=\bigcup_{\substack{x, y \in \Gamma \\ x \neq y}}(f(x) \cap f(y))
$$

For. any cardinal number \mathfrak{r} we denote by \mathfrak{r}^{+}the cardinal number immediately following \mathfrak{r}. The symbols \bar{S} and $\bar{\gamma}$ denote the cardinal numbers of the set S and of the ordinal number γ, respectively. For every ordinal number $\tau, \aleph_{c f(\tau)}$ denotes the least cardinal number \mathfrak{n} such that $\mathbb{N}_{\mathfrak{\tau}}$ can be expressed as the sum of \mathfrak{n} cardinal numbers each $<\mathcal{N}_{\mathfrak{z}}$. If \mathfrak{m} and \mathfrak{n} cardinal numbers, then we define $\mathfrak{m}^{\mathfrak{n}}=\sum_{\mathfrak{r}<\mathfrak{n}} \mathfrak{m}^{\mathfrak{r}}$. Put, for every ordinal number $\gamma, W(\gamma)=\{\xi: \xi<\gamma\}$.

In the proof of the theorem we shall use the following theorems:
Theorem 1. If \aleph_{α} is regular and $\bigcup_{x \in E} f(x)$ has the power \aleph_{α}, then E has a.subset with the property $T\left(\aleph_{\alpha}, \aleph_{\alpha}\right)$. (See [1], theorem 1.)

Theorem 2. Let \aleph_{α} be a singular cardinal number, \mathfrak{r}_{0} a cardinal number which is smaller then \aleph_{α} and $\left\{\aleph_{\xi}\right\}_{\xi^{\prime}<\omega_{c f(\alpha)}}$ a sequence of regular cardinal numbers such that $\aleph_{\sigma}>\aleph_{\tau}(\sigma>\tau) ; \max \left\{\aleph_{\mathrm{cf}(\alpha)}, \aleph_{\beta}, \mathfrak{r}_{0}\right\}<\aleph_{\xi}<\aleph_{\alpha}$ and $\aleph_{\alpha}=\sum_{\xi<\omega_{c f(\alpha)}} \aleph_{\xi}$. If for every $\xi<\omega_{\mathrm{cr}(\alpha)}, E_{\xi}$ is a subset of power $\geqq \aleph_{\xi}$ of E such that E_{ξ} has a subset E_{ξ}^{\prime} with the property $T\left(\aleph_{\xi}, \mathfrak{r}_{0}\right)$, then E has a subset with the property $T\left(\aleph_{\alpha},\left[\aleph_{\mathrm{cf}(\alpha)} \mathfrak{r}_{0}\right]^{+}\right)$. (See [1], theorem 4.)

Theorem 3. If M.is an infinite set of power \mathfrak{m}, and if $\mathfrak{n} \leqq \mathfrak{m}$, then the set S of subsets $X \subset M$ with $\overline{\bar{X}}<\mathfrak{n}$ has the power $\overline{\bar{S}}=\sum_{\mathfrak{r}<\mathfrak{n}} \mathfrak{m}^{\mathfrak{r}}$. (See for example the theorem 3 of $\S 34$ in [2].)

Theorem 4.

$$
\left(\mathfrak{m}^{\mathbb{s}_{e}}\right)^{\otimes_{\mu}}=\left\{\begin{array}{lll}
\mathfrak{m}^{\aleph_{g}} & \text { for } & \mu \leqq \operatorname{cf}(\varrho) \\
\mathfrak{m}^{\aleph_{e}} & \text { for } & \operatorname{cf}(\varrho)<\mu \leqq \varrho+1 \\
\mathfrak{m}^{\aleph_{\mu}} & \text { for } & \mu>\varrho
\end{array}\right.
$$

(See theorem 7 of $\S 34$ in [2].)
Theorem 5. Let \aleph_{a} be a singular cardinal number and η an ordinal number smaller than ω_{α}. If to every element γ of $W\left(\omega_{\alpha}\right)$ there corresponds an ordinal number $\boldsymbol{h}(\gamma)<\eta$, then there exists a subset M of power \aleph_{α} of $W\left(\omega_{\alpha}\right)$ such that \cdot

$$
\overline{h[M]} \leqq \aleph_{\operatorname{cf}(\alpha)}
$$

Proof. Let $\left\{\alpha_{\xi}\right\}_{\xi<\dot{\omega}_{c f(\alpha)}}$ be an increasing sequence of ordinal numbers such: that $\lim \alpha_{\xi}=\alpha$ for every $\xi<\omega_{\mathrm{cf}(\alpha)}, \omega_{\alpha_{\xi}}>\eta$ and $\omega_{\alpha_{\xi}}$ is regular. It is clear that $\xi<\omega_{c f(\alpha)}$

$$
W\left(\omega_{\alpha}\right)=\bigcup_{\xi<\omega_{c f(\alpha)}} W\left(\omega_{\alpha_{\xi}}\right)
$$

Let us define $g_{\xi}(\gamma)$ on $W\left(\omega_{a_{\xi}}\right)$ as follows:

$$
\cdot g_{\xi}(\gamma)=h(\gamma) \quad\left(\gamma \in W\left(\omega_{\alpha_{\xi}}\right)\right)
$$

Since $\omega_{\alpha_{\xi}}$ is regular and $\omega_{\alpha_{\xi}}>\eta$, there exists an ordinal number $\pi_{\xi} \in W(\eta)$ and a. subset M_{ξ} of power $\aleph_{\alpha_{\xi}}$ of $W\left(\omega_{\alpha_{\xi}}\right)$ such that

$$
g_{\xi}\left[M_{\xi}\right]=\left\{\pi_{\xi}\right\} .
$$

Let

$$
M=\bigcup_{\xi<\omega_{c f(}(\alpha)} M_{\xi}
$$

Clearly the power of M is \aleph_{α}. Let further N be the set of all distinct elements of the sequence $\left\{\pi_{\xi}\right\}_{\xi<\omega_{c f(\alpha)}}$. It is clear that

$$
h[M]=N
$$

Since $\overline{\bar{N}} \leqq \aleph_{\mathrm{cf}(\alpha)}$, theorem 5 is proved.

Corollary. If η is an ordinal number of the second kind and $\operatorname{cf}(\eta) \neq \mathrm{cf}(\alpha)$, .then there exists a subset M^{\prime} of power \aleph_{α} of M and an ordinal number $\eta^{\prime}<\eta$ such that ${ }^{\text {. }}$

$$
h\left[M^{\prime}\right] \subseteq W\left(\eta^{\prime}\right)
$$

Proof. (i) If $\overline{\bar{N}}<\aleph_{\operatorname{cf}(\alpha)}$, then it follows from the regularity of $\omega_{\mathrm{cf}(\alpha)}$ that there exists an increasing sequence $\left\{\xi_{v}\right\}_{\nu \nu_{c f(\alpha)}}$ of the type $\omega_{c f(\alpha)}^{-}$of ordinal numbers smaller than $\omega_{\mathrm{cf}(\alpha)}$ such that

$$
\begin{gathered}
\pi_{\xi_{0}}=\pi_{\xi_{1}}=\ldots=\pi_{\xi_{v}}=\ldots \quad\left(v<\omega_{\mathrm{cf}(\alpha)}\right) \\
\overline{\overline{\left\{\gamma \in M: h(\gamma)=\pi_{\xi_{0}}\right\}}}=\sum_{\xi_{\nu}<\omega_{c f(z)}} \aleph_{\xi_{\nu}}=\aleph_{\alpha} \\
h\left[M^{\prime}\right]=h\left[\left\{\gamma \in M: h(\gamma)=\pi_{\xi_{0}}\right\}\right] \subseteq W\left(\pi_{\xi_{0}}+1\right) .
\end{gathered}
$$

But then and
(j) If $\bar{N}=\aleph_{c f(x)}$, then let $\left\{\eta_{v}\right\}_{\nu<\omega_{c f(\eta)}}$ be an increasing sequence of ordinal numbers for which $\lim \eta_{v}=\eta$.
$\left(\mathrm{j}_{1}\right)$ If $\mathrm{cf}(\alpha)<\operatorname{cf}(\eta)$, then it follows from the inequality $N \subset W(\eta)$ that there exists an ordinal number $v_{0}<\omega_{\mathrm{cf}(\eta)}$, for which

$$
N \subseteq W\left(\eta_{v_{0}}\right) \subset W(\eta)
$$

$\left(\mathrm{j}_{2}\right)$ If $\operatorname{cf}(\alpha)>\operatorname{cf}(\eta)$, then let $N_{v}=N \cap W\left(\eta_{v}\right)$. It is clear that

$$
\bigcup_{v<\omega_{\mathrm{c} f(n)}} N_{v}=N
$$

Since $\omega_{\mathrm{cf}(\alpha)}$ is regular, there exists an ordinal number $v_{0}<\omega_{\mathrm{cf}(\eta)}$ such that

$$
\vec{N}_{v_{0}}=\aleph_{\mathrm{cf}(\alpha)}
$$

It follows that there exists an increasing sequence $\left\{\xi_{Q}\right\}_{\varrho<\omega_{c f(x)}}$ of the type $\omega_{\mathrm{cti}(\alpha)}$ such that

$$
N_{v_{0}}=\left\{\pi_{\xi_{e}}\right\}_{e<\omega_{c J(u)}}
$$

Thus we get from the definition of $\left\{\pi_{\xi}\right\}_{\xi<\omega_{c f(\alpha)}}$ that $M^{\prime}=\underset{v<\omega_{c f(\alpha)}}{ } M_{\xi_{v}}$. . $\aleph_{\alpha}=\sum \aleph_{\alpha_{\xi_{v}}}$ and

$$
h\left[M^{\prime}\right] \subset W\left(\eta_{v_{0}}\right) .
$$

Theorem 6. Let \aleph_{α} be a singular cardinal number and η an ordinal number smaller than ω_{α}. If to every element γ of $W\left(\omega_{\alpha}\right)$ there corresponds an ordinal number $h(\gamma)<\eta$, then the smallest ordinal number η_{0}, for which there exists a subset M of power \aleph_{α} of $W\left(\omega_{a}\right)$ such that

$$
h[M] \subset W\left(\eta_{0}\right) \cong W(\eta)
$$

is either of the first kind, i. e. $\eta_{0}=\tau_{0}+1$ or of the second kind with $\operatorname{cf}\left(\eta_{0}\right)=\operatorname{cf}(\alpha)$.
Proof. (i) $W\left(\eta_{0}\right)$ has a greatest element. In this case the power of the set M^{\prime}, for which $h\left[M^{\prime}\right]=\left\{\pi_{0}\right\}$, is \aleph_{α} and the power of the set $M^{\prime \prime}$, for which...

$$
h\left[M^{\prime \prime}\right] \cong W\left(\tau_{0}\right)
$$

is smaller than \aleph_{a}. Thus $\eta_{0}=\tau_{0}+1$.
(ii) $W\left(\eta_{0}\right)$ does not contain a greatest element. Then η_{0} is of the second kind. It follows from the definition of η_{0} and the corollary of theorem 5 that $\mathrm{cf}\left(\eta_{0}\right)=$ $=\mathrm{cf}(\alpha)$. Theorem 6 is proved. With the aid of theorem 6 we get

Theorem 7. The ordinal number β_{0} is either of the first kind or of the second kind with $\operatorname{cf}\left(\beta_{0}\right)=\operatorname{cf}(\alpha)$.

Proof of the theorem. (A) First we prove that (I) follows from (II). Suppose also that the proposition (II) holds. Put

$$
\left(N_{\gamma}^{N_{0}}\right)^{N_{\beta_{0}}}=N_{\beta o(\gamma)} .
$$

It follows from theorem 4, that

$$
\aleph_{\beta_{0}(\gamma)}=\left\{\begin{array}{lll}
\aleph_{\gamma}^{\aleph_{0}} & \text { for } & \operatorname{cf}\left(\beta_{0}\right)=\beta_{0} . \\
\aleph_{\gamma}^{\beta_{\beta_{0}}} & \text { for } & \operatorname{cf}\left(\beta_{0}\right)<\beta_{0} .
\end{array}\right.
$$

This implies that
for $\operatorname{cf}\left(\beta_{0}\right)=\beta_{0}$ and
for $\operatorname{cf}\left(\beta_{0}\right)<\beta_{0}$, i. e. in both cases $\aleph_{\beta_{0}(y)}^{N_{0}}=\aleph_{\beta\left(y_{0}\right)}$ holds. As the sets $f(x)$ are distinct it follows from this that the set $\bigcup_{x \in E} f(x)$ has the power \aleph_{α}. Thus, if \aleph_{α} is regular, we get by theorem 1 , that E has a subset with the property $T\left(\aleph_{\alpha}, \aleph_{\alpha}\right)$. Suppose now that \aleph_{α} is singular. Then $E^{\left(\beta_{0}\right)}$ has for every $\gamma, \beta<\gamma<\alpha$, a subset E_{γ} with the property $T\left(\aleph_{\beta_{0}(\gamma)+1}, \aleph_{\beta_{0}(\gamma)+1}\right)$, i. ${ }^{`} \mathrm{e}$.

$$
\overline{\bar{\Pi}}_{E_{y}} \leqq \aleph_{\beta_{0}(y)}<\aleph_{\beta_{0}(y)+1} .
$$

Let $S(\gamma)$ be the set of subsets $X \subset \Pi_{E_{\gamma}}$ with $\dot{\bar{X}}<\aleph_{\beta_{0}}$. It follows from theorem 3 that $\overline{\overline{S(\gamma)}} \leqq \aleph_{\beta_{0}(\gamma)}^{\aleph_{\beta_{0}}}=\aleph_{\beta_{0}(\gamma)}$. Hence, since for given γ the sets $f^{(\gamma)}(x)=f(x)-\Pi_{E_{\gamma}}\left(x \in E_{\gamma}\right)$ are mutually disjoint, we obtain that there exists an element X_{0} of $S(\gamma)$ and to this a subset E_{γ}^{\prime} of power $\aleph_{\beta_{0}(\gamma)+1}$ of E_{γ} such that $f^{\gamma}(x) \neq 0$ and

$$
f(x)=f^{(\gamma)}(x) \cup X_{0}
$$

for every $x \in E_{\gamma}^{\prime}$, i. e. E_{γ}^{\prime} has the property $T\left(\aleph_{\beta_{0}(\gamma)+1}, \aleph_{\beta_{0}}\right)$. It follows from theorem 2 that E has a subset with the property $T\left(\aleph_{\alpha}, \aleph_{\beta_{0}} \aleph_{\mathrm{cff}(\dot{\alpha})+1}\right)$.
(B) We prove now that from the proposition (I) follows the proposition (II). Suppose therefore that (II) does not hold. Then we prove that the proposition (I) is false.

Let β_{0} is an ordinal number of the first kind, i. e. $\beta_{0} \doteq \tau_{0}+1$. If (II) does not hold, then there exists an ordinal number $\dot{\gamma}_{0}, \beta<\gamma_{0}<\alpha$ for which

$$
\aleph_{\gamma_{0}}^{v_{\tau_{0}}} \geqq \kappa_{\alpha} .
$$

Let E_{1} be a subset of power $\aleph_{\gamma_{0}}$ of E and T_{1} a set of power \aleph_{α} of subsets of power $\aleph_{\text {ro }}$ of E_{1}. Let further $f(x)$ be a one-to-one mapping of E into T_{1}. It follows that if Γ is a subset of E with the property $T(\mathfrak{q}, \mathfrak{p})$. then $\mathfrak{q} \leqq \kappa_{\gamma_{0}}$, because the sets

$$
f^{\prime}(x)=f(x)-\Pi_{\Gamma} \subset E_{1}
$$

must be not empty and mutually disjoint for \mathfrak{q} elements x of Γ.
Let β_{0} be an ordinal number of the second kind. Then $\operatorname{cf}\left(\beta_{0}\right)=\operatorname{cf}(\alpha)$ by the theorem 7. Let $\left\{\alpha_{\eta}\right\}_{\eta<\omega_{c f(\alpha)}}$ and $\left\{\beta_{\eta}\right\}_{\eta<\omega_{c f} f(s)}$, be two increasing sequences of ordinal numbers such that $\lim _{\eta<\omega_{c f(\alpha)}} \alpha_{\eta}=\alpha$ and $\lim _{\eta<\omega_{c}(\alpha)} \beta_{\eta}=\beta_{0}$. We have two cases:
(i) there exists a smallest ordinal number $\eta_{0}<\omega_{\mathrm{cf}(\alpha)}$ and an ordinal number $\gamma_{0}, \beta<\gamma_{0}<\alpha$, such that $\mathbb{K}_{\gamma_{0}}^{* \rho \eta_{0}} \geqq \aleph_{\alpha}$;
(ii) for every $\varrho<\beta_{0}$ there exists an $\varrho^{\prime}<\beta_{0}$ such that $\kappa_{\gamma_{0} \varrho^{\prime}}^{{ }^{\prime}}>\kappa_{\gamma_{0}}^{{ }^{\circ}}$. In this case we assume that, for every $\eta<\omega_{\mathrm{cf}(\alpha)}, \beta_{\eta}$ is the smallest ordinal number such that

$$
\mathfrak{N}_{\gamma 0}^{\aleph_{\beta_{n}}} \geqq \aleph_{\alpha_{n}} .
$$

Let T_{η} be in both cases (but in the case (i) we assume that $\eta_{0} \leqq \eta<\beta_{0}$ holds) a set of power $\aleph_{\alpha_{n}}$ of subsets of power $\aleph_{\beta_{n}}$ of E_{1}, where $\bar{E}_{1}=\aleph_{\gamma 0}$. It is clear that the set

$$
T=\underset{\eta<\omega_{\mathrm{cff(} \mathrm{\alpha)}}}{ } T_{\eta}
$$

has the power \mathcal{K}_{α}. Let $f(x)$ be a one-to-one mapping of E into T. If Γ is a subset of E with the property $T(\mathfrak{q}, \mathfrak{p})$, then $\mathfrak{q} \leqq \kappa_{\gamma_{0}}$, because the sets $f^{\prime}(x)=f(x)-\Pi_{\Gamma} \subset E_{1}$ must be non empty and mutually disjoint for \mathfrak{q} elements x of Γ. The theorem is proved.

References

[1] G. Fodor, Some results concerning a problem in set theory, Acta Sci. Math., 16 (1955), 232-240.
[2] H. Bachmann, Transfinite Zahlen, Ergebnisse der Math. und ihrer Grenzgebiete. Neue Folge, Heft 1 (Berlin-Heidelberg-Göttingen, 1955).

