Equivalence of a problem of set theory to a hypothesis concerning the powers of cardinal numbers

By G. FODOR in Szeged

To Professor Béla Szőkefalvi-Nagy on his 50th birthday

Let *E* be an arbitrary set of power \aleph_{α} and suppose that with every element *x* of *E* is associated a non empty set f(x) such that for any $x \in E$ the power of the set f(x) is smaller than a given cardinal number \aleph_{β} which is smaller than \aleph_{α} and $f(x) \neq f(y)$ ($x \neq y$). We say that the subset Γ of *E* has the property T(q, p), where q and p are two cardinal numbers such that $p \leq q \leq \aleph_{\alpha}$, if

$$\overline{\bigcup_{x\in\Gamma} f(x)} = \mathfrak{q} \quad \text{and} \quad \overline{\bigcup_{\substack{x,y\in\Gamma\\x\neq y}} (f(x)\cap f(y))} < \mathfrak{p}.$$

We define the ordinal number β_0 as follows:

Let β_0 be the smallest ordinal number $\rho < \beta$ such that the set $E^{(\rho)}$ of the elements $x \in E$ for which $\overline{f(x)} < \aleph_{\rho}$ has the power \aleph_{α} .

Consider now the following propositions.

(I) Under the above conditions E has a subset Γ with the property $T(\aleph_a, \aleph_a)$. (II) For every ordinal number $\gamma, \beta < \gamma < \alpha$, the inequality

$$(\chi^{\underline{\aleph}_{\beta_0}})^{\underline{\aleph}_{\beta_0}} < \chi_{\alpha}$$

holds, where $\aleph_{\gamma}^{\aleph_{\beta_0}} = \sum_{\varrho < \beta_0} \aleph_{\gamma}^{\aleph_{\varrho}}$.

We shall prove in this paper the following

Theorem. The propositions (I) and (II) are equivalent.

We shall use the following notations. For any subset Γ of E let

$$\Pi_{\Gamma} = \bigcup_{\substack{x, y \in \Gamma \\ x \neq y}} (f(x) \cap f(y)).$$

For any cardinal number r we denote by r^+ the cardinal number immediately following r. The symbols \overline{S} and $\overline{\gamma}$ denote the cardinal numbers of the set S and of the ordinal number γ , respectively. For every ordinal number τ , $\aleph_{cf(\tau)}$ denotes the least cardinal number n such that \aleph_{τ} can be expressed as the sum of n cardinal numbers each $<\aleph_{\tau}$. If \mathfrak{m} and \mathfrak{n} cardinal numbers, then we define $\mathfrak{m}^n = \sum_{r < n} \mathfrak{m}^r$. Put, for every ordinal number γ , $W(\gamma) = \{\xi: \xi < \gamma\}$. In the proof of the theorem we shall use the following theorems:

Theorem 1. If \aleph_{α} is regular and $\bigcup_{x \in E} f(x)$ has the power \aleph_{α} , then E has a subset with the property $T(\aleph_{\alpha}, \aleph_{\alpha})$. (See [1], theorem 1.)

Theorem 2. Let \aleph_{α} be a singular cardinal number, \mathfrak{r}_0 a cardinal number which is smaller then \aleph_{α} and $\{\aleph_{\xi}\}_{\xi < \omega_{cf(\alpha)}}$ a sequence of regular cardinal numbers such that $\aleph_{\sigma} > \aleph_{\tau} (\sigma > \tau)$; max $\{\aleph_{cf(\alpha)}, \aleph_{\beta}, \mathfrak{r}_0\} < \aleph_{\xi} < \aleph_{\alpha}$ and $\aleph_{\alpha} = \sum_{\xi < \omega_{cf(\alpha)}} \aleph_{\xi}$. If for every $\xi < \omega_{cf(\alpha)}$, E_{ξ} is a subset of power $\geq \aleph_{\xi}$ of E such that E_{ξ} has a subset E_{ξ}' with the property $T(\aleph_{\xi}, \mathfrak{r}_0)$, then E has a subset with the property $T(\aleph_{\alpha}, [\aleph_{cf(\alpha)} \mathfrak{r}_0]^+)$. (See [1], theorem 4.)

Theorem 3. If M. is an infinite set of power m, and if $n \le m$, then the set S of subsets $X \subset M$ with $\overline{X} < n$ has the power $\overline{S} = \sum_{r < n} m^r$. (See for example the theorem.) 3 of § 34 in [2].)

Theorem 4.

$$(\mathfrak{m}^{\aleph_{\varrho}})^{\aleph_{\mu}} = \begin{cases} \mathfrak{m}^{\aleph_{\varrho}} & for \quad \mu \leq \mathrm{cf}(\varrho), \\ \mathfrak{m}^{\aleph_{\varrho}} & for \quad \mathrm{cf}(\varrho) < \mu \leq \varrho + 1, \\ \mathfrak{m}^{\aleph_{\mu}} & for \quad \mu > \varrho. \end{cases}$$

(See theorem 7 of \S 34 in [2].)

Theorem 5. Let \aleph_{α} be a singular cardinal number and η an ordinal number smaller than ω_{α} . If to every element γ of $W(\omega_{\alpha})$ there corresponds an ordinal number $h(\gamma) < \eta$, then there exists a subset M of power \aleph_{α} of $W(\omega_{\alpha})$ such that

$$\overline{h[M]} \leq \aleph_{\mathrm{cf}(\alpha)}.$$

Proof. Let $\{\alpha_{\xi}\}_{\xi < \omega_{cf(\alpha)}}$ be an increasing sequence of ordinal numbers such that $\lim_{\xi < \omega_{cf(\alpha)}} \alpha_{\xi} = \alpha$ for every $\xi < \omega_{cf(\alpha)}, \ \omega_{\alpha_{\xi}} > \eta$ and $\omega_{\alpha_{\xi}}$ is regular. It is clear that

$$W(\omega_{\alpha}) = \bigcup_{\xi < \omega_{cf(\alpha)}} W(\omega_{\alpha\xi}).$$

Let us define $g_{\xi}(\gamma)$ on $W(\omega_{\alpha\xi})$ as follows:

$$g_{\xi}(\gamma) = h(\gamma) \quad (\gamma \in W(\omega_{\alpha_{\xi}})).$$

Since $\omega_{\alpha_{\xi}}$ is regular and $\omega_{\alpha_{\xi}} > \eta$, there exists an ordinal number $\pi_{\xi} \in W(\eta)$ and a subset M_{ξ} of power $\aleph_{\alpha_{\xi}}$ of $W(\omega_{\alpha_{\xi}})$ such that

$$g_{\xi}[M_{\xi}] = \{\pi_{\xi}\}.$$
$$M = \bigcup_{\xi < \omega_{cf(\alpha)}} M_{\xi}.$$

Let

Clearly the power of M is \aleph_{α} . Let further N be the set of all distinct elements of the sequence $\{\pi_{\xi}\}_{\xi < \omega_{cf(\alpha)}}$. It is clear that

$$h[M] = N$$

Since $N \leq \bigotimes_{cf(\alpha)}$, theorem 5 is proved.

G. Fodor

Corollary. If η is an ordinal number of the second kind and $cf(\eta) \neq cf(\alpha)$, then there exists a subset M' of power \aleph_{α} of M and an ordinal number $\eta' < \eta$ such that

$$h[M'] \subseteq W(\eta').$$

Proof. (i) If $\overline{N} < \aleph_{cf(\alpha)}$, then it follows from the regularity of $\omega_{cf(\alpha)}$ that there exists an increasing sequence $\{\xi_{\nu}\}_{\nu < \omega_{cf(\alpha)}}$ of the type $\omega_{cf(\alpha)}$ of ordinal numbers smaller than $\omega_{cf(\alpha)}$ such that

$$\pi_{\xi_0} = \pi_{\xi_1} = \ldots = \pi_{\xi_v} = \ldots \quad (v < \omega_{\mathrm{cf}(\alpha)}).$$

But then
$$\overline{\{\gamma \in M : h(\gamma) = \pi_{\xi_0}\}} = \sum_{\xi_{\nu} < \omega_{cf(\alpha)}} \aleph_{\xi_{\nu}} = \aleph_{\alpha}.$$

$$h[M'] = h[\{\gamma \in M : h(\gamma) = \pi_{\xi_0}\}] \subseteq W(\pi_{\xi_0} + 1).$$

(j) If $\overline{N} = \bigotimes_{cf(x)}$, then let $\{\eta_{\nu}\}_{\nu < \omega_{cf(\eta)}}$ be an increasing sequence of ordinal numbers for which $\lim_{\nu < \omega_{cf(\eta)}} \eta_{\nu} = \eta$.

(j₁) If $cf(\alpha) < cf(\eta)$, then it follows from the inequality $N \subset W(\eta)$ that there exists an ordinal number $v_0 < \omega_{cf(\eta)}$, for which

$$N \subseteq W(\eta_{y_0}) \subset W(\eta).$$

(j₂) If $cf(\alpha) > cf(\eta)$, then let $N_{\nu} = N \cap W(\eta_{\nu})$. It is clear that

$$\bigcup_{<\omega_{cf(\eta)}} N_{v} = N.$$

Since $\omega_{cf(a)}$ is regular, there exists an ordinal number $v_0 < \omega_{cf(n)}$ such that

 $\overline{N}_{v_0} = \aleph_{cf(\alpha)}.$

It follows that there exists an increasing sequence $\{\xi_{\varrho}\}_{\varrho < \omega_{cf(z)}}$ of the type $\omega_{ct(z)}$ such that

$$N_{v_0} = \{\pi_{\xi_{\varrho}}\}_{\varrho < \omega_{cf(z)}}.$$

Thus we get from the definition of $\{\pi_{\xi}\}_{\xi < \omega_{cf(\alpha)}}$ that $M' = \bigcup_{\nu < \omega_{cf(\alpha)}} M_{\xi_{\nu}}$ has the power $\aleph_{\alpha} = \sum \aleph_{\alpha_{\xi_{\nu}}}$ and

$$h[M'] \subset W(\eta_{y_0}).$$

Theorem 6. Let \aleph_{α} be a singular cardinal number and η an ordinal number smaller than ω_{α} . If to every element γ of $W(\omega_{\alpha})$ there corresponds an ordinal number $h(\gamma) < \eta$, then the smallest ordinal number η_0 , for which there exists a subset M of power \aleph_{α} of $W(\omega_{\alpha})$ such that

$$h[M] \subset W(\eta_0) \subseteq W(\eta),$$

is either of the first kind, i. e. $\eta_0 = \tau_0 + 1$ or of the second kind with $cf(\eta_0) = cf(\alpha)$.

Proof. (i) $W(\eta_0)$ has a greatest element. In this case the power of the set M', for which $h[M'] = {\pi_0}$, is \aleph_{α} and the power of the set M'', for which

$$h[M''] \subseteq W(\tau_0),$$

is smaller than \aleph_{α} . Thus $\eta_0 = \tau_0 + 1$.

A problem of set theory

(ii) $W(\eta_0)$ does not contain a greatest element. Then η_0 is of the second kind. It follows from the definition of η_0 and the corollary of theorem 5 that $cf(\eta_0) = cf(\alpha)$. Theorem 6 is proved. With the aid of theorem 6 we get

Theorem 7. The ordinal number β_0 is either of the first kind or of the second kind with $cf(\beta_0) = cf(\alpha)$.

Proof of the theorem. (A) First we prove that (I) follows from (II). Suppose also that the proposition (II) holds. Put

$$(\aleph_{\gamma}^{\underline{\aleph}\beta_{0}})^{\underline{\aleph}\beta_{0}} = \aleph_{\beta_{0}(\gamma)}.$$

It follows from theorem 4, that

$$\aleph_{\beta_0(\gamma)} = \begin{cases} \aleph_{\gamma}^{\aleph_{\beta_0}} & \text{for } cf(\beta_0) = \beta_0 \\ \aleph_{\gamma}^{\aleph_{\beta_0}} & \text{for } cf(\beta_0) < \beta_0. \end{cases}$$

This implies that

$$\aleph_{\beta_0(\gamma)}^{\aleph_{\beta_0}} = (\aleph_{\gamma}^{\aleph_{\beta_0}})^{\aleph_{\beta_0}} = \aleph_{\gamma}^{\aleph_{\beta_0}} = \aleph_{\beta_0(\gamma)}$$

for cf $(\beta_0) = \beta_0$ and

$$\aleph_{\beta_{0}(\gamma)}^{\aleph_{\beta_{0}}} = \sum_{\varrho < \beta_{0}} \aleph_{\beta_{0}(\gamma)}^{\aleph_{\varrho}} = \sum_{\varrho < \beta_{0}} (\aleph_{\gamma}^{\aleph_{\beta_{0}}})^{\aleph_{\varrho}} = \sum_{\varrho < \beta_{0}} \aleph_{\gamma}^{\aleph_{\beta_{0}} \cdot \aleph_{\varrho}} = \sum_{\varrho < \beta_{0}} \aleph_{\gamma}^{\aleph_{\beta_{0}}} = \aleph_{\gamma}^{\aleph_{\beta_{0}}} \cdot \aleph_{\beta_{0}} = \aleph_{\beta_{0}(\gamma)}$$

for $cf(\beta_0) < \beta_0$, i. e. in both cases $\aleph_{\beta_0(\gamma)}^{\underline{\aleph},\underline{\theta}_0} = \aleph_{\beta(\gamma_0)}$ holds. As the sets f(x) are distinct it follows from this that the set $\bigcup_{x \in E} f(x)$ has the power \aleph_{α} . Thus, if \aleph_{α} is regular, we get by theorem 1, that E has a subset with the property $T(\aleph_{\alpha}, \aleph_{\alpha})$. Suppose now that \aleph_{α} is singular. Then $E^{(\beta_0)}$ has for every γ , $\beta < \gamma < \alpha$, a subset E_{γ} with the property $T(\aleph_{\beta_0(\gamma)+1}, \aleph_{\beta_0(\gamma)+1})$, i. e.

$$\Pi_{E_{\gamma}} \leq \aleph_{\beta_0(\gamma)} < \aleph_{\beta_0(\gamma)+1}.$$

Let $S(\gamma)$ be the set of subsets $X \subset \Pi_{E_{\gamma}}$ with $\overline{X} < \aleph_{\beta_0}$. It follows from theorem 3 that $\overline{S(\gamma)} \leq \aleph_{\beta_0(\gamma)}^{\aleph_{\beta_0}} = \aleph_{\beta_0(\gamma)}$. Hence, since for given γ the sets $f^{(\gamma)}(x) = f(x) - \Pi_{E_{\gamma}}$ ($x \in E_{\gamma}$) are mutually disjoint, we obtain that there exists an element X_0 of $S(\gamma)$ and to this a subset E'_{γ} of power $\aleph_{\beta_0(\gamma)+1}$ of E_{γ} such that $f^{\gamma}(x) \neq 0$ and

$$f(x) = f^{(\gamma)}(x) \cup X_0$$

for every $x \in E'_{\gamma}$, i. e. E'_{γ} has the property $T(\aleph_{\beta_0(\gamma)+1}, \aleph_{\beta_0})$. It follows from theorem 2 that E has a subset with the property $T(\aleph_{\alpha}, \aleph_{\beta_0} \aleph_{cf(\alpha)+1})$.

(B) We prove now that from the proposition (I) follows the proposition (II). Suppose therefore that (II) does not hold. Then we prove that the proposition (I) is false.

Let β_0 is an ordinal number of the first kind, i. e. $\beta_0 = \tau_0 + 1$. If (II) does not hold, then there exists an ordinal number γ_0 , $\beta < \gamma_0 < \alpha$ for which

$$\aleph_{\gamma_0}^{\aleph_{\tau_0}} \geqq \aleph_{\alpha}.$$

Let E_1 be a subset of power \aleph_{γ_0} of E and T_1 a set of power \aleph_{α} of subsets of power \aleph_{τ_0} of E_1 . Let further f(x) be a one-to-one mapping of E into T_1 . It follows that if Γ is a subset of E with the property T(q, p) then $q \leq \aleph_{\gamma_0}$, because the sets

$$f'(x) = f(x) - \prod_{\Gamma} \subset E_1$$

must be not empty and mutually disjoint for q elements x of Γ .

Let β_0 be an ordinal number of the second kind. Then $cf(\beta_0) = cf(\alpha)$ by the theorem 7. Let $\{\alpha_\eta\}_{\eta < \omega_{cf(\alpha)}}$ and $\{\beta_\eta\}_{\eta < \omega_{cf(\alpha)}}$ be two increasing sequences of ordinal numbers such that $\lim_{\eta < \omega_{cf(\alpha)}} \alpha_\eta = \alpha$ and $\lim_{\eta < \omega_{cf(\alpha)}} \beta_\eta = \beta_0$. We have two cases:

(i) there exists a smallest ordinal number $\eta_0 < \omega_{cf(\alpha)}$ and an ordinal number γ_0 , $\beta < \gamma_0 < \alpha$, such that $\aleph_{\alpha}^{\aleph, \rho_0} \ge \aleph_{\alpha}$;

(ii) for every $\rho < \beta_0$ there exists an $\rho' < \beta_0$ such that $\aleph_{\gamma_0}^{\aleph_{\rho'}} > \aleph_{\gamma_0}^{\aleph_{\rho'}}$. In this case we assume that, for every $\eta < \omega_{cf(\alpha)}$, β_{η} is the smallest ordinal number such that

$$\aleph_{\gamma_0}^{\alpha\beta_\eta} \geq \aleph_{\alpha_\eta}.$$

Let T_{η} be in both cases (but in the case (i) we assume that $\eta_0 \leq \eta < \beta_0$ holds) a set of power $\aleph_{\alpha_{\eta}}$ of subsets of power $\aleph_{\beta_{\eta}}$ of E_1 , where $\overline{E}_1 = \aleph_{\gamma_0}$. It is clear that the set

$$T = \bigcup_{\eta < \omega_{cf(\alpha)}} T_{\eta}$$

has the power \aleph_{α} . Let f(x) be a one-to-one mapping of E into T. If Γ is a subset of E with the property T(q, p), then $q \leq \aleph_{\gamma_0}$, because the sets $f'(x) = f(x) - \prod_{\Gamma} \subset E_1$ must be non empty and mutually disjoint for q elements x of Γ . The theorem is proved.

References

 G. FODOR, Some results concerning a problem in set theory, Acta Sci. Math., 16 (1955), 232-240.
H. BACHMANN, Transfinite Zahlen, Ergebnisse der Math. und ihrer Grenzgebiete. Neue Folge, Heft 1 (Berlin-Heidelberg-Göttingen, 1955).

(Received July 15, 1962)