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On commutmg umtary operators in spaces with indefinite metrlc
By M. A NAIMARK in Moscow (USSR)

To Professor Béla 'Szokefallll-Nagy on his-50th birthday

Let H be a Hilbert space with the usual infer produet [x, ¥] and with an inde- -
finite inner product (x, y). Wthh for some complete orthonormal system {e,} in
H, is defined by : .

o ) = Zafn,, szc,ﬁ,',
where‘ ‘ o . > . '
@ o Gelxed =il

% is a fixed positive integer-and » <dim H. Such a space H will be called a space
T, with indefinite metric. Another, axiomatic definition of. the space IT, was given
by L. S. Ionvipov and M. G. KREIN [1]; we shall follow here the termmology and
use the results of this paper.

. A linear operator U in I, is called umtarylf it maps H onto IT,, and preserves
the scalar product (x,y), i.e. .

(Ux, Uy) = (x, y) for all x,y€ll,.

By a theorem of L. S. PONTRYAGIN [2], there exists, for every unitary operator U
in I1,,, a »-dimensional non-negative subspace, which is invariant with respect to U.1)
-This theorem plays an important role in the study of unitary operators in IT,.

It is therefore natural to expect that the followmg theorem 1 will be useful
for the theory ‘of unitary group representations in 1T, for the theory of rings of
operators in IT,, and for other topics?). :

1) L. S. PONTRYAGIN proved his. theorem for self-adjomt operators (with respect to (x, y)),
using the Cayley transformation one easily sees (cf. [1]) that the theorem of L. S. PONTRYAGIN is
equivalent to the theorem_for unitary operators cited above.” Another, simpler proof of the
.theorem for unitary. (and also for more general) operators was given by M. G. KReIN {2] (see also
1. S. Touvibov and M. G. KRreN . [1]; for further generlizations of this - theorem see M .
BRODSKII [4] and H. LANGER (5], [6)). . - ’

2) Theorem 1 has been dnnounced by the author in the Note [8] and a proof was there glven' _
for x=1; various applications of -the theorem will be treated in further publications. We note.
that” theorem 1 (see also proposition: V1. and coro]lary 2 below) contains the so]utlon for II,‘
of a problem posed by PHILLIPS [71. . ;
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Theorem 1. Let U be a set of commutlng unitary operators in I1,; then there

exists in I, a x-dimensional non-negatwe subspace which is invariant with respect
to all U Ell

Proof 1. Let {e,} be a complete orthonormal system (with respect to [x, y])
in H,,, such that (1) and (2) hold; it follows from (1) and (2) that we also have

3 . E=(x,e) for a=1, ...,

@ P g, = —(x,e,) for a>y;.,-v
Put for any x¢eIl, )

® L x= Zhe .--zca o
then we have the relation ‘ :

©) o Cox= e = xt4xT

and using (1) and (2) we get: -

@) [x-y] (x+,x¥)—(x", x -), (X ») =& xH)+(xm, x7).
~ We note also that . '

- ®) . (x+, x4) =0, (-, x- )=0,

and the equality sign holds in (8) only if x* = 0 or x~ —0 respectively. _
Let X=(x{, ..., X)) be a system of » vectors Xy, ..., X, €IT, satisfying the follow-
ing conditions: ‘ .
o) Xy, ..., X, are linearly 1ndependent
B) the . u-dlmensmnal subspace Uiy generated by X1, ..., X, 1S non-negative.

I. The vectors x1 s -y XX also are linearly independent. -
In fact, let 2’ cxt =0 for some numbers c,. Put x=2 ¢,x,; ‘then
R a=1 - a=1
=Z' cxt =0. On the other hand, by B), (7), and (8),
a=1 . . ! '
0§(x x) = (x+ xP)+@E=,x7) = (x—, x7) = 0

thus (x—, x~)=0, 1mplymg x~=0. Therefore, x= x+ +x-=0,i.e. > ex,=0.
a=1

By .o) this implies- ¢;. —c2 =...=c,=0 concluding the proof of I.

Each vector x; can be- con51dered as a column of its coordinates &,;=[x;, e, X
thus X will be a matrlx X=|¢&,;l with » columns; on the other hand the x{, ..., x
define a »Xx-matrix X+ ={&,lly,; . If X satisfies «) and f3), then by I the

inverse (X'+)~! exists. A system X= (xl, ... X,) satisfying «) and f) will be. called
normed, if X + =1, where 1 denotes the x X x-identity matrix. If X is not normed, then
the matrix X =X (X +)~! will define a normed system. We denote by K the set of all
normed systems satisfying «) and f). Two systems' X = (X1, s %50, X7 =(x1, oy X3)
define the same subspaceifand onlylf X’ = XA, where 4 is a hon-singular % X x-matrlx.

L
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Partlcularly, X and X X(x +)'1 deﬁne the same subspace thus every non- negatlve
»-dimensional subspace is defined by a system X=(x,, ..., x,) € K. If two systems
X, X’ €K define the same subspace, then X’ =XA and hence X ‘= XA, But
X'+ =X7*=1 and therefore A=1.

" In other words: . - o -

II. If Py denotes the subspace defined by a system X EK then the correspon-.

dence X —~My is a one-to-one mappmg of K onto the set of all non-negative x-dimen-
sional subspaces in IT,,. »

2. IfX= (xl, ...5 ,)EK then (clx1+ A ex,, clx1+ +cx,‘)20 holds for
any complex €y, -.vs Cx. In virtue of (7) this means that =

(9) [c1x1+ +cx,c1x1+ +cx]<[c1x1+ +cx,f,c1x1+ +cx+]

But condltlon X *= 1 implies that the rlght hand side of (9) is 2’ |c; |2 50 that (9)

-can be wrltten as , o »
(10) - ' 52 [x,,x,,]c Cp= 2 |e;1%.
. . a, f= Jj= R

Conversely; if '(10) is satlsﬁed and if we put x; = e +xj ,\ =1, ,x, we get'a
system X=(x,, ..., x,) €K If , : . o
' : S {1 for o’ =a- . .

Cpr = : .

: . ; ' 0 for o #a
~ then (10) takes the form : '

ay : R £ on B
~and hence L C o
a - A S T
' . ’ : Ca=1 T .

By (5 Ieacb x,;' can be represented in the _fc'>rr_‘n" '

13y - S X ;ﬂ;;él;ae:ﬂ where 5, =[xz, el
thus (1.2‘)A can be written as .'_ : . , |
a3 AN

: Denote by $ the Hilbert space of all sequences &= {éﬂa, oc—] coy 23 B>} with
the norm | : :

-IIéll (Z"Zlépa )

' and let Q be the ball ||é||2<w in.9. Thén (13) and (14) mean:

L The correspondence X —»é {ém, a=1,..,x%;B>x}isa one-to-one mappmg' :
ofK onto a set QICQ .
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The ball Q is known to be bicompact in the weak topology of $. On the other
hand @, is closed®) and hence also bicompact. In fact by (10) and (13) teQ, if
and only if

as a >

y>x

2, *

2 iyac = Z; |cj|.2'

a=

Let I' be a finite set_{y,, y,, , y,,} and G be the family of all finite sets I' (with
any number of elements). Denote by Q(I, ¢y, ..., ¢,) the set of all £€9 satisfying
the inequality . A : . '

(16)

TMx

>
2 &ulipcacs= 2 eyl
lye . ji=1

a,

for fixed ¢y, ..., ¢, and I, and let Q(cy, ... C) denote the set of all £c§ satisfying
(15) for fixed ¢y, ..., ¢,. Each &, is a continuous function of &, hence the left hand
side of (16) also is a continuous function. Therefore, O, ¢y, ..., ¢ is closed: But

' Q(cl’t"’cx)=rDGQ(F:cl’ ,C,()
and ’ '

_Ql = ﬂ Q(CD cr5 Cy)y
ClyererCx :

where the last intersection is taken over all syétems €L,y -5 €y Of coxnplex numbers.
Thus Q(¢q, ..., ¢,) and Q, are also closed and Q, is a bicompact set.
" Now we show that Q1 is a convex set. Denote by /2 the »-dimensional Hilbert

space of all c=(cy, ..., ,,) with the inner product (c, ¢’) = 2 ciCj and let I be the
Hilbert space of all sequences = {117, y>ux} satisfying 2 |r,y| < oo with the inner
product - '
: M) = g My

SR

Then in virtue of (15) Q, can be regarded as the set of all bounded operators
n, = 2'1 éyaca

frbrn 12 to I with norm =1. As the last set is convex, Q, is also convex.

3. Let X=(x,, ..., x,) be a system satisfying «) and ) (p. 178), and let U be
‘a unitary operator in IT,. Then the system Y =(Ux,, ..., Ux,) satisfies also o) and

p. o |
In fact, since U is unitary and x,, ..., x, are linearly independent, Ux,, ..., Ux,
are also linearly independent. Further, using. f) for x,, ..., x, we have :

( Z Cy Ux)=(U 2 CaXyy U 2 Caxa>=<,2 CuXys 2 Cana> =0
P a=1 ae=1 - a=1. a=1

3) In the following all iopological notions in O will be cc’)nsidéred in the weak topology of ©.

Mx

1

fi
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Particularly, U transforms every sYstein X €K (cf. p. 178) into a system Y.satisfying
a) and ), hence by I the matrix (Y +)~! ex1sts We denote by ¥V, the (non-linear)
operator defined by : .

(17) ' VUX Y(Y*)~ ' where Y= (le, vees Uxx).

As VX €K, the operator- ¥, transforms K into itself. By virtue of I ¥y can also

be considered as an operator V transforming @, into itself. This operator .V, is

continuous in Q. In fact, let 1T+ (and II ~) denote the set of all. xEH for which
x~=0 (resp x*+=0); then in v1rtue of (6) and (7) o

(18) S L H =I+ell-

. where H + and IT-are orthogonal with respect to (x y) and also with respect to

[x, ¥]. According to the decomposition (18) U can be given by a matrix

19 ., ‘U'AB ' i

where A, B, C D are bounded operators; A is an operator inIlI+, D is an operator_

_in II-, B is an operator from IT~ into IT* and C is an operator from 1+ into”

nm-. If we use the orthonormal system {e,} and the decompositions (5), we see

that IT + and IT ~ coincide with the spaces /2 and /%, and A, B, C, D are represented
by matrices. Moreover, the systems X¢X are represented by matrices

1
13

where 1 is the » X »-identity matrix and in- v1rtue of (19). Y= (le, ..-., Ux,;) Ameans

that
el

~

X=

C+ D¢
Thus Y+ = A+ B¢ and V¢ = (C+DEY(A+BE)~1. As A, B, C, D are bounded,
the functions & ~C+DE and &—~A+ BE are continuous. Moreover A+ B¢ is a
x X x-matrix and: (4-+BE)~! exists; hence the function &-—(4+ BE)~! is also .
continuous. Thus the function & Vyé = (C+ DE)(A+ BE)~* is also continuous.
" Therefore Vy is a continuous transformation into itself of the convex: bicompact
set @, and hence Vy has a fixpoint in Q,. Let ¢ be such a ﬁxpomt i.e. ‘

Ve =<
In virtue of (17) and III thls means that
Y(Y+)‘1—'X hence Y=XY*

1. €. the systems Yﬁ(le, ey Ux,,) and X —(xl, ..., x;) define the same subspace o
Py, this means that Py is invariant with respect to U. So we have proved the
existence of a non-negative’ x-dlmensmnal subspace ‘whieh is invariant with respect -
to U. 9.

1) “The argument in sections 2 and 3 is a slight modification of the proof of theorem 3. 1 in [1].'
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- 4, Wehave proved in section 3, that every ﬁxpoint & of Vyin Q, defines a non-
negative x-dimensional subspace SUEX in IT,, which is invariant with respect to U.

Conversely, let M be any non-négative x-dimensional subspace in T, which
is invariant with respect to U. In virtue of II M =My for some umque]y defined
" X€K and the invariance of 9ty means that X (x1,...,x,)and Y=(Ux,, ..., Ux,)
define the same subspace, i.¢. : S

20 g Y=XA4 ‘
“where A4 is a x X x-matrix. As X+ =1 this implies Y+ %X¥A=A and hence

Y=XY+, Y(¥Y*)- =X |
But thls means that V€= é, where ¢ is defined by A

- ol

1 e. é s a ﬁxpomt of VU In other words:

1V. The mappings Viy«X~& in propositions ll and 1 define_a one-to-one
correspondence My~& between all non-negative x-dimensional subspaces M, which
- are invariant with respect to' U and all fixpoints € in Q, of V.

5. Denote by @y the set of all fixpoints of ¥y in Q. As Vy is continuous Qy
is closed. In virtue of IV our theorem will be proved if we show that the intersection
of all @, (U€) is not void. But @, being bicompact it suffices to prove that the
intersection of every finite system Qy,, ..., Qy, (U;€N) is not'void. In virtue of
IV this means that for every finité system U 1s ey Uy of commutmg unitary operators
there exists a non negative x-dimensional subspace which s 1nvanant with res-
pect to every U; (j=1,..., n). o

We prove ﬁrst the followmg weaker assertion:

- V. For any commuting unitary operators Uy, ..., U, in I, a non-negative subspace
92#(0) (not necessartly x-dimensional ) exists, whzch is muarrant with respect fo

s U,

. We prove this proposition by induction with respect to #. For # =1 the assertion
V follows from the assertion proved insection 3. We suppose that the assertion is
true for some » and prove it to be also true for n+1. '

LetU,, ..., U,, U,,, be commuting unitary operators in IT,.. By our assumption
a non-negative subspace 9t 5 (0) exists, which is invariant with respect to U, , ..., U,;
by Lemma 1.2 in [1] M is finite dimensional and dim N =x. The restrictions of

u,.. . to 9 are commuting linear operators in the finite dimensional space
9% Hence they have a common ejgenvector, say Xo #0 in N. Thus
(21) o Uxg=12;x, for _]-—1

where A; is the elgenvalue of U correspondmg to xg; as xg €M,

(22) . - (xO, xo) =0.
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Denote by 3" the set of all vectors xell, satisfying
- (23) . Ux=2Ax for j=1,..;n

Then by (24) we have xq €.
Moreover we have
(24 . U =0

In fact, if x€Y, i. e. (23) holds, then U, +1Ux A; U,,“x i e U; U,,Hx—/l U,,Hx
. This means that. U, " < N’. Replacing in th1s argument +1 by Uil we also-
get U LMW W, hence N c U, . N concluding the proof of (24). As 9’ contains
. the non-negative vector x,, theorem 4. 4 in [1] can be applied to " and U, +,. Thus
"9 contains a non-negative subspace 67~ (0) which is invariant with respect to

U,+,. By (23) 9 is also invariant with respect to Uy, ..., U,. This concludes the
proof of proposition V. ' ,

We prove now the followmg proposmon

, VL. Let 9(#(0) be a non-negative subspace, which is invariant with respect to
Uy, ..., U,. If diim %t <« then a non- negative subspace Ity DN-exists, N, =N, which
is also mvarlam‘ with respect to Uy, ..., U,.

If proposition VI is proved then applying it first to 9%, then to 9, and so on,
we get after a finite number of steps a x-dimensional non-negative subspace Mt
which is invariant with respect to U,, ..., U, and this concludes the proof of Theo- .
rem 1. So, we turn to the proof of proposrtron VL

.Let d1m M=o <x. Only the following cases are possrble }

a) N is pos1t1ve Then 9N+ is a space IT,_,, and N is also invariant®) with
respect to U,, ..., U,. Applying proposition V to.the restrictions of Uy, ..., U,

"to N+ we get a non- negative subspace N <N+, N’ =(0), which is invariant with
respect to Uy, ..., U,. Put N, = NON'. Then Sﬁcﬁll, n #9?1, N, is non-negative
and invariant w1th respect to Uy, ..., U,.

' b) Nis a nullspace. Let G be a subspace in I, skewly related to 9N (cf [1] -
deﬁmtron 4.1); put £ = N+ G and H=N". Then F is a 2xo-d1mensronal space

hence F*- is a space I,_,,. Thus

=+ G)@H,{ —xpe

- Using the -argument in_the proof,of_ Lemma 4. 1in [1] we get

;o,

@) =N =NDI,_,,.
‘As 9t | H, relation (25) shows that the factor-space H H/SJI is 1somorphlc to H,‘ —xo
and hence is also a space IT,_, . On the other hand, M being invariant with respect

to the unitary operators Ul, .., U, the subspace H=N" has the same property

(see the footnote-°); hence. the Uj ‘(j=1, ...,n) induce commuting unitary
: operators U ( j=1,. n) in H= H In virtue of .V, theré exists_a non-negative

x—¥g*

5) In fact as N is finite d1mensrona1 and U; are unitary, we have U N=N and therefore for
xeNL, yeN we get

(Usx, )= (x, Ui y)=0 ;
in virtue of Urtyed. Thrs shows, that UxeN+, o
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subspace 9t #(0), N  H, which is invariant with respectto U, ..., U,. Lét f be the
natural mapping of H onto H; put %, =f"'(9). Then NcN;, N=N,, N, is
non- negatlve and invariant w1th respect to Uy, ..., U,.

c) Nis not a nullspace, but it contains nullvectors By the Cauchy—Bunya-
kovsky inequality, valid in R, each such nullvector is isotropic for 0%, hence the
set of all nullvectors in 9t coincides with the isotropic subspace of. 9, which we
denote by . By our assumption (0) ="' N, N #N, and therefore 0<x" <x,,
‘where »" =dim 9. Let G-be a subspace in II,;, which is skewly related to 2. Put

. N ={x:x€N, x LG}=NN G
Then ‘ ' ,
(26) . N=NoN".

. In fact, N, N"<N and 92’_1_92 hence N GN" I and we have to prove the
~opposite inclusion ' GNR”SN. By Lemma 4.1 in [1] we have

o=%+G*+

so that any xEH can be umquely represented in the form x = y+z where y e,
z€GH. Ifnowx €N, thenz = x -~y eNthus ze NNG*=N"and x = y+zeN N’
concluding the proof of (26). :

The subspace 0" is positive. In fact, if x€N” and (x, x) =0 then x is an iso-
tropic vector for N, hence x €. Thus x is an element of N’, which is orthogonal
to G; by the definition of G this is impossible if x=0. The last argument show
that 91’09}”—(0) so that in v1rtue of (26)

@7 %o = % +x", where, " =dim "
Now put (cf. (26)) | | '

(28) F=%4+G=WoW)+G =N oO+6)
and . | - ‘

(29) S H=%"*", H=F*

CAs W isa p051t1ve »”-dimensional subspace and '+ G is a 2x’-dimensional space
I1,.. equality (28) implies that F is a 2x" + »"-dimensional space m, .=, . There-
fore H' is a space I, _,,. Moreover, -

(30) ' . H=HowW.

In fact,as FDO N, we have H’ F-‘-CER"' H and also 3 C H, hence H' &9 C H.
So we have to prove the opposite relation Hc H’ @', or what is the same ER H->
D(H @N)*-. Let x¢(H @N')*. Then xEH"" = F and by (28) we have x=y +z,
where y €9, z€ G. On the other hand, we have 9’ | 9, hence y | 9’ and therefore
z=x—y1lN. As G and N are skewly related, this implies z=0; then x=y €N
concluding the proof of (30).

The subspaces Nt and H=9" are invariant with respect to Uy, ...; U,. Hence
N =N-NRN=HNN is also invariant with respect to U, ..., U, and therefore

the U;(j=1, ..., n) induce cominuting unitary operators ljj G= 1, ..., n) in the factor-
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space ‘ , _
Gy . - , H=HPYY.
But in virtue of (30) H is isomorphic to H’ and therefore is a space I
By proposition V there exists a non- negative subspace 9 'H, 9 5 (0),- which is

invariant with respect to U [ U Let f be the natural mapping of H onto H

put Nx=f -1). Then 9* is a non- negative subspace, which is invariant with.
respect to Uy ..., U,, %D, Nk =9, and * C H; hence N* LN Put.

N, = NSN*;

then 9, is a non-negative subspace, which is invariant with respect'to Uy, ..., U,
and. it remains- to show that dim N, >dim N. To this end we note that '

WeRNI*FCRNH = W,
hence M NNR* =N and therefore
d1m ‘Jtl =dim N + dim 9i* —dim j‘J’" >dim 9,
. concluding the proof of proposition- VI and theorem 1

Corollary 1. For every family I of commuting bounded Hermitian operators
in IT, there exists a »-dimensional non- negative subspace, whlch is mvarlanr wtth respect
to all operators of K.

Proof. Put for real t and HE‘}f

U = e”" = l+ (1H)+ (IH)2
Then the U, form a commutmg set of unitary operators in II,. ByTheorem 1,

there exsits a #-dimensional non-negative subspace i, which is 1nvar1ant with respect
to all e"” He, te(—=, ). In vrrtue of the relation

7t—(e"‘”—])~—H l—»O for - t—0,

9 is also an invariant subspace for all He .

- Corollary 2. Let R be a commutative algebra of bounded operators in II,,
"satisfying the condition: A€ R implies A* ¢ R where A* is the adjoint operator with
respect to (x,y) (i.e. (Ax,y) = (x, A*y) for all x,ycIl, ). Then a non-negative
»-dimensional subspace exists which is invariant with respect to all AE€R. '

Proof. Ler % be the set of all Hermitian operators from R. Then ¥ satisfies
the conditions of Corollary 1. Hence a x-dimensional non-negative subspace I
exists, Wthh is invariant with respect to all H €30, If now A ER then also A* ¢ R

and we have A = H,+iH,, where H1 = —(A+A*), H;, = (A — A*). Thus'
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- H, H, are Hermitian, Hl, Hz €R and- therefore HI,HZE‘}(’, ‘As M is invariant
with respect to Hy, H;E‘ZC it is also invariant with respect to A

The followmg Theorem 2 generahzes Corollary 2; assert1on 2) of this theorem
.can be considered as an infinite drmensmnal generallzatlon of the Lie theorem for
~solvable Lie algebras.

Theorem 2. Let Xy, X, X,,...X,, be sets of linear bounded oper-
ators in I, and Hy, H,, ..., H,_, bounded Hermitian operators such that
a) XODXlD .OX,.; b) X, lsgeneratedby H, and X, +1forv =0,1,....,m—1;
<) [H,, A]l=H,A—AH, €X+1 for every A€X, . ; d) m IS commutatwe and
Ac€X, impltes A*€X,,. i C

Then: 1) there exists a-non-negative x-dimensional 'jzlb.i‘jiace in I, which is
dinvariant .with respect. to all operators from Xo; 2) there exists a non-negative
vector xo €11, xo #0 which is a common eigenvector for all operators from X,.

Proof. We prove first by induction, that 4 € X, implies A* ¢ X, for v =0, 1, ...,
.m—1. For v=m this.assertion follows from the condition d) of the theorem. Now
we suppose the assertion is.true for some v+1 and prove it to be true for v. Let
Ac€X,; then by condition b) 4 = aH,+A,, where A,€X,,,, hence AT€X,,,.
‘But then 4* = &H,+ At € X, and the assertion is proved for v. Denote by 7, the
.set .of all Hermitian operators from X,. Using the assertion proved and applymg
the same argument as in the proof of Corollary 2 we see that every AEX has
the form

32) . A=H1+iH2 (HI,HZE‘JC).

Now we prove assertion 2) by mductlon For X,, the assertion follows from
Corollary 1. In fact, by Corollary 1 a non-negative k-dimensional subspace It
exists, which is invariant with respect to all H€%(,,; in virtue of (32) M is also
invariant with respect to all 4 € X,,. As W is finite dimensional and invariant with
respect to the: commuting family X,,, there exists a vector xOEEJJl Xxo #0, which is
.a common eigenvector for all 4€X,,.

 Now we suppose that assertion 2) holds for some X, and then prove it to
hold for X,. By our assumption, there exists a non-negative vector Xo #0, xp €11,
which is a common elgenvector for all AEXvH, so that

¢G3)  Axg=i{d)x, for all AEX,,,,

where A(A4) is a complex.-valued linear function on. X, .. Put

Gy S HPxe=x, . (p=0,1,2,3,..)
and ' . ) o }
G A H]=AO, AP H]=ACtD  (p=0,1,2,..)

where by deﬁr\ition A® =
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Then in vn'tue of condltlon c) of the theorem
A(l’)vEXv+1 for all- A€X,,, and p=1,2,3, ..,
hence by (33) and (34) , '
Ax, = AH,;xo = [A, H)]xq+ H, Axo = AN xo + A(A) H, %o =
= A(AD) x40+ A(A) x4 '
Repeating the sa'me argument we easily obtain by induction, that .
(36) Ax = M(A)x,+pA(AD)x, 1+C21(A(2>)x,, 2+ ..
) CqA(A(q))xp P +}(A(p))x0 o
holds for all AGXv+1 and all p=1,2,3,.
We show that in fact 1(4(") =0 and hence also A(A(P)) =0 for all p —1 2,3,
and A€X,,,. Suppose the contrary; let 2(4‘D)z0; then. in virtue of (32) also -
l(A(l))¢0 on ¥,, .. Only the following cases can occur: :

~ Case a): A(A) is not real for some A=Ay €%, . Then (x0, xo) 0. We show
by mductlon that , . .

37 - ' ‘ (xq, x,) =0
holds 'for all g, r=1,2, ... First we r:emark,' that
(38) ) (x, x) = (quo’ Hzxo) = (H”Zxo’ Xo)s

so that (x,, x,) depends only on q+r ' '

. We have seen that (x0, x0)=0, hence our assertion holds for g+r =0, We
suppose it is true for g+r<p and prove it to be true for g+r = p. To this end
we take the inner product of both sides of (36) with x,. Then by our- inductive
assumptlon we get

(Axp, Xo) = A(A)(xp, Xo)
and on the other hand for Ae%vﬂ we have .

(Axp: xO) (xp) AxO) (xp’ A(A)xo) = j'(14) (xp’ xO)
thus
A ~ /1(A)](x,,, Xg) = 0. »
But AMdy) — A(Ao) #0 hence (x,, xo) =0 concluding the proof of (37) Denote .
by M the closed subspace generated byallx, (p=0,1,2,. ..). By (34) Mt is invariant

“with respect to H,. In virtue of (37) M is a nullspace in H and hence dim IMN =,
M is_finite- dlmensmnal Relations (36) show, that 9t is also invariant with respect

to A. Let A,.-H, be the restrictions of 4 and H, to ; then (36) holds also for these .
A and H,. Put in (36) AM jnstead of A; then ‘we obtain

A(l) A(A(l))x +p2(A(2))xp 1_,_ +}’(A(P+1))xo. (P=0’1,2’ ).
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These equalities show that by our assumption
Tr(4?V) = z(A‘”) dim M =0 . for some AE?CvH

where Tr(A) denotes the trace of A.
On the other hand we have

Te(AD) = Tr(A H, — f, A) = Tr(A H,)—Tr(H,4)
and we get a contradiction which shows that'A(4)0 is impossible in case ).
Case f): A(A) is real for all A€¥,,,. For 4€¥,,, we have
AWk = (AH HA)* = HA—AH,6 = —A(l)
thus AM has the form
. A(l)=iA1
where A4, is Hermman. Hence _
(39) , AMAD) =ip(4M),

- where u(4AM)y= A(A Yis a real number (as A(A) is real on Lo 1) Wthh is 20 on
- ¥, +1 (by our assumptlon that A(AM) 0). We show that also in this case relations
(37) hold; then repeating the argument used in case &) we also get a contradlctlon,
provmg that AMAM)Z0 is impossible also. in case f).
By (36), for p=1 we have

o Axl = A(A)Xl +1(A(1))x0,

hence
o (Axhxo) = A(A)(xl,xo)+A(A(1))(xo,x0)
: .On the other hand, if 4€%(,,,, we have

(A, x0) = (o1, Axe) = (31, A(A)xe) = A(A) (1, x),

A(AD)(xo, xe) =0

As l(A(‘)) ;+‘_‘O we have (X0, Xo) =0 and so (37) holds for g +r = 0 Now we suppose
that (37) holds for ¢ +r<p and prove it to be true for g+r = p. To this end we
take the inner product of both sides of (36) with x,. In virtue of our inductive as-
sumption We get .

hence

@) (A, x) = A, %) HpAAD) (-, x),
On the other hand if A€%(,,, we have in virtue of (38) and (39) '
@1 (A%, X1) = (%, Ax1) = (%5 A(A)X; + AHAD)x0) =

| = UA) (s 1) + D) (s X0) = HA)(x, xp) = AAD) (x5 %)
, and comparmg (40) and (41) we see that
(P+ l)l(A(l))(xp 19X1) = O

“As p+1=0, A(A(l))zo we must have (x,-;, x,) =0 concluding the proof of (37)
So we have proved that 1n every case A(A(‘)) 0 and relatlons (36). take the
form’
Ax,=A(A)x, for p—O, 1,2,... and A€X,,,
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Hence we have also on the closed subspace M generated by x, (p=0;s1, 2,»...)
42 . Ax—/l(A)x for all x€9 1( and AEXvH,

on the other hand Mt is invariant with respect to the Hermitian operator H,. The .
subspace M contains the non-negative vector x,#0; hence only the followmg
three cases oc) 7"} aré possible:

«’) Wi is non-negative. Then dim M=k and H, has an eigenvector y#O in
M, which in virtue of (42) is also'an eigenvector of. all 4 €X,.; by condition b) of
the theorem, y is a common eigenvector for all. 4€X, and y is non—negatlve as .
S is non-negative.

B) (x, %) changes its sign on Mi and the inner. product (). y)is non-degenerate
on Mt. Then M is a space IT,. and by PONTRYAGIN’s theorem (see also Corollary 1)
M has a »'-dimensional non-negative subspace it which is invariant with respect
-to H,. Let y#0 be an eigenvector of A, in Jt; then y is non- negative and by (42)
it is also an eigenvector forall 4¢ X, . Hence by condition b) it is also a common,
eigenvector for all A€X,.

") (x, x) changes its sign on- EDE and the scalar product (x, ) degenerates on
M. Let N be the isotropic subspace of Wi, i.e. N = M NM*. As I is invariant
'Wlth respect to H,, the subspaces M~ and N have. the same property. ,

“ But N is a nullspace, hence dim M =x and therefore H, has an eigenvector
y#0 in N. Repeating the argument at the end of f’) we see, that y is a common
non-negative elgenvector of all A€X,,,. This concludes the proof of assertion 2).

Assertion 2) means that a non-negative subspace (of dimension =1 and = x)
exists which is invariant with respect to all 4 €X. Using this fact and repeating
the argument in the proof of proposition VI we see that if dim 9t <, then R N,, "
N #My, where N, is also non-negative and invariant with respect to all AEX
As i in the proof of theorem 1, this proves assertion 1) of theorem 2.
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