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Permutations in finite fields 
By L. CARLITZ in Durham (N. C., U. S. A) 

1. A polynomial f(x) with coefficients in the finite field GF(q) is called a per-
mutation polynomial if the numbers f(a), where a € GF(q), are a permutation of 
the a's. That such polynomials exist is evident from the Lagrange interpolation 
formula for a finite field : 

d . i . ) 
a X u 

The formula (1. 1) furnishes a polynomial that is of degree We shall say 
generally that a permutation polynomial is in reduced form when its degree < q. 
It is known that for q >- 2 permutation polynomials of degree q — \ cannot occur ; 
more precisely the degree of a non-linear permutation polynomial cannot be a 
divisor of q — L This follows very easily from 

r ; < L 2 ) 2 I 1 ( k - a n 
aiGF(q) _ ( — i ( K — q — l ) , 

Assume that 
/(*) = c0x"> + :..+cm (cj£GF(q), c0^0) 

is a permutation polynomial and that q — 1 = mr. Then 

so that 
aeGF(q) 

This contradicts c0 ^ 0. . 
DICKSON [3] has constructed various classes of permutation polynomials. 

REDEI [5] has considered rational functions over GF(q) that possess an inverse. 
He has proved.in particular that if m is odd, then there exist rational 
permutation functions of degree m. 

The writer [2] has proved that every permutation polynomial is generated by 
the special polynomials 
(1.3) ax + b, x"-2 (a, b 6 GF(q), a 0). 

For q = 5 this had been proved by BETTI and for q = l by DICKSON [3, p. 119]. 
Clearly if f(x) is a permutation polynomial for GF(q), the same is true for 

f(x) + (xq — x)g(x), where g(x) is an arbitrary polynomial with coefficients in GF{q). 
Indeed the theorem quoted above is to be understood in this sense. Thus if f(x) 
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is a permutation polynomial in reduced form then 

(1.4) F(x) = f(x) + (x«-x)g(x), 

"where F(x) is the resultant of a finite number of the special permutations (1. 3) and 
g(x) is some polynomial in GF[q, x]. We may call F(x) a crude permutation polyno-
' mial. Note in particular that in computing the polynomial F(x) reduction (mod xq — x) 
is not allowed. Also F(x) is not uniquely determined by f(x). For example the 
polynomials 

x«,-2)2r (r=l, 2, 3, ...) 

are all crude permutation polynomials corresponding to the polynomial x. 

2. Now let / (x ) be a permutation polynomial for GF(q) in reduced form. 
It is of interest to ask whether there exist polynomials congruent to / (x ) (mod xq — x) 
that are also permutation polynomials for GF(qr) where r is assigned. We first 
prove the following result. 

T h e o r e m 1. Let f(x) be a permutation polynomial for GF(q) in reduced form 
of degree > 1 and let F(x) be a crude permutation polynomial corresponding to f(x). 
Then F(x) is a permutation polynomial for GF(qr) if and only if 

(2.1) {2'-\,.q-2) = 1. 

Since d e g / ( x ) > l we have also d e g F ( x ) > l . Consequently the permutation 
xi'2 occurs at least once in F(x). Now x"~2 effexts a permutation in GF(qr) if 
and only if 
(2.2) (q'-\,q-2) = 1. ' 

Since qr — 1 = 2r — 1 (mod q — 2), it follows that the condition (2. 2) is equivalent 
to (2. 1). This; evidently completes the proof of the theorem. 

Suppose that q is odd and greater than 3. Let 2 belong to the exponent t 
(mod q — 2). Then (2. 1) is certainly satisfied when r = 1 (mod t) but is not satisfied 
when r = 0 (mod t). When q is even and greater than 4, let 2 belong to the exponent 
t (mod \(q — 2)). Then again (2. 1) is satisfied when r = 1 (mod t) and not satisfied 
when r = 0 (mod t). We have therefore 

T h e o r e m 2. Let F(x) be a crude permutation polynomial for GF(q). Then 
ifq>4 there are infinitely.many GF(q") for which F(x) is a permutation polynomial 
and also infinitely many GF(qr) for which F(x) is not a permutation polynomial. 

When <7 = 4, x2 is a permutation polynomial for all GF{2r). When q = 3 the 
special permutations (1.3) are. all of the first degree. 

3. Put q=p", where p is a prime. Then it is easily verified that the polynomiaf 

(3.1) . ax"J + b (a, b£ GF(q), a ^ 0) 

is a permutation polynomial for all GF(qr) and for all 7 = 0 , 1, 2, .... 
I f / (x ) is an arbitrary permutation polynomial for GF(q) then for every c 6 GF(q) . 

the equation/(x) = c is solvable in GF(q) and indeed has a unique solution b £GF(q). 



198 L. Carlitz 

Assume fix) € GF[q, x]; then 

(3.2) f(x)-c = (x-b)k M{x), 

where M(x)£GF[q,x] and either d e g M ( x ) = 0 or M(x) is a product of 
irreducible polynomials Fi(x)^GF[q, x], d e g P j ( x ) s 2 . Hence if r is a multiple of 
any dt.= deg P ;(x) it follows at once from (3. 2) that f(x) is not a permutation polyno-
mial, for GF(qr). We accordingly suppose that (3.2) reduces to 

(3.3) f(x)-c = a(x-b)k ( a * 0 ) ; 

that is for each c£GF(q) there is ab = b(c)£GF(q) such that (3. 3) holds. In parti-
cular for c —1,0, (3.3) implies 

(3.4) a(x-b0)k-a(,x-bi)k= 1. 

Replacing x by x + bx, (3. 4) becomes 

a(x + b)k-axk - 1 (b = b,-b0). 

Expanding by the binomial theorem we get 

(3.5) (J) = 0 (mod/0 (0-<:i</c:). 

By a known property of binomial coefficients it follows that k = p> for some j. We 
have therefore proved the following 

T h e o r e m 3. A polynomial fix) £ GF[q, x] is a permutation polynomial for all 
GF(qr) if and only if it is of the form (3. 1). 

We have incidently proved the following result. 

T h e o r e m 4. If f(x) is a permutation polynomial for GF(q) that is not of the 
form (3: 1), then for infinitely many r,f(x) is not a permutation polynomial for GF(qr). 

It might seem plausible that if f(x) is a permutation polynomial for GF(q) 
then it will also be a permutation for infinitely many GF(qr). We have seen that 
this is true for crude permutation polynomials (Theorem 2). Two other classes 
of polynomials with this property are covered by the following two theorems. 

T h e o r e m 5. Let (k,q— 1) = 1 so that xk is a permutation polynomial for 
GF(q). Then there are infinitely many GF(qr) for which xk is a permutation polynomial 
and infinitely many GF(qr) for which xk is not a permutation polynomial. 

There is no loss in generality in assuming that (k, <¡0 = 1. Let belong to the 
exponent t (mod k), so that t > 1. Then for r . divisible by t we have qr = 1 (mod k), 
so that xk is certainly not a permutation polynomial for GF(qr). On the other hand 
for r = 1 (mod t) we have 

qr — 1 = q — 1 (mod k), . 

so that (k,qr — 1) = {k, q — 1) = 1. Hence xk is a permutation polynomial for all 
GF(q""^), « = 1,2 ,3 , .. . . 
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T h e o r e m 6. Let q=p" and put 

(3.6) f(x) = c0x + clx"+...+cn_ixP"" (cj£GF(p)). 

Then f(x) is a permutation polynomial for GFiq) if and only if 

(3.7) (c0 + c 1 x + .. + c„_ t x n _ 1 , 1 — x") = 1. 

. Moreover there are infinitely many GFiq') for which fix) is a permutation polynomial 
and infinitely many GF(qr) for which fix) is not a permutation polynomial. 

The first part of the theorem is a corollary of the existence of a normal basis 
for GF(q); see for example [4, p. 250]. 

To prove the second part put 

C(x) = c0 + ctx+... + c„_lxn-1. 

Then fix) is a permutation polynomial for GF(qr) if and only , if 

(3. 8) (C(x), l - . V " ) = 1. 

There is no loss in generality in assuming that c0 ^ 0 , so that (x, C(x)) = l . Now 
let.x belong to the exponent i (modC(x) ) . Then for r = ' l (modi) we have 

l - x r n = i - x " (modC(x)), 

so that (C(x), 1 — x"') = (C(x), 1 — x") = 1; clearly / (x ) is a permutation polyno-
mial for GF(qr). On the other hand if r = 0 (mod t), then 1 - x r " = 0 (mod C(x)) 
and it follows that / (x ) is not a permutation polynomial for such GF(qr). This 
completes the proof of the theorem. 

4 . DICKSON [3] showed that the quartic 

(4.1) i / ( x ) = x 4 + 3x . 

is a permutation polynomial for GF(7) but not for any GF(T), « > 1 . This result 
can be generalized as follows. 

Put q = 2m + 1. We shall show that for proper choice of a € GF(q) the polynomial 

(4.2) ' f(x) = xm+l + ax 

is a permutation polynomial for GF(q). 
It is convenient to define 

(4.3) iHx) = x"'. 

Thus ij/(c) = 1 , - 1 of 0 according as c is a non-zero square, a non-square or zero 
in GFiq). We may rewrite (4. 2) as 

(4.4) / fix) r. x(a + >pix)). 

We assume that a2 ^ 1 so that / (x ) vanishes only when x = 0. Now if fix) is not a 
permutation polynomial we must have 

(4. 5) fib) =fic) (b, c € GFiq), b * c, be ^ 0) 

for at least one pair b, c. We consider two cases (i) ij/ib) = \jj(c), (ii) \pib) = —ij/ic). 



200 L. Carlitz 

In case (i) it follows from (4. 4) and (4. 5) that 

b(a + ijj(bj) = c(a + iP(b)); 

since a2 ^ 1, it follows that b = c. 
in case (ii) we get similarly 

so that - • - 1 = ip(bc) = 
V « - 1 

Hence if we choose a so that 

(4.6) ,{;•[) , 
we have a contradiction. Clearly (4. 6) can be satisfied by taking 

( 4 . 7 ) ' ' a =.(u2 + l ) / (w 2 - l ) , 

where u2 is an arbitrary square of the field (different from ±1 ,0 ) . For <jrS7 such 
u" always exist. The value of a furnished by (4. 7) automatically satisfies the condition 
rt2* ± 1 . 

This proves the following 

T h e o r e m 7. For q = 2m + l ^ l , the polynomial (4.2) is a permutation 
polynomial for GF(q) provided that a is defined by (4. 7) with u2 an arbitrary square 
of GF(q) different from 1,0. 

For. q = 1, u2 = 2, it is easi|y verified that (4. 2) reduces to (4. 1). 
It can be proved that if k is a fixed integer ^ 2 and q — mk+ 1 then for prop-

erly chosen a<iGF(q) the polynomial 

f(x)=xm+l+ax 

is a permutation polynomial for GF(q), provided q exceeds a certain bound Nk. 
The proof is similar to the proof of Theorem 7 but requires an estimate for the 
number, of solutions , of certain systems of equations in a finite field. 

T h e o r e m 8. Let f(x) satisfy the hypotheses of the last theorem. Then fix) 
is not a permutation polynomial for any GFiqr) with r.> 1. 

If /• is even we have 
qr= 1 (mod./M — 1) 

and the stated result follows immediately. We therefore assume that r = .2s+.l . 

" ~q2s+i~ = kim+ l) + ni'~' 

qis+ i = _ j ( m o d w + l ) , 

it is clear that an integer A: can be found for which (4. 8) is satisfied. We shall consider 

k + m-l ¡VjL_n,_ l \ 
(4.9) (f(x))k + m~l = ix"•+\ + ax)k + ••-, = 2 . +D(«+ + 

_ P u t 
( 4 . 8 ) 

since 
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Since i S l it follows easily that 

q2s + l ^ ( m + l)(k + m - l ) - = 2 ( ? 2 s + 1 - 1). 

Thus reducing (4.9) ( m o d x ? 2 s + 1 — x) the only term that need be considered is the 
one corresponding to j — that is 

(4.10) " ( ^ w ^ T ' 1 ) 0 ™ " 1 + 

Now it follows form (4. 8) that k(m + 1) = m+ 1 (mod q). Since q = 2 ( m + 1) — 1 
we have (m +1, q) = 1 and therefore k = 1 (mod q). 

We shall require the following known property of binomial coefficients. Let 

where p is a prime. Then 

r = r0 + r2p+r3p2 + ... (O^rj^p), 

S = S0 + S i P +s2p2 + ... -(0^5, 

M lr0\ r{ \ I r, 

In particular if r = up" + b ( 0 s / > < / ) 's = cp"+d <// ' ) , then (4. 11) implies 

Returning to (4. 10) we put k =. Ip" +1, where q=p". Since m-^p" it follows 
form (4. 12) that 

<k + m—1\ (tp" + m) 
. i , J = m P 0 (mod p). 

m—1 / \ m — 1 

Thus (4. 10) is not zero and therefore f(x) is not a permutation polynomial for 
GF(q2s~ '). ' 

5. Let r be a fixed integer s l. We now briefly consider the set of transformations 

(5.1) . • 1 - / i ( .v 1 . . . , . v r ) 0 = 1, - , r ) . . 

that possess an inverse of the same general .form; the coefficients of the polynomial 
J] lie in the fixed field GF{q). The totality of all transformations (5. 1) constitute 
a group r r ( q ) isomorphic with the symmetric group on qr letters. For some properties 
of polynomials relative to Fr(q) see [1]. 

We can set up a correspondence between r r ( q ) and r 1 ( ç r ) in the following 
way. Let co l t ..., mr denote a basis of -GF(qr) relative to GF(q) and put 

(5.2) u = x1col +...+xrmr, v = ylo>1 +...+yrwr. 

By means of (5. 1) every «-tuple (x 1 ; ..., x„) of the GF(q) is carried into the 
«-tuple ( y t , ..., y„). By means of (5. 2) to the «-tuple (x1 ( . . . ,x„) corresponds the 
number u of GF(qr) and to the «-tuple (j>1( ...,y„) corresponds the number v of 
GF(q'). Clearly the correspondence between u and v is one to one. We may accord-
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ingly write 
(5.3) v-f(u): 

where f(u) is á permutation polynomial for GF(qr). Conversely if (5.3) is given 
it is evident that (5. 1) is uniquely determined. We have therefore established a one 
to one correspondence between (5. 1) and (5. 3). This correspondence is evidently 
an isomorphism. 

We may state 

T h e o r e m 9. To every invertible transformation (5. 1) there corresponds the 
permutation (5.3) and conversely. This correspondence induces an isomorphism be-
tween Fr(q) and rx(qr). 

If £ denotes the column vector (x¡, ..;, xr) and r¡' the column vector {yl, ...,yr), 
(5. 1) can be written, compactly in the form 

(5.4) n - - ' l ( c ) . 

where <p is a vector function of the vector <p = ( j \ , ...,fr). . 
We shall now define two special transformations (5. 4), first the linear transfor-

mation 
(5.5) n 

where A is a non-singular matrix of order r and [Í is a column vector; the elements 
of both A and /? are in GF(q). In the second place corresponding to the transformation 

ii ~ u , i r - 2 

we define an involution 

•(5.6) - <í = = (x?, .:., Xr)• 

by means of 
(5. 7) (x toj! + ... + xrcor)'' ~2 — x1col + ... + x",(j)r. 

Then we have the following 

T h e o r e m 10. Every transformation of the group rr(q) can be generated by 
the special transformation (5. 5) and (5.6). 

It is evidently not necessary to use all the transformations (5. 5). It would 
suffice to restrict A to a certain cyclic subgroup of nonsingular.matrices of order 
<7r — 1. We shall however hot take the space to state a stronger version of Theorem 10. 

We remark that the involution (5. 6) is not uniquely determined but is dependent 
upon the choice of basis co,,...., co,. If we make a change of basis: 

(5.8) co' = Cu, 

where w is the column vector ( » ! , ..., cor)and Cis a non-singular matrix with elements 
in GF(q), then (5. 7) becomes 

<5. 9) (xiai + . . tx'ra)'ry-2 = xi'ftM + ... +XrxWr, 
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where x is the involution corresponding to the co/ and 

f = f = ( x i , . . . 

O is the transpose of C. Comparing (5. 9) with (5. 8) it is evident that 

(5.10) i " = ( C 0 - 1 ( C { ' ) ' . 

This proves 

T h e o r e m 11. Under the change of basis (5. 8) the involutions o,x corresponding 
to (Oj, <x>i, respectively, are related by means of (5. 10). 

The special transformation (q >2 ) 

(5.11) 7 i = * T 2 (»= 1, .... r) 

is an involution. However for /• > 1 it cannot be identified with any of the involutions 
(5. 7). If we assume that (5. 11) can be defined by means of (5. 7) then it follows that 

(5. 12) (xxa>x + ... + x,.co>,.) 2oo1 + . + xf"20,) — 1 

for all X), ..,, x,.£GF(q) except (0, .. . ,0). We may assume that co2 =/1. Then if 
we take xx —... = 0 , x,. — l, (5. 12) leads to a contradiction. 

When q = 3 the transformation (5. 11) reduces to the identity; for r > 1 the 
transformations (5. 5) generate a proper subgroup of r,,(</), It would be of interest 
to identify the group generated by (5. 5) and (5. 11) when q > 3 and r =» 1. 
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