A new proof of Plancherel's theorem for locally compact abelian groups

By EDWIN HEWITT in Seattle (Washington, U.S. A)¹⁾

§ 1. Introduction

Let G be a locally compact Abelian [LCA] group, with character group X. The famous theorem of PLANCHEREL-WEIL-KREIN asserts that the Fourier transformation is a unitary mapping of $\mathfrak{L}_2(G)$ onto $\mathfrak{L}_2(X)$, the usual Fourier transformation being extended by continuity from the subspace $\mathfrak{L}_1(G) \cap \mathfrak{L}_2(G)$. The proofs given by KREIN [see for example [2], § 31, N° 4] and WEIL [[4], pp. 113-118] use a number of delicate theorems of functional analysis. It seems worth while to give a completely elementary proof. Our argument is modelled on the beautiful proof given by F. RIESZ [3] for the classical case in which G is the additive group of real numbers. To apply RIESZ's idea, we need an analogue of the sequence of functions $\exp\left(\frac{-1}{2n^2}x^2\right)$ (n=1,2,...) for an arbitrary LCA group containing a compact open subgroup. In § 2, we construct these functions quite explicitly. The proof of PLANCHEREL's theorem is then short, and is given in § 3. We also show that the "reverse" Fourier transformation is the inverse of the direct one.

Our notation is the following. For $f \in \mathfrak{L}_1(G)$ and $\psi \in X$, we write

$$Tf(\psi) = \int_{G} f(t)\overline{\psi(t)} dt.$$

That is, we write the Fourier transform of f as Tf. For $g \in \mathfrak{L}_1(X)$ and $s \in G$, we write

$$T^*g(s) = \int_X g(\psi)\psi(s)\,d\psi$$

For functions $f_1, f_2 \in \mathfrak{L}_1(G)$, we write $f_1 * f_2$ for the convolution product of f_1 and $f_2: f_1 * f_2(s) = \int_G f_1(st^{-1})f_2(t)dt$. All integrals are with respect to Haar measure. For an integer a > 1, let R^a denote *a*-dimensional real Euclidean space. We write

For an integer a > 1, let R^a denote *a*-dimensional real Euclidean space. We write elements of R^a as $\mathbf{u} = (u_1, u_2, ..., u_a)$, etc. For a finite set *B*, let v(B) denote the number of elements in the set *B*. The characteristic function of a set *B* is denoted by the symbol ξ_B [it will be clear from the context what the domain of ξ_B is].

We need the following facts about LCA groups, all of which are classical. [Complete proofs are found, for example, in [1].]

1) Research supported by the National Science Foundation, U.S.A.

219

E. Hewitt

(1. 1) A LCA group G is topologically isomorphic with a direct product $R^a \times H$ where R is the additive group of real numbers, a is a nonnegative integer, and H is a LCA group containing a compact open subgroup J.

(1. 2) Let H be as in (1. 1) and let Y be the character group of H. The annihilator A of J in Y is a compact open subgroup of Y.

(1.3) The Pontryagin-van Kampen duality theorem holds for H and Y. That is, every continuous character of Y has the form $\chi \rightarrow \chi(x)$ for some $x \in H$. Furthermore, J is the annihilator of A in H.

§ 2. Construction of auxiliary functions

We here make some preliminary constructions. The key to our whole argument is the following elementary fact.

(2.1) Lemma. Let S be a countable Abelian group. There is a sequence $\{P_n\}_{n=1}^{\infty}$ of finite subsets of S such that

$$P_1 \subset P_2 \subset \dots \subset P_n \subset \dots, \quad P_n = P_n^{-1}, \quad \bigcup_{n=1}^{n} P_n = S, \quad and$$
$$\lim_{n \to \infty} \frac{\nu((xP_n) \cap P_n)}{\nu(P_n)} = 1$$

for all $x \in S^2$)

(i)

Proof. (I) Suppose that A is any finite subset of S and that $x \in S$. Write $A_n = \bigcup_{k=0}^{n} x^k A \ (n=0, 1, 2, ...)$ and $B_n = A_n \cap A'_{n-1} \ (n=1, 2, 3, ...)$. Then it is evident that $B_n \subset x B_{n-1} \ (n=2, 3, 4, ...)$, so that

(1)
$$v(A) \ge v(B_1) \ge v(B_2) \ge \cdots \ge v(B_n) \ge \cdots,$$

(2)
$$\frac{\nu((xA_n) \cap A_n')}{\nu(A_n)} = \frac{\nu(B_{n+1})}{\nu(A) + \nu(B_1) + \dots + \nu(B_n)}$$

for $n=1, 2, \ldots$. If $B_{n+1} \neq \emptyset$, (2) and (1) show that

(3)
$$\frac{\nu((xA_n) \cap A_n)}{\nu(A_n)} \leq \frac{1}{n+1},$$

and (3) follows trivially from (2) if $B_{n+1} = \emptyset$.

(II) Now let U and V be any finite subsets of S such that $e \in U \cap V$ [e is the identity of S], $V = V^{-1}$, and let ε be a positive real number. Then we can find a finite subset P of S such that $P = P^{-1}$, $V \subset P$, and

(4)
$$\frac{\nu((UP)\cap P')}{\nu(P)} < \varepsilon.$$

2) This lemma is closely related to although it is not a special case of Lemma (18.13) of [1].

Plancherel's theorem

To do this, write the set $U \cup U^{-1}$ as $\{t_1, t_2, ..., t_r\}$ and for n = 1, 2, 3, ..., let $W_n = \bigcup \{t_1^{\alpha_1} t_2^{\alpha_2} \cdots t_r^{\alpha_r} V\}$, the union being taken over all ordered *r*-tuples $(\alpha_1, \alpha_2, ..., \alpha_r)$ of nonnegative integers such that $\alpha_j \leq n$ for j = 1, 2, ..., r. It is plain that

$$UW_n \subset \bigcup_{j=1}^r t_j W_n \hat{\bullet}$$

Now for a fixed $j \in \{1, 2, ..., r\}$, we have $W_n = \bigcup_{k=0}^n t_j^k A$, where $A = \bigcup \{t_1^{\alpha_1} \cdots t_{j-1}^{\alpha_{j-1}} t_{j+1}^{\alpha_{j+1}} \cdots \cdots t_r^{\alpha_r} V\}$. From (3) we infer that

(6)
$$\frac{\nu((t_j W_n) \cap W'_n)}{\nu(W_n)} \leq \frac{1}{n+1}$$

for n = 1, 2, 3, ... Using (5) and (6), we have

$$\frac{\nu((UW_n)\cap W'_n)}{\nu(W_n)} \leq \sum_{j=1}^r \frac{\nu((t_j W_n)\cap W'_n)}{\nu(W_n)} \leq \frac{r}{n+1}$$

Now take P as any W_n with $n > \frac{r}{\epsilon} - 1$.

(III) In completing the present proof, we may obviously suppose that S is infinite; and then we write $S = \{x_1, x_2, ..., x_n, ...\}$, where $x_1 = e$ and the x_n 's are all distinct. For n = 1, 2, 3, ..., let $U_n = \{x_1, x_2, ..., x_n\} \cup \{x_1^{-1}, x_2^{-1}, ..., x_n^{-1}\}$. We define the sets P_n by induction. Let $P_1 = \{x_1\}$ and suppose that $P_2, P_3, ..., P_{n-1}$ have been defined. Use part (II) to find a set P_n such that $P_n = P_n^{-1}, P_n \supset P_{n-1} \cup U_n$, and

$$\frac{v((U_nP_n)\cap P'_n)}{v(P_n)} < \frac{1}{n}.$$

Each $x \in S$ is some x_m ; and so for $n \ge m$, we have

$$\frac{v((xP_n)\cap P'_n)}{v(P_n)} \leq \frac{v((U_nP_n)\cap P'_n)}{v(P_n)} < \frac{1}{n}$$

and

$$\frac{\nu((xP_n)\cap P_n)}{\nu(P_n)} = 1 - \frac{\nu((xP_n)\cap P_n')}{\nu(P_n)} > 1 - \frac{1}{n}$$

This establishes (i).

(2.2) Theorem. Let H be a LCA group containing a compact open subgroup J. Let Y be the character group H and let A be the annihilator of J in Y. Let Haar measures on H and Y be chosen so that both J and A have measure 1. Let Δ be any σ -compact subset of Y. There is then a sequence $\{w_n\}_{n=1}^{\infty}$ of functions on Y with the following properties.

(i) Each w_n is continuous and vanishes outside of a compact set, and $w_n(Y) \subset [0, 1]$. (ii) The sequence $\{w_n\}_{n=1}^{\infty}$ is increasing and $\lim w_n \ge \xi_{\Delta}$.

(iii) Write
$$\varphi_n(x) = \int_{Y} w_n(\chi) \chi(x) d\chi$$
 for $x \in H$. Then we have $\varphi_n \ge 0$ and $\int_{H} \varphi_n(x) dx = 1$.

(iv) If $\chi \in \Delta$, then $\lim_{n \to \infty} \int_{H} \varphi_n(x^{-1}y)\chi(y) dy = \chi(x)$ for all $x \in H$. If $\chi \in Y \cap \Delta'$, then $\int \varphi_n(x^{-1}y)\chi(y) dy = 0$ for all positive integers n.

Proof. As noted in (1. 2), A is a compact open subgroup of Y. With no loss of generality we suppose that Δ is a subgroup of Y that is a countably infinite union of distinct cosets of A; we write $\Delta = \bigcup_{k=1}^{\infty} \chi_k A$, where χ_1 is the character identically equal to 1 and $\chi_k \chi_l^{-1} \notin A$ if $k \neq l$. We apply (2. 1) to the countable group Δ/A . Let τ be the natural mapping of Δ onto Δ/A ; let $\{P_n\}_{n=1}^{\infty}$ be the sets constructed for the group Δ/A in (2. 1); and let $B_n = \tau^{-1}(P_n)$ (n=1, 2, 3, ...). Clearly each set B_n is a finite union of cosets of A and is thus a compact open set; suppose that B_n is the union of r_n distinct cosets of A. Upon renumbering the characters $\{\chi_k\}_{k=1}^{\infty}$ if necessary, we may suppose that there is a sequence $1 = r_1 < r_2 < \cdots < r_n < \cdots$ of positive integers such that $B_n = \bigcup_{k=1}^{r_n} \chi_k A$ $(n=1, 2, 3, \ldots)$.

We define w_n by

$$w_n = \frac{1}{r_n} \xi_{B_n} * \xi_{B_n}$$
 (n = 1, 2, 3, ...).

It is clear that $w_n(\chi)$ is equal to $\frac{1}{r_n}$ times the Haar measure of the set $(\chi^{-1}B_n) \cap B_n$. For $\chi \notin \Delta$, we have $(\chi^{-1}B_n) \cap B_n = \emptyset$. For $\alpha \in A$ and m = 1, 2, 3, ..., it is easy to see that

$$w_n(\chi_m\alpha) = \frac{v((\tau(\chi_m^{-1})P_n) \cap P_n)}{v(P_n)}.$$

This equality and (2.1.i) imply that $\lim_{n \to \infty} w_n(\chi_m \alpha) = 1$. We have thus proved (i) and (ii).

Since J is the annihilator of A (1, 3), an easy computation shows that

$$\int_{B_n} \chi(x) d\chi = \sum_{k=1}^{r_n} \chi_k(x) \xi_J(x) \qquad (x \in H).$$

Since $B_n = B_n^{-1}$ [this follows from the equality $P_n = P_n^{-1}$ and the fact that A is a subgroup of Y], we have

$$\varphi_n(x) = \frac{1}{r_n} \left| \int\limits_{\mathsf{B}_n} \chi(x) \, d\chi \right|^2 = \frac{1}{r_n} \left| \sum\limits_{k=1}^{r_n} \chi_k(x) \right|^2 \xi_J(x).$$

Thus φ_n is nonnegative. Since $\chi_k \chi_l^{-1} \in A$ only for k = l, we also have

$$\int_{H} \varphi_{n}(x) dx = \frac{1}{r_{n}} \sum_{k=1}^{r_{n}} \sum_{l=1}^{r_{n}} \int_{J} \chi_{k}(x) \chi_{l}^{-1}(x) dx = 1.$$

Thus we have proved (iii).

Now let χ be any character in Δ . Then $\chi = \chi_m \alpha$ for a unique positive integer *m* and a unique $\alpha \in \Delta$. We have

$$\int_{H} \varphi_{n}(x^{-1}y)\chi(y) \, dy = \int_{H} \varphi_{n}(y)\chi(xy) \, dy = \chi(x) \int_{H} \varphi_{n}(y)\chi(y) \, dy =$$
$$= \chi(x) \frac{1}{r} \sum_{l=1}^{r_{n}} \int_{-1}^{r_{n}} \int_{-1}^{r_{n}} \chi_{k}(x)\chi_{l}^{-1}(x)\chi_{m}(x) \, dx.$$

The integral $\int \chi_k(x)\chi_l^{-1}(x)\chi_m(x)dx$ is 0 if $\chi_k\chi_l^{-1}\chi_m \notin A$ and is 1 otherwise. The number of pairs (k, l) for which $\chi_k\chi_l^{-1}\chi_m \in A$ is equal to $v((\tau(\chi_m)P_n) \cap P_n)$. Thus (2. 1) implies that $\lim_{n \to \infty} \int_{H} \varphi_n(x^{-1}y)\chi(y)dy = \chi(x)$. If $\chi \notin \Delta$, then $\chi_k\chi_l^{-1}\chi$ is in A for no choice of k and l; hence $\int_{H} \varphi_n(x^{-1}y)\chi(y)dy = 0$ in this case. This establishes (iv) and completes the present proof.

(2.3) Theorem. Let H, J, Y, and A be as in (2.2). Let g be a continuous function on H vanishing outside of a compact set F. Let Γ be a σ -compact subset of Y. Then there is an open σ -compact subgroup Δ of Y such that $\Delta \supset \Gamma$ and such that the functions φ_n constructed for Δ as in (2.2. iii) have the property that

(i)
$$\lim_{n\to\infty}\int_{H}\varphi_n(x^{-1}y)g(y)\,dy=g(x)\qquad (x\in H).$$

Proof. Consider the open compact subset JF of H. The Stone-Weierstrass theorem implies that there is a countable subset Λ of Y such that complex linear combinations of characters in Λ approximate g arbitrarily in the uniform metric on JF. Let Λ be any σ -compact subgroup of Y that contains $\Lambda \cup \Gamma \cup \Lambda$. Let ε be a positive real number and let

(1)
$$\left|g(z) - \sum_{j=1}^{m} a_{j} \chi_{j}(z)\right| < \frac{\varepsilon}{3}$$

for all $z \in JF$, where the a_j are complex numbers and $\chi_j \in \Lambda$. We have $\int \varphi_n(x^{-1}y)g(y)dy = 0$ for $x \notin JF$, so that (i) holds trivially for all $x \notin JF$. For *n* sufficiently large, (2. 2. iv) implies that

(2)
$$\left| \iint_{\mathcal{H}} \varphi_n(x^{-1}y) \left(\sum_{j=1}^m a_j \chi_j(y) \right) dy - \sum_{j=1}^m a_j \chi_j(x) \right| < \frac{\varepsilon}{3}$$

E. Hewitt

for all $x \in JF$. Finally we have

(3)

$$\left| \int_{H} \varphi_{n}(x^{-1}y)g(y) \, dy - \int_{H} \varphi_{n}(x^{-1}y) \left(\sum_{j=1}^{m} a_{j}\chi_{j}(y) \right) dy \right| = \\
= \left| \int_{J} \varphi_{n}(y) \left[g(xy) - \sum_{j=1}^{m} a_{j}\chi_{j}(xy) \right] dy \right| \leq \\
\leq \int_{J} \varphi_{n}(y) \, dy \cdot \max \left\{ \left| g(xy) - \sum_{j=1}^{m} a_{j}\chi_{j}(xy) \right| : x \in JF, y \in J \right\} < \frac{\varepsilon}{3}$$

Combining (1), (2), and (3), we obtain (i).

§ 3. Proof of Plancherel's theorem

Throughout this section, G is an arbitrary LCA group and X is its character group.

(3.1) Theorem. Let f be a function in $\mathfrak{L}_1(G) \cap \mathfrak{L}_2(G)$. Then If is in $\mathfrak{L}_2(X)$ and for an appropriate choice of Haar measure on G and X, we have

(i)

 $||Tf||_2 \leq ||f||_2$.

Proof. Let G be represented as $R^a \times H$ as in (1.1), so that X is represented as $R^a \times Y$, where Y is the character group of H. A generic [continuous!] character of $R^a \times H$ has the form

$$(\mathbf{u}, x) \rightarrow \exp \left[i(u_1v_1 + \dots + u_av_a)\right]\chi(x)$$

for some $\mathbf{u} \in \mathbb{R}^a$ and $\chi \in \mathbb{Y}$. Let J be a compact open subgroup of H and A the annihilator of J in Y. We choose Haar measure in G to be the product of $(2\pi)^{-a/2}$ times Lebesgue measure on \mathbb{R}^a and of the Haar measure on H assigning measure 1 to J. We choose Haar measure on X to be the product of $(2\pi)^{-a/2}$ times Lebesgue measure on \mathbb{R}^a and of the Haar measure on Y assigning measure 1 to A.

The function Tf is continuous on X and vanishes at infinity, so that Tf vanishes outside of a set $R^a \times \Delta$, where Δ is a σ -compact subset of Y as in (2. 2). Let $\{w_n\}_{n=1}^{\infty}$ be a sequence of functions on Y as constructed in (2. 2) for this set Δ . Define the sequence $\{W_n\}_{n=1}^{\infty}$ of functions on $X = R^a \times Y$ by

(1)
$$W_n(\mathbf{v},\chi) = \exp\left[-\frac{1}{2n^2}(v_1^2 + \dots + v_a^2)\right] W_n(\chi)$$

[with obvious modifications if the factor R^a or the factor Y is missing]. Defining Φ_n on $G = R^a \times H$ by

2)
$$\Phi_n(\mathbf{u}, x) = \int_{\mathbb{R}^d \times \mathbb{Y}} W_n(\mathbf{v}, \chi) \exp\left[i(u_1v_1 + \dots + u_av_a)\right]\chi(x)d(\mathbf{v}, x),$$

we have

(3)
$$\Phi_{n}(\mathbf{u}, x) = (2\pi)^{-a/2} \prod_{k=1}^{a} \int_{-\infty}^{\infty} \exp\left[\frac{-1}{2n^{2}} v_{k}^{2} + iu_{k}v_{k}\right] dv_{k} \int_{\mathbf{v}} \chi(x) w_{n}(\mathbf{v}) dx$$
$$= n^{a} \left(\prod_{k=1}^{a} \exp\left[-\frac{n^{2}}{2} u_{k}^{2}\right]\right) \varphi_{n}(x).$$

It is obvious from (3) that

$$\int_{\mathbb{R}^{a}\times H} \Phi_{n}(\mathbf{u}, x) d(\mathbf{u}, x) = n^{a} \left(\prod_{k=1}^{a} (2\pi)^{-1/2} \int_{-\infty}^{\infty} \exp\left[\frac{-n^{2}}{2} u_{k}^{2} \right] du_{k} \int_{H} \varphi_{n}(x) dx \right) = 1.$$

Also each function Φ_n is plainly nonnegative.

For notational convenience, we now revert to one-variable notation in writing integrals over G and X. By Fubini's theorem [which evidently applies], we have

(4)
$$\int_{X} |Tf(\psi)|^2 W_n(\psi) d\psi = \int_{X} \int_{G} f(t) \overline{\psi(t)} dt \int_{G} \overline{f(s)} \psi(s) ds W_n(\psi) d\psi$$
$$= \int_{G} \int_{G} \int_{X} W_n(\psi) \psi(t^{-1}s) d\psi f(t) \overline{f(s)} dt ds$$
$$= \int_{G} \int_{G} \Phi_n(t^{-1}s) f(t) \overline{f(s)} dt ds.$$

Applying the Cauchy-Schwarz inequality to the last integral, and taking cognizance of the invariance of the Haar integral, we have

(5)
$$\int_{G} \int_{G} \Phi_{n}(t^{-1}s) f(t) \overline{f(s)} \, dt \, ds \leq \\ \leq \left[\int_{G} \int_{G} \Phi_{n}(t^{-1}s) |f(t)|^{2} \, ds \, dt \right]^{\frac{1}{2}} \times \left[\int_{G} \int_{G} \Phi_{n}(t^{-1}s) |f(s)|^{2} \, ds \, dt \right]^{\frac{1}{2}} = \|f\|_{2}^{2}.$$

Combining (4) and (5) and taking the limit as $n \to \infty$, we obtain (i).

Theorem (3. 1) shows that the Fourier transformation T, which is linear on $\mathfrak{L}_1(G) \cap \mathfrak{L}_2(G)$, carries this space into $\mathfrak{L}_2(X)$ without increasing the \mathfrak{L}_2 norm. Therefore there is a unique, linear, norm nonincreasing mapping of $\mathfrak{L}_2(G)$ into $\mathfrak{L}_2(X)$ that extends T. We call this extended mapping T as well, and we note that if $||f_n - f||_2 \to 0$, where $f_n \in \mathfrak{L}_1(G) \cap \mathfrak{L}_2(G)$ and $f \in \mathfrak{L}_2(G)$, then $||Tf_n - Tf||_2 \to 0$.

(3.2) Theorem. Let g be a function in $\mathfrak{L}_1(X) \cap \mathfrak{L}_2(X)$. Then T^*g is in $\mathfrak{L}_2(G)$, and if Haar measures on G and X are chosen as in (3.1), we have

(i)
$$||T^*g||_2 \leq ||g||_2$$
.

E. Hewitt

Proof. This assertion is proved just as (3. 1) was proved. Plainly the integral $\int_{X} g(\psi)\psi(x)d\psi$ behaves just like the integral $\int_{G} f(x)\overline{\psi(x)}dx$. Since the annihilator of A in G is J(1, 3) and since Haar measures in G and X have been chosen symmetrically, the proof of (3. 1) can be repeated *verbatim* to yield the present theorem.

Like T, the transformation T^* can be extended to a linear norm nonincreasing mapping of $\mathfrak{L}_2(X)$ into $\mathfrak{L}_2(G)$.

(3.3) Theorem. For $f \in \mathfrak{L}_2(G)$, we have

(i)

Proof. We lose no generality in proving the theorem for $f \in \mathfrak{L}_1(G) \cap \mathfrak{L}_2(G)$. At first we write G in the form $\mathbb{R}^a \times H$ as in (1. 1), and we consider any function h on $\mathbb{R}^a \times H$ of the form

 $T^*Tf = f$.

$$h(\mathbf{u}, x) = g_1(u_1)g_2(u_2)\cdots g_a(u_a)g(x),$$

where $g_1, g_2, ..., g_a, g$ are continuous on R, R, ..., R, H respectively, and vanish outside of compact sets. It is elementary and easy to show that

$$\lim_{n \to \infty} \left\{ (2\pi)^{-1/2} n \int_{-\infty}^{\infty} \exp\left[-\frac{n^2}{2} (u-v)^2 g(v) \right] dv \right\} = g(u)$$

for all $u \in R$ if g is bounded and uniformly continuous on R. We now construct a subset Δ of Y containing the set $\{\chi \in Y: Tf(\mathbf{v}, \chi) \neq 0 \text{ for some } \mathbf{v} \in R^a\}$ and having also the property that (2, 3, i) holds for the function g. Then we form the functions W_n and Φ_n as in (3, 1, 1) and (3, 1, 2) for this choice of Δ . We see immediately that

(1)
$$\lim_{n\to\infty}\int_{\mathbb{R}^n\times H}\Phi_n(-\mathbf{u}+\mathbf{v},\,x^{-1}\,y)h(\mathbf{v},\,y)\,d(\mathbf{v},\,y)=h(\mathbf{u},\,x)$$

for all $(\mathbf{u}, x) \in \mathbb{R}^a \times H$. Reverting to one-variable notation for G and X, we write

(2)
$$\int_{G} \int_{X} W_{n}(\psi) Tf(\psi) \psi(s) d\psi h(s) ds = \int_{G} \int_{X} W_{n}(\psi) \int_{G} f(t) \psi(t^{-1}) dt \psi(s) d\psi h(s) ds =$$
$$= \int_{G} f(t) \int_{G} \int_{X} W_{n}(\psi) \psi(t^{-1}s) d\psi h(s) ds dt = \int_{G} f(t) \int_{G} \Phi_{n}(t^{-1}s) h(s) ds dt.$$

By (1), the integral $\int_{G} \Phi_n(t^{-1}s)h(s)ds$ converges [boundedly!] to h(t) for all $t \in G$. The integral $\int_{X} W_n(\psi) Tf(\psi) \psi(s) d\psi$ is equal to $T^*(W_nTf)$. Since T^* is linear and norm nonincreasing (3. 2), and $||W_nTf - Tf||_2 \to 0$, we have $\lim T^*(W_nTf) = T^*(Tf)$

226

Plancherel's theorem

in the $\mathfrak{L}_2(G)$ metric. The equalities (2) then imply that

(3)
$$\int_{G} T^*Tf(s)h(s) \, ds = \int_{G} \lim_{n \to \infty} T^*(W_n Tf)(s)h(s) \, ds =$$
$$= \lim_{n \to \infty} \int_{G} T^*(W_n Tf)(s)h(s) \, ds = \int_{G} f(t)h(t) \, dt.$$

Linear combinations of functions h are dense in $\mathfrak{L}_2(G)$, and so (3) implies that $T^*Tf = f$. Since $\mathfrak{L}_1(G) \cap \mathfrak{L}_2(G)$ is dense in $\mathfrak{L}_2(G)$, this equality holds for all $f \in \mathfrak{L}_2(G)$.

(3.4) Theorem. The Fourier transformation T is a linear isometry of $\mathfrak{L}_2(G)$ onto $\mathfrak{L}_2(X)$, and T^*T and TT^* are the identity transformations on $\mathfrak{L}_2(G)$ and $\mathfrak{L}_2(X)$ respectively.

Proof. For $g \in \mathfrak{L}_2(X)$, we have $T^*g \in \mathfrak{L}_2(G)$ by (3. 2). We apply (3. 3) [with the rôles of G and X interchanged] to infer that $TT^*g = g$. Hence T carries $\mathfrak{L}_2(G)$ onto $\mathfrak{L}_2(X)$. For $f \in \mathfrak{L}_2(G)$, we have

$$\|f\|_{2} = \|T^{*}Tf\|_{2} \leq \|Tf\|_{2} \leq \|f\|_{2}.$$

Thus T preserves norms and so is an isometry.

Literature

[1] E. HEWITT and K. A. Ross, Abstract harmonic analysis. Vol. I (Berlin-Heidelberg-Göttingen, 1963).

[2] M. A. NAIMARK, Normierte Algebren (Berlin, 1959).

[3] F. RIESZ, Sur la formule d'inversion de Fourier, Acta Sci. Math., 3 (1927), 235-241.

[4] A. WEIL, L'intégration dans les groupes topologiques et ses applications (Paris, 1940).

(Received October 20, 1962)