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A new proof of Plancherel's theorem 
for locally compact abelian groups 

By E D W I N HEWITT in Seattle (Washington, U . S . A)» 

§ 1. Introduction 

Let 6 be a locally compact Abelian [LCA] group, with character group X. 
The famous theorem of PLANCHEREL—WEIL—KREFN asserts that the Fourier 
transformation, is a unitary mapping of S2(G) onto 82(X), the usual Fourier trans-
formation being extended by continuity from the subspace 8 1 (G)nS 2 (G) . The 
proofs given by K R E I N [see for example [2], § 31, № 4] and WEIL [[4], pp. 113— 
118] use a number of delicate theorems of functional analysis. It seems worth while 
to give a completely elementary proof. Our argument is modelled on the beautiful 
proof given by F. RIESZ [3] for the classical case in which G is the additive group 
of real numbers. To apply RIESZ'S idea, we. need an analogue of the sequence of 

functions e xP ("^¡T^2) = ...) for an arbitrary LCA group containing 

a compact open subgroup. In § 2,. we construct these functions quite explicitly. 
The proof of PLANCHEREL'S theorem is then short, and is given in § 3 . We also show 
that the "reverse" Fourier transformation is the. inverse of the direct one. 

Our notation is the following. For / €S i (G) and ip £)(., we write 

Tm=JmW)dt. 

• ° ' 
That is, we write the Fourier transform of / a s T f . For g€8i(X) and sdG, we write 

• T*g(s)= Jgm(s)dip. 
x 

For functions f y , f t €8i(G), we write j\ %f2 for the convolution product of fx and 
ft'- f \ ^ f i i . s ) = f fii^'^fiiOdr. All integrals are with- respect to Haar measure. G 

For an integer a > l , let Ra denote a-dimensional real Euclidean space. We write 
elements of R" as U = (M1; U2, •••, «„), etc. For a finite set B, let v(B) denote the 
number of elements in the set B. The characteristic function of a set B is denoted 
by the symbol [it will be clear from the context what the. domain of £B is]. • 

We need the following facts about LCA groups, all of which are classical. 
[Complete proofs are found, for example, in [1].] 
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(1.1) A LCA group G is topologically isomorphic with a direct product R"XH 
where R is the additive group of real numbers, a is a nonnegative integer, and H is 
a LCA group containing a compact open subgroup J. 

(1. 2) Let H be as in (1. 1) and let Y be the character group of H. The annihi-
lator A of J in Y is a compact open subgroup of Y. 

(1.3) The Pontryagin-van Kampen duality theorem holds for H and Y. 
That is, every continuous character of Y, has the form x~*x(x) f ° r some x £ H . 
Furthermore, . / is the annihilator of A in H. 

§ 2. Construction of auxiliary functions 

We here make some preliminary constructions. The key to our whole argument 
is the following elementary fact. 

(2. 1) L e m m a . Let S be a countable Abelian group. There is a sequence {P„}"=!. 
of finite subsets of S such that 

P1(zP2cz---(zPnc:---, Pn = P;\ U^> = S> and 
n= 1 

for all xes.2) 

P r o o f . (I) Suppose that A is any finite subset of S and that x € S. Write 
n 

A„ = |J xkA (n = 0, 1, 2, ...) and Bn = A„C\A'„-i (n = 1, 2, 3, ...). Then it is evident 
k = 0 

that (n = 2, 3, 4, ...), so that 

(1) • V ^ ^ V ^ S V ^ S - g V ^ S - - , 

and 
v({xAn)f\A'n) v ( i ! , t l ) 

( 2 ) ' v(^„) v ( ^ ) + v ( B l ) + . . . + v ( 5 n ) 

for « = 1, 2, .. . . If (2) and (1) show that 

v((xAn)f]An) 1 
(3) v(A„) n+1 

and"(3) follows trivially from (2) if B„+x=0. 
(IT) Now let U and V be any finite subsets of S such that e 6 i / f l V [e is the 

. identity of.5], y = V ~ l , and let e be a positive real number. Then we can find 
a finite subset P of S such that P = P~l, VaP, and 

W v(P) 

2) This lemma is closely related to although it is not a special case of Lemma (18.13) of [1]. 
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To do this, write, the set U\JU~l as {ti, t2, ..., tr) and for n = 1, 2, 3, ..., let 
Wn— U {ta

l
it°2i---t*'V}, the union being taken over all ordered r-tuples (ax , a 2 , . . . , a r) 

of nonnegative integers such that a j S n for j—1,2, . . . , r . It is plain that 

(5) UWnc: U tjWni j=l. 
n * ' 

Now for a fixed /' € {1, 2, ..., r}, we have Wn = U t)A, where A = U ••• 1 • • • 
k-. 0 1 1 

••• t*rV}. From (3) we infer that 

w ; v ( W n ) . - « + 1 

•for. n = l, 2, 3, . . . . Using (5) and (6), we-have 

v((f/^n)n ^ v((tj Wn) r 
v(W„) ~ A . v(W„) ~ «-I-1* 

r 
Now take P as any W„ with n > 1. 

e ; 
(III) In completing the present proof, we may obviously suppose that S is 

infinite; and then we write S — {xi, x2, ..., x„, ...}, where xt=e and the x„'s are 
all distinct. For n = l , 2, 3, ..., let U„ = {xt, x2, ..., xn} U {x f 1 , x j 1 , ..., x" 1 }. We 
define the sets P„ by induction. Let PL = {x,} and suppose that P2,P%, ..., P„_ t 
have been defined. Use part (II) to find a set P„such that P„=P~1, P„ =>P„_ , U t/„, 
and 

v((t/„P„)nP^) 
. v(p„) < n " 

Each x £ 5 is some xm; and so for fern, we have 

v ( ( x P „ ) n P ; ) ^ v ( ( < 7 „ P n ) , l P ; ) 1_ 

v(P„) - v(P„) ^ V • . 
and 

v ( ( x P „ ) n P n ) _ v ( ( x P n ) n P ; ) 

v(P„) v(P„) " 
This establishes (i).. 

(2. 2) T h e o r e m . Lei H be a LCA group containing a compact open subgroup 
J. Let Y be the character group H and let A be the annihilator of J in Y. Let Haar 
measures on H and Y be chosen so that both J and A have measure 1. Let A be any 
a-compact subset of Y. There is then a sequence t of functions on Y with the 

following properties. 
(i). Each w„ is continuous and vanishes outside of a compact set, and w„(Y) c [0, 1]. 
(ii) The sequence {w„}®=1 is increasing and lim wn ^ . 

(iii) • Writeq>-n(x) —J wn(x)x(x)dx for x£ H. Then we have (p„ SO and J'p„{x) dx • 1. 
.Y H 
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(iv) / / x € A , then lim f<p„(x-1y)x(y)dy = x(x) for all x£H. If x iYDA' , 

then f <p„(x~1y)x(y)dy = 0 for all positive integers n. 
u 
P r o o f . As noted in (1. 2), A is a compact open subgroup of Y. With no loss 

of generality we suppose that A a subgroup of Y that is a countably infinite union 

of distinct cosets of A; we write A = U ZtA, where is the character identically 
k=i 

equal to 1 and XkXx 1 $ A if k ^ l . We apply (2. 1) to the countable group A/A. Let 
i be the natural mapping of A onto A/A; let {-P„}®=i be the sets constructed for 
the group A/A in (2. 1); and let B„ = t - l (P„) (n = 1, 2, 3, ...). Clearly each set B„ 
is a finite union of cosets of A and is thus a compact open set; suppose that B„ is 
the union of r„ distinct cosets of A. Uppn renumbering the characters {xt}™=1 if 
necessary, we may suppose that there is a sequence 1=/-, < r 2 <••• < r „ < ••• of fn 
positive integers such that B„= UXk& (« = 1,2,3, ...). 

We define w„ by 

W„ = -£B„*£B„ . (« = 1,2, 3, ...). 
•Pn 

It is clear that wn(x) is equal to — times the Haar measure of the set Gc-1B„) 0 B„. 

For we have (^-1B„)HB„ = 0. For agA and m = 1, 2, 3, ..,, it is easy :to 
see that 

v ^ K № W n i > „ ) • 
H ^ « ) = v ( P n ) 

This equality and (2. l . i ) imply that lim wn{ymv) = 1. We have thus proved (i) 
and (ii). 

Since J is the annihilator of A (1.3), an easy computation shows that 

/ x(x)dx = 2 yjx)l,(x) . (xQH). 

Since Bn = B7x [this follows from the'equality P„ = P~L and the .fact that A is a 
subgroup of Y], we have 

<P„(x) = 
* N 

2 1 
2 Xk(.x) k = 1 &X), j x(x)dx 

B„ • 

Thus (p„ is nonnegative. Since xkxr1 € A only for k — l, we also have 

/ cp„(x)dx 4 1 1 Xk(x)xrHx)dx = 1. J r„k = ll = l j 
H J 

Thus we have proved (iii). . . . . . . 
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Now let x be any character in A. Then / = %ma for. a unique positive integer 
m and a unique a£A. We have 

/<P„(x~ly)y.(y)dy = J cp„(y)x(xy) dy - x(x) J <p„(y)x(y) dy = 
H H H 

J ' ¡ X k ( x ) x r 1 ( x ) x m ( x ) d x . 
• rn k=l 1=1 J 

J 

The integral j Xk(.x)XFi(x)xm(x)dx is 0 if XkXF'XmiA and is 1 otherwise. The number 
j 

of pairs (k, I) for which XkXFxXm^ A is equal to V((T(X,„)P„) nP„) . Thus (2. 1) implies 
that lim J (p„(x~1 y)x(y)dy = x(x). If z^A, then XkXilX is in A for no choice of 

" — ii 

k and /; hence j<p„(x~''y)x(y)dy = 0 in this case. This establishes (iv) and completes 
H 

the present proof. 

(2.3) T h e o r e m . Let H, J, Y, and A be as in (2.2). Let g be a continuous 
function. on H vanishing outside of a compact set F. Let T be a a-compact subset 
of Y. Then there is an open a-compact subgroup A o / Y such that A 3 F and such 
that the functions q>„ constructed for A- as in (2. 2. iii) have the property that 

(i) lim J<p„(x-ly)g(y)dy =g(x)' (xtH). 

P r o o f . Consider the open compact subset JF of H. The Stone—Weierstrass 
theorem implies that there is a countable subset A of Y such that complex linear 
combinations of characters in A approximate g arbitrarily in the uniform metric 
on JF. Let A be any cr-compact subgroup of Y that contains A U T U A. Let 8 be 
a positive real number and let 

(1) g(z) - 2 ajXj(z) 
y=l 

for all z£JF, where the a j are complex numbers and X;€A. We have 
f(p„(x-1y)g(y)dy=0 for x$JF, so that (i) holds trivially for all x$ JF. For n 
sufficiently large, (2. 2. iv) implies that 

(2) j 9n(.x~ly) ajXjiy^jdy - J ajXj(x) 
s 

" 3 
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for all x£JF. Finally we have 

<3) 

' I 9 " 

j<pn(x-ly)g(y) dy-Jcpn(x- V) ^ J O/X/0'))dy = 
H H . 

J \ p n ( y ) ^ g (xy) - a J Xj Oj)J dy S 

( j )dy-max |jg(xj;) - J ) a j X j ( x y ) ^ : x £ J F , y . 

•Combining (1), (2), and (3), we obtain (i). 

§ 3. Proof of Plancherel's theorem 

Throughout this section, G is an arbitrary LCA group and X is its character 
group. • 

(3. 1) T h e o r e m . Let f be a function in S ^ G ) n8 2 (G) . Then Tf is in. S2(X) 
and for an appropriate choice of Haar measure on G and X, we have 

<i) II 771111/112; 

P r o o f . Let G be represented as RdXH as in (1. 1), so that X is represented 
•as RaXY, where Y is the character group of H. A generic [continuous!] character 
of R" X H has the form 

(u, x ) - e x p [/(MiUj + ••• +uava)]x(x) 

fo r some u 6 R" and % 6 Y. Let J be a compact open subgroup of H and A the anni-
hilator of J in Y. We choose Haar measure in G to be the product of (2n)-a/2 times 
Lebesgue measure on R" and of the Haar measure on H assigning measure 1 to 
J . We choose Haar measure on X.to be the product of (2n)~al2 times Lebesgue 
measure on R" and of the Haar measure on Y assigning measure 1 to A. 

The function Tf is continuous on X and vanishes at infinity, so that Tf vanishes 
outside of a set R" X A, where A is a cr-compact subset of Y as in (2. 2). Let {vv„}£L i 
be a sequence of functions on Y as constructed in (2. 2) for this set A. Define the 
sequence of functions on X = i?aXY by 

<1) . W„(v,x) = e x p [ ^ - ^ ( « ? + • • • + y a
2 ) J w „ ( x ) 

{with obvious modifications if the factor R" or the factor Y is missing]. Defining 
4>„ on G = RaXH.by 

<2) <f>„(u, x) = f X) exp [i(ulvl + • • • + uava)]x(x)d(y, x), 
R " x Y 
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we have 

(3) <*>>,*) - (2n)-«'*77 j + v^\dv kJx(x)w n(x)dx 
- - : Y 

= n°( f e4 e x p [ ~ T "*])''" 
It is obvious from (3) that 

j <*>„(« ,x)d(u,x) = n° i / / (2TT)-1/2 J exp dukjVn(x) dx^J = 1. 

R«xH II 

Also each function <£„ is plainly nonnegative. 
For notational convenience, we now revert to one-variable notation in writing 

integrals over G and X. By Fubini's theorem [which evidently applies], we have 

(4) / ITO)!* Wn0/0 # = J J f ( ' ) W ) dt ¡'M^(S) dsWM) # 
X X G G 

- / J' / WM) (t '.v) # / 0 ) / ( . 9 ) dt A 
• . . G G X 

= / J ^ n ( t - i s ) f ( t ) f ( i ) d t ds. 
0 G 

Applying the Cauchy—Schwarz inequality to the last integral,, and taking cogni-
zance of the invariance of the Haar integral, we have 

(5) J ¡ S „ ( t - i s ) f ( t ) f U ) d t d s ^ , 
G G 

/ / < № / w c o i 2 ^ ! * =. i № . 
1 G G G G 

Combining (4) and (5) and taking, the' limit as n — we obtain (i). 
Theorem (3. 1) shows that-the Fourier transformation T, which is linear on 

2 t(G) H 82(G),. carries this space into S2(X) without increasing the 8 2 norm. There-
fore there is a unique, linear, norm nonincreasing mapping of 82(G) into 82(X) 
that extends T. We call this extended mapping T as well, and we note that if 
l i / n - / l l . 2 - 0 , where/„€8 1 (G)n8 2 (C?) a n d / 6 8 2 ( G ) , then \\Tfn~Tf\\2 ^0. 

(3. 2) T h e o r e m . Let g be a function in 81(X)n82(X). Then T*g is in 82(G), 
and if Haar measures on'G and X are chosen aS in (3. 1), we have . 

(i) ' l | r * g | | 2 ^ | | g | | 2 . . 

A 15 
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P r o o f . This assertion is proved just as (3. 1) was proved. Plainly the integral 
J g(\]/)ip(x)dtl/ behaves just like the integral ff(x)\p(x)dx. Since the annihilator 
x a 
of A in G is J (1. 3) and since Haar measures in G and X have been chosen symmetri-
cally, the proof of (3. 1) can be repeated verbatim to yield the present theorem. 

Like T, the transformation T* can be extended to a linear norm nonincreasing 
mapping of S2(X) into 82(G). 

(3.3) T h e o r e m . For / 68 2 (G) , we have 

(i) . T*Tf=f, 

P r o o f . We lose no generality in proving the theorem for /681(G)D8 2 (G) . 
At first we write G in the form R"XH as in (1. 1), and we consider any function 
h on R"XH of the form . 

h(u,x) = gl(ui)g2(u2)---ga(ua)g(x), 

where gi, g 2 , •••, ga, g are continuous on R, R, ..., R, H respectively, and vanish 
outside of compact sets; It is elementary and. easy to show that 

.'.'• lim | ( 2 7 t ) _ 1 , 2 n J e x p ^ - y ( M -») 2 g(»)J</o | = g(«) 

for all u£R if g is bounded and uniformly continuous on R. We now construct 
a subset A of Y containing the set {^6Y :Tf(v, for some v€ Ra} and having 
also the property that (2. 3. i) holds for the function g. Then we form the functions 
Wn a.nd <t>n as in (3. 1. 1) and (3. 1. 2) for this choice of A. We see immediately that 

(1) lim f ^ „ ( - u + v, x-ly)h(y,yjd(v, y) = h(u,x) 
Rn x 11 

for all (u, x) 6 R" X H. Reverting to one-variable notation for G and X, we write 

(2) f jwn(4,)Tfm(s)d<l>Hs)ds= ¡ ¡ W„M jfW(t-l)dtiP(s)d4<h(s)ds = 
e x a x G 

= ¡ f i t ) J J Wn(ip)il/(t-ls)diph(s),dsdt = ¡ f i t ) J$n(t-ls)h(s)dsdt. 
a x 

By (1), the integral j<P„(nls)h(s)ds converges [boundedly!] to h(t) for all y€G. 
G 

The integral J V n ( ^ ) 3 / ( i A ) ^ ( i ) # is equal to T*{W„Tf). Since T* is linear and 

norm nonincreasing (3. 2), and || WnTf~ Tf\\2 - 0 , we have lim T*(W„Tf) =T*(Tf) 
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in the 82(G) metric. The equalities (2) then imply that 

(3) fT*Tf(s)h(s)ds=f]imT*(WnTf)(s)h(s)ds== 
a G 

= lim JT*(WnTf)(s)h{s)ds = jf(t)h(t) dt. 
G G 

Linear combinations of functions h are dense in 82(G), and so (3) implies that 
T * T f - f . Since SjCG)!^82(G) is dense in 82(G), this equality holds for all /€8 2 (G) . 

(3.4) T h e o r e m . The Fourier transformation T is a linear isometry o /8 2 (G) 
onto 82(X), and T* T and TT* are the identity transformations on 82(G) and S2(X) 
respectively. 

P r o o f . For g€82(X), we have T*g€82(G) by (3.2). We apply (3. 3) [with 
the roles of G and X interchanged] to infer that TT*g—g. Hence T carries 82(G) 
onto S2(X). For /€S 2(G), we have 

11/112 - IIT* Tf\\2^ II Tf\\ 11/112. 
Thus T preserves norms and so is an isometry. 

Literature 

[1] E. HEWITT and K. A. Ross, Abstract harmonic analysis. Vol. 1 (Berlin—Heidelberg—Göttingen, 
1963). 

[2] M. A. NAIMARK, Normierte Algebren (Bérlin, 1959). 
[3] F. RIESZ, Sur la formule d'inversion de Fourier, Acta Sei. Math., 3 (1927), 235—241. 
[4] A. WEIL, L'intégration dans les groupes topologiques et ses applications (Paris, 1940). 

(Received October 20, 1962) 


