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On some combinatorial relations concerning 
the symmetric random walk 

By E. CSAKl and I. VINCZE in Budapest 

Dedicated to the three inseparable friends P.Erdos, T. Gallai, and P. Turan 
at the occasion of all being close to 50 

§ 1. Introduction and notations 

1. In this paper we shall consider sequences $ = $ 2 , in) °f n ( + l)_s 

and n ( —l)-s, each possible array being of equal probability ' / [ ^ f j • Thus the 

partial sums i 0 = 0 , st = + # 2 + '•••• + —1,2, ...,,2«) generate a simple symmetric 
random walk, returning after 2n steps to the origin. 

We use the following notations: 
x == max g = m i n {/:.?,• = *:} (index of the first maximum). 

A —1 is the number of the intersections, i .e . the number of i-s with i , = 0 , 
s i _ 1 s i + 1 = —1 (thus A is the number of half-waves). 

• • y is the Galton-statistics (i. e. 2y is the number of indices i for which either 
•S; > 0 , or 5 j=0 , i , . ! ==+1). 

The authors have found the following asymptotic relation [6], [2]: 

\imP{x-<.'y^2n, £><2/?Z) = lim JP(A<>/2/?, y^nz) •— 
r , - » » n-* ™ 

y '. 

i l l \ v O - ^ e '1^vi~ch<dv 

0 0 

In connection with this relation, E . SPARRE ANDERSEN raised the question1), 
whether there exists some equivalence principle for the finite case too. 

In the following we give some equivalence theorems and prove among others 
that 

(1.1) P (x = / j = i(P(A = /) + P(A = / + l ) ) ' .(/ = 0 ,1 , . . . ,«), 

(1.2) p(x = l,Q=r) = P(X' = l,n=r), . 

') At the occasion of the Conference on Probability and Statistics held in Oberwolfach, August 
2 0 - 2 6 , 1961. 
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where n denotes the number of positve terms in (s0,slt ...,s2n), while X' is the 
number of indices / for which si-l=0,si = + 1. (1.2) implies 

> ( e = r )=P(7t = r), 

which is a special case of a. well-known result of SPARRE ANDERSEN [1] ; it implies 
also the following result of MIHALEVIC [5] : 

P(X = L) = P(X' — L). 

Thus we have a joint equivalence between (x, Q) and (X', n). We would like to 
point out furthermore that each of our theorems is proved by means of one-to-one 
correspondences between the sets of paths considered. This indicates a combinatorial 
and geometrical background of these equivalences. 

We also remark that in our constructions x appears virtually more as the 
number of ladder indices (see FELLER [3]), than as the maximum, both coinciding 
for the special variables •&. f = ± 1. 

2. We shall make use of the following further terminology and notations: 
The polygonal line whose subsequent vertices have the coordinat es (/, s,) 

0 = 0, 1,2, ...,j) is called the path (s0,sl, ...,Sj). 
E2N is a path ( s 0 ,S i . •••> J with s2n=0. A point (2i.,s2i) of the path E2N, 

for which s2i = 0 and ^ ¡ - t ^ i + i = — 1, as well as the points (0, 0) and {In, 0) of 
E2„, are called intersection points or ^-points. As defined above, A + 1 is the number 
of T-points. 

By a 7"-point we mean a point (2/'+1, 1) of the path E2N, for which s 2 i=0> 
j 2 ( + 1 = + 1 (this kind of points was treated by MIHALEVIC [5]). X' is the number 
of T'-points. 

E\„ is a path E2N with X = l, 
(i,j) is a section of a path lying between the points (/', st) and ( j , s}), i. e. the 

sequence ( # i + 1 , # i + 2 , . . . ,$;) . 
k is called a strict ladder index (FELLER [3]); if sk>s: for / = 0, 1, ...,k — \;k 

is called a strict backward ladder index if sk>si for i = k,k + 1, ...,2n. 
A' is a path ( i 0 , ..., i r) , for which i 0 = 0 , i j < / , s2 </,..., </, sr = /, i. e. 

its /-th strict ladder index being r. 
N(-) is the number of all possible paths whose type is given in the brackets 

( , g . * № . > = ( 2 ; ) ) : 

§ 2 . Equivalence relations 

1. The maxium and the number of waves. We shall prove the following 

T h e o r e m 2.1 . P(X = / ) = i[P(A = / ) + P(X = / + 1)] ( / = 0 , 1 , 2 , . . . , « ) . 

P r o o f . We consider a path E2„ with * = /. According to the index Q of the 
first maximum, we distinguish two different cases: 

a) g is the only position, for. which the maximum takes place; 
b) there are more than one maximum places. 
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In both cases we shall make use of the following 

L e m m a 2.1. ^N(E[n)=N(A\[): 

This was proved in [2] by-means of a one-to-one correspondence between ther 
sets of paths. 

In case a) we consider the sections (0, q) and (q, 2n). Replacing in the second 
part the steps (# e + 1 , $ e + 2 ) $2n) by the steps (— $ 2 n , ~~$2n-i > ~~$e+2> 
we obtain a path A\l„. According to Lemma 2. 1 this path can be transformed into-
a path E'2n with = + 1 . 

Obviously this procedure is invertible, by considering the /-th strict ladder 
index of the path A\l

n.-
In case b) let us denote by q the index of the last maximum. The path E2n with 

SE—SG — I consists of the following three sections: (0, Q\.(6, 8), ((?> 2"). We apply 
the following transformation: we replace in (Q,Q) the steps(#„+1 = — 1, 'í)0+2, ..., 
by (0e + 2> + 1 ) and in (e,2n) the steps {^-Q+i,'&s+2, •••,&2n) by the steps 
( — —$2n-i> •••> — Thus we obtain a path A%'„+2. According 
to Lemma 2. 1 this path can be transformed into a path E'2+l with = + 1 . 

In order to invert this procedure we have only to find the /-th and / + 2-th 
ladder indices of the path A2'„+1. Cases a) and b) complete the proof of Theorem 
2. 1. 

2. Two varíate equivalences. We shall prove the following 

T h e o r e m 2.2. P(y. = /, q = r) = P{X'= /, n = r) (/ = 0, r = 0 ; / = 1, 2, ..., n, 
r —1,1 + 2, ..., 2/2 — /). 

P r o o f 2 ) . For /• = 0, / = 0 the paths of both kinds coincide, we have to consider 
only the case / s 1. Then each path with (A' = l,n = r) can be divided by the T'-
points (2i+ 1, 1) and the points (2j, 0) with s2J = 0 and s 2 j _ i = + 1 into 21 or 2 / + 1 
sections, some of which are starting from + 1 and ending in 0, all inner points 
being strictly positive (type a) ) , while the others are starting from 0, ending in 
+ 1, all inner points being non-positive (type /JJ). 

The first section is always of type /?,); the last section is either of type a J or of 
type ft), but in the latter case the last (#2„ + i = +1) step is missing. 

There.are altogether I sections of type A) with total length R and / or ( / + 1 ) 
sections of type [1). 

Let us now consider the sections of type a). We change all fi¡-s occurring in 
them into and link together the new sections obtained by this procedure, main-
taining their original order of succession. We now link together all sections of type 
P); denoting the steps of the section thus obtained by (#r + i , ,&'r+2, ..., #2n) we 
transform them into. ( — S2n, — fiín-i —ti'r+i, —#,'+i) and join the .respective 
section to the first section obtained. As a result we obtain a path with x — 1, g = r. 

The reverse procedure transforms each path {y. — l, Q==r} into the correspond-' 
ing path {A' = /, n = /•}; this can be performed by considering-the strict ladder indices 
in section (0, r) and the strict backward ladder indices in section (r, 2n). 

2 ) Similar construction is used by CH. HOBBY and R. PYKE [4]. 
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In the following theorem we shall prove two equivalences according to whether 
the maximum is even or odd: 

T h e o r e m 2. 3. 

P(x = s2r. = 21) =. ±P[X = 21, y = r') + P(X = 21 + 1, y = r') +iP(X = 2l + 2,y = r') 

and P(x ==^2r'+i ~2I — 1) = 

= P(X = 2l-[, y = r', Si = - 1 ) + P(X = 2l, y = r') + P(X = 2l+l, y = r',s, = + 1). 

P r o o f . We use the same procedure as in the proof .of Lemma 2. 1. 

The crucial point in the proof of Lemma 2. 1 was the ...division of a path Ajl„ 
by means of its even strict ladder indices. The last step of each section between 
two consecutive ladder indices is always ( + 1 ) ; omitting this and placing a (—1) 
before the section, we obtain a negative half wave. 

Considering a path whose maximum 21 is taken on for the index 2r' let us denote 
by 2r (27) the first (last) index of maximum. The section <0, 2r) is a path Ajl

r, the 
section (27, 2n) is an inverted path A\{„_-). As described before, both sections can 
be divided into / parts and each part can be transformed into a negative half wave. 
The half waves generated by A\l

r will be turned into positive half waves by reflection. 
If r = r'=T (case a)) there is no other section; if r < 7 but either r' = r or r' =7-
(case b)) the section (2r, 27) is a negative half wave itself. In this case if r' = r, 
then this half wave will remain negative, if r' =r, it will be turned into positive 
one. If r < r ' < 7 (case c)) the sections (2r, 2r') and (2r', 27) are half waves themselves. 
The former will be turned into a positive one, the latter will remain negative. What 
remains to be done is to connect these half waves, namely a positive after a negative 
one; in case a) and c) beginning with a positive half wave, in case b) with a negative 
one if r'=r and with a positive one if r ' = 7 . 

Each of these procedures determines uniquely the inverse construction, leading 
to a one-to-one mapping of the sets of corresponding paths. For the second part 
of this theorem similar construction can be applied. 

Summation over / of the relations in Theorem 2. 3 results in the following 

C o r o l l a r y 2. 2..P(slr+i =x) = P(s2r = x)==P(y = r) for r=D, 1, 2, n. 

Another fact proved herewith is expressed in the 

C o r o l l a r y 2.3. . . 

P(x = 2l, g = 2r) = \P(A = 2l, y=r) + P(L=2I+ 1, y=r, s, = + 1). 

and P(x = 2 / - 1, g=2r+ 1) = 

= P(l=2l-\,y=r,sl = -1) + \PQ. = 21, y = /-). 
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