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On some combinatorial relations concerning
~ the symmetric random walk-

By E. "CSAKI and I. VINCZE m Budapest

Dedtcated to the rhree mseparable jrrends P. Er(los, T. Gallai, and P. Turdn
at the occasion of all -being close to 50 - .

§1. Introductiorl and notations

1 In- thrs paper we shall consider sequences 19 (791,792, o B3) of n (+ 1)-‘s

and n (—1)-s, each possrble array bemg of equal probablllty l/( ) . Thus the
partial sums sO—-O ;= +0,+ ... +8.(=1,2,...,2n) generateasrmple symmetric
- random walk, returning after 2n steps to the orrgm

We use the following notations:

% = max s;; ¢=min {i:s;=#} (index of the first maximum).
0sis2n - o :

A—1 is the number of the intersections, i.e. the number of i-s with 5, =0, '
S 1s,+1 = —1 (thus A is the number of half-waves).
is the Galton-statistics (i. e. 2y is the number of mdlces i for Wthh either
5; >0 or 5;=0,s5;,_, =+1).
‘ The authors have found the. fol[owmg asymptotlc relanon [6] [2]
lim P(x <y¥ 2n, Q<2I12) = llmP(A<yV2n y<nz) =

n—3co n->o0

2 | Cu? By i . .
_ — e U(l—v) =0 =>r=
]/n //’[v(l—v)]’/z dudv (y__'O, l=z=0).
: 0o 0 BN

In connection -with this relation, E. SPARRE ANDERSEN'raised the question'),
whether there exists some equlvalence principle for .the finite case too.

In' the following we grve some equrvalence theorems and prove among others

that i _
Ly P(le) = —}-(P(/l:-l)+P(A=1'+l))‘ (=0,1,...,n),

: (12) o - P(x=lo=r) = P(A":l,n':r),-

1) At the occasmn of the Conference on Prohablllry and Sransncs held in Oberwolfach August
2026, 1961. .

.
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where 7 cienotes the number of positve terms in (sy, 5, .. sz,,) whlle Ais the
number of lﬂdlCCS i for which s;_,=0,s; = +1. (1. 2) lmplles

P(Q—r)—P(n—r),

which is a special case .of a. well-known result of SPARRE ANDERSEN [1]; it implies
also the following result of MIHALEVIC [5]:

P(x=1) = P(X =1).

Thus we have a joint equivalence between (», ¢) and (', m). We would like to
point out furthermore that each of our theorems is proved by means -of one-to-one
correspondences between the sets of paths considered. This indicates a combinatorial
and geometrical background of these equivalences. .

We also remark that in our constructions » appears v1rtually more as the
number of ladder indices (see FELLER [3]) than as the maximum, both comc:dmg
for the special variables #; =+ 1. .

2. We shall make use of the following further terminology and notations: -

The 'polygon'al line whose subsequent vertices have the coordinates (i, s;)
(i=0,1,2,...,) is called the path (sq, 5, ..., 5)).

E,, is a path (sq, s, ..., S3,) With sz,,—O A point (2i, sz,) of the path E,,,
for which s,;=0 and s;;_ 1Sz.+1 = —1, as well as the points (0, 0) and (2n, 0) of
E,,, are called intersection _points or T-pomts As defined above, 2 + 1 is the number
of T-points. -

By a T’-point we mean a point (2r+l 1) of the path E,,, for which s,;=0,
$2;+1 = +1 (this kind of points was treated by MIHALEVIZ [5]) X is the number
of T’-points.

E%_ is a path E,, with A=/,

(i, j) is a section of-a path lymg between the pomts (A s) and (j, 5;), 1. e. the
sequence Biv1, P42, .., 9)).

k is called a strict ladder index (FeLLEr [3)); if 5, >s5; for 1—0, , ., k—-1;k -
is called a strict backward ladder index if s, >s; for i=k,k+1, ..., 2n,

Alis a path (sq, sy, ..., 8,), for which s, =0, s; </, 5, </, ..., s,_1 <1, s,=1i.e.
~its /-th strict ladder index being r.

' N(-) is the number of all possible paths ‘whose type is given in the brackets

(e g N(E,)= (2”))

§ 2. Equivalence relations .

-1. The maxium and the number of waves. We shall prove the following
Theorem 2.1. P(x=/) = %[P(A=I)+P(A=l+l)] (/=0,1,2, ..., 7).

Proof. We con51der a path E,, with » =/ Accordmg to the index ¢ of the -

first maximum, we distinguish two different cases: :
a) ¢ is the only posmon for, which the maximum takes place
-b) there are more than one maximum places.
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In both cases we shall make use of the following

Lemma 21 _ —N(Ez,,) N(AZ

ThlS was proved in [2] by means of a one-to-one correspondence between the
sets of paths. -

In case a) we consider the sections (0, ¢) and {p, 2n> Replacing i in the second
part the steps(ﬂgﬂ,ﬁg“, o D) by thesteps (— @5, —Bp-1, coes —Bus,— g+l)>
we obtain a path A% Accordmg to Lemma 2 1 this- path can be transformed into
a path E}, with 5, = +1. '

Obvrously this procedure is 1nvert1ble, by considering the l-th strlct ladder
- index of the path A2 .-

In case b) let us denote by g the 1ndex of the last maximum. The path E,, w1th :
s,=s;=1 consists of the following three sections: (0, @, {g, @), (g, 2n). We apply

the following transformation: we replace in (o, @) the steps (199+1 =—1,9,43,...,95)
by (%,42, ..., %, +1) and in (g, 2n) the steps (¥3.1,Pg4,, ..., #5,) by the steps
— b5, -—192,, 15 s =542, —B441). Thus we obtain a path AZ‘+2 According

to Lemma 2. 1 this path can be transformed into a path Elt! w1th s, =+1.

In ofder to invert this procedure we have only to find the /-th and [+2-th
ladder mdlces of the path A3i*!. Cases a) and b) complete the proof of Theorem
21 . e ) ‘

2. Two variate equivalences. We shall prove the following

"Theorem 2.2. P(y—l e=r) = P(l’—l n=r) (I=0,r=0;/=1,2,.
r=L1+2,...,2n=1). .

Proof 2). For r =0, [ =0 the paths of both kinds coincide, we have to consider
only-the case /=1. Then each path with (A’ =1/, n=r) can be divided by the T”-
" points (2i +1, 1) and the points (2j, 0) with s,;=0and 5,;_; = + 1 into 2/ or 2/+1
sections, some of which are starting from +1 and ending in 0, all inner pomts
" being strlctly positive (type o)), while the others are starting from 0 ending in
+1, all innér points bemg non-positive (type f)). '

The first section is always of type B); the last section is either of type o) or of
type B), but in the latter case the. last (#,,,; = +1) step is missing.

There .are altogether / sections of type «) with total length r and / or (/+1) -
secnons of type B).

Let us now consider the sections of type a). We change all #;-s occurring in
them into —@; and link together the new sections obtained by this procedure main-
taining their ongmal order of succession. We now link together all sectlons of type
. B); denoting the steps of the section thus obtained by (871,842, ..., %20 we
transform them into. ( ~#3,, —®2a_1, ..., —¥ 42, —F/+1).and join,the.respective
section to the first section obtained. As a result we obtain a path with x=/, g=r.

The reverse procedure transforms each path {x=1, g=r} into the correspond-
ing path {1’ =/, n =r}; this can be performed by considering-the strict ladder indices -
in section {0, r) and the strict backward ladder indices ‘in section {r, 2n).

. 2) Similar construction is used by CH. HosBy and R. Pyke [4]).
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_ ln the followmg theorem we shall prove two equivalences accordmg to whether
the maximum is even or odd

. Theorem 2.3. .

P(i=s,, =2) =1 YPL=20y=r)+PG=2+1,y=r)+} P(h= 2+2, y=r)
and .  P(a=8y, =2 —1) =

—P(,l 2/—l,y—r ) =‘—1)+P(A 2, y—r)-i—P(i 2+, y=r,s, =+1).

Proof We' use the same procedure as in the proof.of Lemma 2.1,

The crucial point in the proof of Lemma 2.1 was the.division of a path 43}
by means of its even strict ladder indices. The last step of each section betwecn
two consecutive ladder indices is always (+ 1); omitting this and placmg a (-— 1)
before the section, we obtain a negative half wave.

Considering a path whose maximum 2/ is'taken on for the index 2r* let us denote
by 2r (2r) the first (last) index of maxrmum The section (0, 2r) is a path A3!, the
section (2r, 2n) is an inverted path A3}, _;. As described before, both sections can
be divided into / parts and each part can be transformed into a negative half wave.
The half waves generated by A3} will be turned into positive half waves by reflection.
If r=r =7 (case d)) there is no other section; if r<r but either ¥ =r or ¥ =r
(case b)) the section (2r, 2r) is a negative haif wave itself. In this case if r"=r,
then this half wave will remain negative, if r"=r, it will be turned into positive
one. If r<r < (case ¢)) the sections (2r, 2r"y and {2+, 2r) are half waves themselves.
The former will be turned into a-positive one, the latter will remain negative. What
remains to be done is to connect these half waves, namely a posmve after a negative
_ one; in case d) and C) beginning with a positive half wave, in case b) with-a negative
one if ¥ =r and with a -positive one if ' =F.

‘Each of these procedures determines uniquely the inverse construction, leading -
to a one-to-one mapping of the sets of corresponding paths. For the second part
of this theorem- similar construction can be applied. :

Summation over / of the relations in Theorem 2.3 results in the following
Corollary 2.2. P(s,.s. =)= P(s;, = #) = P(y =r) for r=0, 1,2,

Another fact proved herewith is expressed in the

Corollary 2.3. )

P(x=2l0=2r) = lP(}r 2, y=r) +P(i 2/+l, y—r 5= +1)

and : - P(x=2vl—l,g=2r+l) =

= PO=2— 1, y=r, 5, = — 1) + $P(G.=2, y=1).
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