On regular vector measures

By N. DINCULEANU in Bucharest (Roumania)

1. Introduction

Let T be a locally compact space, \mathcal{C} a nonvoid class of subsets of T, X a Banach space and $\mathbf{m}: \mathcal{C} \rightarrow X$ a set function.

A set $A \in \mathcal{C}$ is said to be *regular* (with respect to **m**) if for every $\varepsilon > 0$ there exist a compact set $K \subset A$ and an open set $G \supset A$ such that if $A' \in \mathcal{C}$ and $K \subset A' \subset G$, then $|\mathbf{m}(A) - \mathbf{m}(A')| < \varepsilon$. The set function **m** is called *regular* if every set $A \in \mathcal{C}$ is regular.

The class \mathcal{C} is a *lattice* if $A \in \mathcal{C}$ and $B \in \mathcal{C}$ imply $A \cup B \in \mathcal{C}$ and $A \cap B \in \mathcal{C}$.

The class \mathcal{C} is a *clan* if $A \in \mathcal{C}$ and $B \in \mathcal{C}$ imply $A \cup B \in \mathcal{C}$ and $A - B \in \mathcal{C}$.

We shall denote by \mathscr{B} the clan of the Borel subsets of T which are relatively compact. We call (Borel) *measure on* T with values in X, every countably additive set function defined on \mathscr{B} with values in X.

By the theorem of KAKUTANI [6] a positive regular Borel measure on T can be identified with a positive Radon measure on T [1].

We shall consider sometimes the following conditions on \mathcal{C} :

(i) For each compact set $K \subset T$ and each open set $G \supset K$, there exists a set $A \in \mathcal{C}$ such that $K \subset A \subset G$.

(ii) For each set $A \in \mathcal{C}$ there exists a set $A' \in \mathcal{C}$ such that $A \subset \text{Int } A'$.

The following result is known ([1], chap IV, § 4, No. 10, and [5], § 53, § 54). If \mathcal{C} is a lattice satisfying the condition (i), and if a positive (finite) set function μ defined on \mathcal{C} is increasing, subadditive, additive and regular, then there exists a unique positive Radon measure μ_1 on T such that the sets $A \in \mathcal{C}$ are μ_1 -integrable and $\mu_1(A) = = \mu(A)$ for $A \in \mathcal{C}$.

In particular, if \mathcal{C} is a *clan* satisfying the condition (i) and if the *positive* set function μ is *additive and regular*, the above conclusion remains valid (because in this case μ is also increasing and subadditive).

In this paper, we extend this last result to the case \mathcal{C} is a clan satisfying the conditions (i) and (ii) and $\mathbf{m}: \mathcal{C} \to X$ is additive, regular and of finite variation (theorem 3).

In case T is a compact metric space this extension was done by C. FOIAS, and has been exposed in [7] (Chapter 25, § 5).

In case T is compact and X is the space of the complex numbers, see [4]. We remark that in [4] the definition of the regularity is different from that used in the present paper. However, these two definitions are equivalent, for instance, if \mathcal{C} contains the compact subsets of T.

236 ·

N. Dinculeanu: Regular vector measures

2. Regular set functions

In the sequel, we shall suppose that \mathcal{C} is a *clan* and that the set function $\mathbf{m}: \mathcal{C} \to X$ is *additive*.

We say that a set $A \in \mathbb{C}$ is regular on the left (on the right) if for every $\varepsilon > 0$ there exists a compact set $K \subset A$ (an open set $G \supset A$) such that if $A' \in \mathbb{C}$ and $K \subset A' \subset \subset A(A \subset A' \subset G)$ then $|\mathbf{m}(A) - \mathbf{m}(A')| < \varepsilon$.

All the compact sets $K \in \mathcal{C}$ are regular on the left, and all the open sets $G \in \mathcal{C}$ are regular on the right.

If all the sets $A \in \mathcal{C}$ are regular on the left (on the right) we say that the set function **m** is regular on the left (on the right).

It is clear that a regular set $A \in \mathbb{C}$ is regular on the left and on the right and we shall show that the converse is also true.

. We first prove

Proposition 1. A set $A \in \mathbb{C}$ is regular if and only if for every $\varepsilon > 0$ there exist a compact set $K \subset A$ and an open set $G \supset A$ such that if $B \in \mathbb{C}$ and $B \subset G - K$ then $|\mathbf{m}(B)| < \varepsilon$.

A set $A \in \mathbb{C}$ is regular on the left (on the right) if and only if for every $\varepsilon > 0$ there exists a compact set $K \subset A$ (an open set $G \supset A$) such that if $B \in \mathbb{C}$ and $B \subset A - K$ $(B \subset G - A)$ then $|\mathbf{m}(B)| < \varepsilon$.

We shall prove only the part concerning the regularity. Suppose first that A is regular and let $\varepsilon > 0$. Take a compact set $K \subset A$ and an open set $G \supset A$ such that if $A' \in \mathcal{C}$ and $K \subset A' \subset G$ then $|\mathbf{m}(A) - \mathbf{m}(A')| < \frac{\varepsilon}{2}$.

A (e and
$$A \subset A \subset G$$
 then $|\mathbf{m}(A) - \mathbf{m}(A)| <$

If $B \in \mathcal{C}$ and $B \subset G - K$ then

$$B = (A \cup B) - (A - B), \quad A - B \subset A \cup B$$

and

 $K \subset A \cup B \subset G, \quad K \subset A - B \subset G,$

therefore

$$|\mathbf{m}(B)| = |\mathbf{m}(A \cup B) - \mathbf{m}(A - B)| \leq$$

$$\leq |\mathbf{m}(A \cup B) - \mathbf{m}(A)| + |\mathbf{m}(A) - \mathbf{m}(A - B)| < \varepsilon,$$

hence A verifies the condition of the propositon.

Conversely, suppose that this condition is verified and let $\varepsilon > 0$. Take a compact

set $K \subset A$ and an open set $G \supset A$ such that if $B \in \mathcal{C}$ and $B \subset G - K$ then $|\mathbf{m}(B)| < \frac{B}{2}$.

If $A' \in \mathcal{C}$ and $K \subset A' \subset G$ then

and

$$A-A'\subset G-K, \quad A'-A\subset G-K$$

therefore

$$A' = (A \cap A') \cap (A' - A), A - (A \cap A') = A - A',$$

$$|\mathbf{m}(A) - \mathbf{m}(A')| = |\mathbf{m}(A) - \mathbf{m}(A' | A') - \mathbf{m}(A' - A)| = -|\mathbf{m}(A - A')| + |\mathbf{m}(A' - A')| + |\mathbf{m}(A' - A')| = -|\mathbf{m}(A - A')| + |\mathbf{m}(A' - A')| = -|\mathbf{m}(A - A')| + |\mathbf{m}(A' - A')| = -|\mathbf{m}(A - A')| + |\mathbf{m}(A' - A')| + |\mathbf{m}(A' - A')| + |\mathbf{m}(A' - A')| + |\mathbf{m}(A' - A')| = -|\mathbf{m}(A - A')| + |\mathbf{m}(A' - A')| + |\mathbf{m}(A$$

 $= |\mathbf{m}(A - A') - \mathbf{m}(A' - A)| \le |\mathbf{m}(A - A')| + |\mathbf{m}(A' - A)|$

hence A is regular.

N. Dinculeanu

Proposition 2. A set $A \in \mathcal{C}$ is regular if and only if it is regular on the left and on the right.

We have already noticed that if A is regular then it is regular on the left and on the right.

Suppose now that A is regular on the left and on the right and let $\varepsilon > 0$. Take a compact set $K \subset A$ and an open set $G \supset A$ such that if $B \in \mathcal{C}$ and $B \subset A - K$ or

 $B \subset G - A$ then $|\mathbf{m}(B)| < \frac{\varepsilon}{2}$ (proposition 1).

If $C \in \mathcal{C}$ and $C \subset G - K$, then

$$C = (C-A) \cup (C \cap A), \quad (C-A) \cap (C \cap A) = \emptyset$$
$$C = A \subseteq G = A, \quad C \cap A \subseteq A = K.$$

The sets $B_1 = C - A$ and $B_2 = C \cap A$ are in \mathcal{C} therefore $|\mathbf{m}(B_1)| < \frac{\varepsilon}{2}$ and $|\mathbf{m}(B_2)| < \frac{\varepsilon}{2}$. It follows that

$$|\mathbf{m}(C)| = |\mathbf{m}(C-A) + \mathbf{m}(C\cap A)| \leq |\mathbf{m}(C-A)| + |\mathbf{m}(C\cap A)| < \varepsilon,$$

hence, by proposition 1, A is regular.

Remark. If **m** is not additive, it is possible that there exist sets $A \in \mathcal{C}$, regular on the left and on the right, without being regular.

Theorem 1. Suppose that \mathcal{C} verifies the condition (ii). Then **m** is regular if and only if it is regular on the left.

By proposition 2, we have only to prove that if m is regular on the left then m is regular on the right.

Suppose that all the sets $A \in \mathbb{C}$ are regular on the left. Let $A \in \mathbb{C}$ and $\varepsilon > 0$. Take a set $A' \in \mathbb{C}$ such that $A \subset \operatorname{Int} A'$. The set A' - A is in \mathbb{C} hence it is regular on the left: there exists a compact set $K \subset A' - A$ such that if $B \in \mathbb{C}$ and $B \subset (A' - A) - K$ then $|\mathbf{m}(B)| < \varepsilon$. Note $U = \operatorname{Int} A'$. The set G = U - K is open,

$$A = U - (U - A) \subset U - K = G$$

and

$$G-A = (U-K) - A = (U-A) - K \subset (A'-A) - K,$$

therefore if $B \in \mathbb{C}$ and $B \subset G - A$, then $B \subset (A' - A) - K$ hence $|\mathbf{m}(B)| < \varepsilon$. It follows that A is regular on the right.

Remarks. 1. If all the sets $A \in \mathcal{C}$ are *relatively compact*, then condition (i) implies condition (ii).

Indeed, for every set $A \in \mathcal{C}$ we can choose a relatively compact open set $U \supset A$. If V is an arbitrary open set containing U, then by condition (i) there exists a set $A' \in \mathcal{C}$ such that $\overline{U} \subset A' \subset V$, hence $A \subset \operatorname{Int} A'$.

The condition (i) is verified, for instance, if the clan \mathcal{C} contains a base of the topology of T. In particular, the condition (i) is verified if \mathcal{C} contains all the compact subsets of T, or all the compact subsets of T which are G_{δ} ([5], § 50, theorem 4).

and

Regular vector measures

2. Suppose that the sets $A \in \mathbb{C}$ are relatively compact and that \mathbb{C} verifies the condition (i). Then **m** is regular if and only if it is regular on the right.

For every set $A \in \mathcal{C}$ we take a set $A' \in \mathcal{C}$ such that $\tilde{A} \subset A'$. From the right regularity of A' - A we deduce that A is regular on the left.

It follows that if the sets $A \in \mathcal{C}$ are relatively compact and if \mathcal{C} verifies the condition (i), then the three kinds of regularity are equivalent to each other.

3. Set functions with finite variation

For every set $A \in \mathcal{C}$ we define the variation $\mu(A)$ of **m** on A by the equality:

$$\mu(A) = \sup \sum_{i} |\mathbf{m}(A_i)|$$

where the supremum is taken for all the finite families (A_i) of disjoint sets $A_i \in \mathcal{C}$ contained in A.

The variation μ of **m** is a positive (finite or $+\infty$) and additive set function defined on \mathcal{C} , $\mu(\Phi)=0$ and

$$\mathbf{m}(A) \leq \mu(A)$$
 for $A \in \mathcal{O}$.

We say that **m** is of finite variation if $\mu(A) < +\infty$ for every $A \in \mathcal{C}$.

Proposition 3. If m is of finite variation μ , and if μ is countably additive then m is countably additive.

The proof is based on the relations

$$\left| \mathbf{m} \left(\bigcup_{i=1}^{\infty} A_i \right) - \sum_{i=1}^{n} \mathbf{m} (A_i) \right| = \left| \mathbf{m} (\bigcup_{i>n} A_i) \right| \leq \mu (\bigcup_{i>n} A_i) = \sum_{i>n} \mu (A_i)$$

where (A_i) is a sequence of disjoint sets in \mathcal{C} with $\bigcup_{i=1}^{i} A_i \in \mathcal{C}$.

Proposition 4. Suppose that **m** is of finite variation. Then **m** is regular on the left if and only if its variation μ is regular on the left.

If μ is regular on the left, we deduce immediately that **m** is regular on the left, using the inequality $|\mathbf{m}(B)| \leq \mu(B)$ and proposition 2.

Conversely, suppose that **m** is regular on the left. Let $A \in \mathcal{C}$ and $\varepsilon > 0$. Let $(A_i)_{1 \leq i \leq n}$ be a finite family of disjoint sets $A_i \in \mathcal{C}$, contained in A, such that

$$\mu(A) < \sum_{i=1}^{n} |\mathbf{m}(A_i)| + \frac{\varepsilon}{2}.$$

Because each set A_i is regular on the left (with respect to **m**) there exists a compact. set $K_i \subset A_i$, such that if $A'_i \in \mathcal{C}$ and $K_i \subset A'_i \subset A_i$ then $|\mathbf{m}(A_i) - \mathbf{m}(A'_i)| < \frac{\varepsilon}{2n}$.

The set $K = \bigcup_{i=1}^{n} K_i$ is compact and $K \subset A$. Let now $A' \in \mathcal{C}$ be such that $K \subset A' \subset A$. For each *i*, the set $A'_i = A' \cap A_i$ is in \mathcal{C} and $K_i \subset A'_i \subset A_i$; the sets A'_i are disjoint,

N. Dinculeanu

therefore

$$\mu(A') \ge \sum_{i=1}^n |\mathbf{m}(A'_i)|$$

hence

$$0 \leq \mu(A) - \mu(A') \leq \sum_{i=1}^{n} |\mathbf{m}(A_i)| + \frac{\varepsilon}{2} - \sum_{i=1}^{n} |\mathbf{m}(A_i')| =$$

$$= \sum_{i=1}^{n} \left[|\mathbf{m}(A_i)| - |\mathbf{m}(A_i')| \right] + \frac{\varepsilon}{2} \leq \sum_{i=1}^{n} |\mathbf{m}(A_i) - \mathbf{m}(A_i')| + \frac{\varepsilon}{2} < \varepsilon.$$

It follows that A is regular on the left with respect to μ , hence μ is regular on the left.

Theorem 2. Suppose that \mathcal{C} verifies the condition (ii) and that **m** is of finite variation. Then **m** is regular if and only if its variation μ is regular.

Using the inequality $|\mathbf{m}(B)| \leq \mu(B)$ and the proposition 2, we see that if μ is regular, then **m** is regular.

Conversely, if **m** is regular, then **m** is regular on the left; by proposition 4, μ is regular on the left and by theorem 1, μ is regular.

Remark. The conclusion of the theorem 2 remains valid if \mathcal{C} is a clan of relatively compact sets and if \mathcal{C} verifies the conditions (i). In particular, we have

Corollary. If **m** is a regular Borel measure with finite variation, then its variation is a positive regular Borel measure.

Indeed, the measure **m** is defined on the clan \mathcal{B} of the relatively compact Borel sets, which verifies the condition (ii).

4. Extension of a regular additive set function to a measure

Proposition 5. Let μ be a positive Radon measure on T and suppose that the sets of \mathbb{C} are μ -integrable and that \mathbb{C} verifies the condition (i). Then for every μ -integrable set $E \subset T$ and every number $\varepsilon > 0$, there exists a set $A \in \mathbb{C}$ such that $\mu(E\Delta A) < \varepsilon$.

Let $E \subset T$ be a μ -integrable set and let $\varepsilon > 0$.

There exist a compact set $K \subset E$ and a μ -integrable open set $G \supset E$ such that $\mu(G-K) < \frac{\varepsilon}{2}$ ([1], chap IV, § 4, no 6, theorem 4). Because \mathcal{C} verifies the condition (i), there exists a set $A \in \mathcal{C}$ such that $K \subset A \subset G$. Then the sets E - A and A - E are μ -integrable and contained in G - K, therefore

$$\mu(E\Delta A) = \mu((E-A) \cup (A-E)) = \mu(E-A) + \mu(A-E) \leq 2\mu(G-K) < \varepsilon.$$

Proposition 6. Let μ be a positive Radon measure on T and suppose that the sets of \mathbb{C} are μ -integrable and that \mathbb{C} verifies the condition (i). Then the set $\mathscr{E}(\mathbb{C})$ of the step functions of the form $\sum_{i=1}^{n} \varphi_{A_i} \alpha_i$ with $A_i \in \mathbb{C}$, is dense in $\mathbb{C}^1(\mu)$.

240

Regular vector measures

We know that the set $\mathscr{E}(\mathscr{B})$ of the step functions of the form $\sum_{i=1}^{\infty} \varphi_{E_i} \alpha_i$, where E_i are relatively compact Borel sets, is dense in $\mathfrak{L}^1(\mu)$. Then it is sufficient to prove that $\mathscr{E}(\mathfrak{C})$ is dense in $\mathscr{E}(\mathscr{B})$ for the topology of $\mathfrak{L}^1(\mu)$.

Let $f = \sum_{i=1}^{n} \varphi_{E_i} \alpha_i$ be a function in $\mathscr{E}(\mathscr{B})$ with $\alpha_i \neq 0$ for every *i*, and let $\varepsilon > 0$. For each *i* there exists a set $A_i \in \mathcal{C}$ such that

$$\mu(E_i \Delta A_i) < \frac{\varepsilon}{n |\alpha_i|}.$$

The function $g = \sum_{i=1}^{n} \varphi_{A_i} \alpha_i$ is in $\mathscr{E}(\mathcal{C})$ and

$$|f-g| = \left| \sum_{i=1}^{n} (\varphi_{E_i} - \varphi_{A_i}) \alpha_i \right| \leq \sum_{i=1}^{n} |\varphi_{E_i} - \varphi_{A_i}| |\alpha_i| = \sum_{i=1}^{n} \varphi_{E_i \Delta A_i} \alpha_i$$

therefore $\int |f-g| d\mu \leq \sum_{i=1}^n \mu(E_i \Delta A_i) |\alpha_i| < \varepsilon$.

It follows that $\mathscr{E}(\mathscr{C})$ is dense in $\mathscr{E}(\mathscr{B})$, hence $\mathscr{E}(\mathscr{C})$ is dense in $\mathfrak{L}^{1}(\mu)$.

Remark. The propositions 5 and 6 are valid for an arbitrary class \mathcal{C} verifying the condition (i). We can take \mathcal{C} to be, for instance: the class of the compact sets; the class of the compact sets which are G_{δ} ([5], § 50, theorem 4); the class of the relatively compact open sets; the class of the relatively compact open sets which are F_{σ} ([5], § 50, theorem 4).

If $\mathbf{m}_1: \mathscr{B} \to X$ is a regular Borel measure with finite variation μ_1 , the μ_1 -integrable real functions are called \mathbf{m}_1 -integrable and we put $\mathfrak{L}^1(\mathbf{m}_1) = \mathfrak{L}^1(\mu_1)$. For every \mathbf{m}_1 -integrable function $f \in \mathfrak{L}^1(\mathbf{m}_1)$ it is defined the integral $\int f d\mathbf{m}_1$ (see [2], [3] and [7]).

For every \mathbf{m}_1 -integrable set $A \subset T$ (with $\varphi_A \in \mathfrak{C}^1(\mathbf{m}_2)$) we put $\mathbf{m}_1(A) = \int \varphi_A d\mathbf{m}_1$.

Theorem 3. Suppose that \mathbb{C} verifies the conditions (i) and (ii) and that **m** is regular with finite variation μ . Then there exists a unique regular Borel measure \mathbf{m}_1 with finite variation μ_1 such that the sets $A \in \mathbb{C}$ are \mathbf{m}_1 -integrable and $\mathbf{m}_1(A) = \mathbf{m}(A)$ for $A \in \mathbb{C}$. In this case we have $\mu_1(A) = \mu(A)$ for $A \in \mathbb{C}$.

The variation μ of **m** is a positive and additive set function defined on the clan \mathcal{C} . Because \mathcal{C} verifies the condition (ii), μ is regular (theorem 2). Because \mathcal{C} verifies the condition (i), there exists a positive Radon measure ν on T such that the sets $A \in \mathcal{C}$ are ν -integrable and $\nu(A) = \mu(A)$ for $A \in \mathcal{C}$ (see Introduction). Then $|\mathbf{m}(A)| \leq \leq \nu(A)$ for $A \in \mathcal{C}$. For each step function $f = \sum_{i} \varphi_{A_i} \alpha_i \in \mathscr{E}(\mathcal{C})$ put

$$U(f) = \sum_{i} \mathbf{m}(A_i) \alpha_i.$$

The definition of U(f) is independent of the form in which f can be written as a step function.

The mapping $f \to U(f)$ of $\mathscr{E}(\mathcal{C})$ in X is linear; it is also continuous for the topology of $\mathfrak{L}^1(v)$, because, taking the sets A_i disjoint, we have

$$\|U(f)\|_1 \leq \sum_i |\mathbf{m}(A_i)| |\alpha_i| \leq \sum_i v(A_i) |\alpha_i| = \int |f| \, dv.$$

Because \mathcal{C} verifies the condition (i), $\mathscr{E}(\mathcal{C})$ is dense in $\mathfrak{L}^1(\nu)$ (proposition 6), therefore U can be uniquely extended to a continuous linear mapping $U_1:\mathfrak{L}^1(\nu) \to X$ and we have

$$\|U_1(f)\|_1 \leq \int |f| \, dv \quad \text{for} \quad f \in \mathfrak{L}^1(v).$$

For every relatively compact Borel set $A \in \mathcal{B}$ put

$$\mathbf{m}_1(A) = U_1(\varphi_A).$$

It is clear that \mathbf{m}_1 is additive on \mathcal{B} and that

$$|\mathbf{m}_1(A)| \leq v(A)$$
 for $A \in \mathcal{B}$.

From this inequality we deduce that \mathbf{m}_1 is countably additive, regular and of finite variation μ_1 , therefore \mathbf{m}_1 is a regular Borel measure with finite variation. It follows that μ_1 is a positive regular Borel measure and that

$$\mu_1(A) \leq \nu(A)$$
 for $A \in \mathcal{B}$

i. e. $\mu_1 \leq \nu$. Then $\mathfrak{L}^1(\nu) \subset \mathfrak{L}^1(\mu_1) = \mathfrak{L}^1(\mathbf{m}_1)$. Because the sets $A \in \mathcal{C}$ are ν -integrable, we deduce that these sets are \mathbf{m}_1 -integrable.

For every function $f \in \mathfrak{L}^1(v)$ we have

$$\left|\int f d\mathbf{m}_{1}\right| \leq \int |f| \, d\mu_{1} \leq \int |f| \, d\nu$$

therefore the linear mapping $f \to \int f d\mathbf{m}_1$ of $\mathfrak{L}^1(v)$ into X is continuous. On the other hand, for the step functions $f = \sum \varphi_{A_i} \alpha_i \in \mathscr{E}(\mathscr{B})$ we have

$$\int f d\mathbf{m}_1 = \sum_i \mathbf{m}_1(A_i) \alpha_i = U_1(f).$$

Because $\mathscr{E}(\mathscr{B})$ is dense in $\mathfrak{L}^1(v)$ and the continuous linear mappings $f \to \int f d\mathbf{m}_1$ and $U_1(f)$ of $\mathfrak{L}^1(v)$ into X coincide on $\mathscr{E}(\mathscr{B})$, we deduce that

$$\int f d\mathbf{m}_1 = U_1(f), \quad \text{for every} \quad f \in \mathfrak{L}^1(\nu).$$

In particular, for every set $A \in \mathcal{C}$ we have

$$\mathbf{m}_1(A) = \int \varphi_A \, d\mathbf{m}_1 = U_1(\varphi_A) = U(\varphi_A) = \mathbf{m}(A).$$

Because $\mu_1 \leq \nu$, we have $\mu_1(A) \leq \nu(A)$ for every ν -integrable set $A \subset T$. In particular, we have

$$\mu_1(A) \leq v(A) = \mu(A)$$
 for $A \in \mathcal{C}$.

Conversely, if $A \in \mathcal{C}$ and if (A_i) is a finite family of disjoint sets of \mathcal{C} contained in A, we have

$$\sum_{i} |\mathbf{m}(A_i)| = \sum_{i} |\mathbf{m}_1(A_i)| \leq \sum_{i} \mu_1(A_i) = \mu_1(\bigcup_{i} A_i) \leq \mu_1(A)$$

hence $\mu(A) \leq \mu_1(A)$, therefore

$$\mu_1(A) = \mu(A)$$
 for $A \in \mathcal{C}$.

From the uniqueness of v we deduce that $\mu_1 = v$. Let now \mathbf{m}_2 be a regular Borel measure with finite variation μ_2 such that the sets of \mathcal{C} are \mathbf{m}_2 -integrable and $\mathbf{m}_2(A) = = \mathbf{m}(A)$ for $A \in \mathcal{C}$.

We have then $\mathbf{m}_1(A) = \mathbf{m}_2(A)$ for $A \in \mathcal{C}$, therefore

$$\int f d\mathbf{m}_1 = \int f d\mathbf{m}_2 \quad \text{for} \quad f \in \mathscr{E}(\mathcal{Q}).$$

By proposition 6, the set $\mathscr{E}(\mathbb{C})$ is dense in the space $\mathfrak{L}^1(\mu_1 + \mu_2)$. Because $\mathfrak{L}^1(\mu_1 + \mu_2)$ is contained in $\mathfrak{L}^1(\mu_1)$ and in $\mathfrak{L}^1(\mu_2)$, the linear mappings $f \to \int f d\mathbf{m}_1$ and $f \to \int f d\mathbf{m}_2$ are defined and continuous on $\mathfrak{L}^1(\mu_1 + \mu_2)$ and coincide on the dense set $\mathscr{E}(\mathbb{C})$, therefore

$$\int f d\mathbf{m}_1 = \int f d\mathbf{m}_2 \quad \text{for} \quad f \in \mathfrak{L}^1(\mu_1 + \mu_2),$$

In particular

$$\mathbf{m}_1(A) = \mathbf{m}_2(A)$$
 for $A \in \mathcal{B}$,

hence $\mathbf{m}_1 = \mathbf{m}_2$. This proves the uniqueness of \mathbf{m}_1 and completes the proof of the theorem.

Corollary 1. If \mathcal{C} is a clan verifying the conditions (i) and (ii), every additive and regular set function $\mathbf{m}: \mathcal{C} \to X$ with finite variation is countably additive.

In particular, every additive and regular set function $\mathbf{m}: \mathscr{B} \to X$ with finite variation is a regular Borel measure with finite variation.

Corollary 2. If \mathcal{C} is a clan contained in \mathcal{B} and containing a base of the topology of T, then every additive and regular set function $\mathbf{m}: \mathcal{C} \to X$ with finite variation can be extended to a regular Borel measure with finite variation.

In particular, corollaries 1 and 2 are valid in each of the following cases: \mathcal{C} is the clan generated by all the compact sets; \mathcal{C} is the clan generated by all the compact sets which are G_{δ} ; \mathcal{C} is the clan of the Baire sets wich are relatively compact; T is totally disconnected and \mathcal{C} is the clan of all compact-open subsets of T.

References

[1] N. BOURBAKI, Intégration, Chap. I-IV (Paris, 1952).

[2] N. DINCULEANU, Sur la représentation intégrale des certaines opérations linéaires. III, Proc. Amer. Math. Soc., 10 (1959), 59-68.

[3] N. DINCULEANU et C. FOIAS, Sur la représentation intégrale des certaines opérations linéaires. IV, Canad. J. Math., 13 (1961), 529-556.

[4] N. DUNFORD and J. T. SCHWARTZ, Linear operators, Part I (New York, 1958).

[5] P. R. HALMOS, *Measure theory* (New York, 1950).

[6] S. KAKUTANI, Concrete representation of abstract (3)() spaces, Annals of Math., 42 (1941), 994-1024.

[7] M. NICOLESCU, Analiză Matematică, Vol. III (București, 1960).

(Reçu le 20 juillet 1962)