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On regular vector measures 
By N. D 1 N C U L E A N U in Bucharest (Roumania) 

1. introduction 

Let T be a locally compact space, (2 a nonvoid class of subsets of T, X a Banach 
space and m:(2 — X a set function. 

A set A d (2 is said to be regular (with respect to m) if for every e > 0 there exist 
a compact set K<~A and an open set Gz>A such that if A'£(2 and KczA'cG, 
then |m(/4) — m(/4')| The set function m is called regular if every set Ad<2 is 
regular. 

The class (2 is a lattice if A €<2 and BdQ imply AiJBdQ and AC\Be<2. 
The class (2 is a clan if AG2 and Bdi2 imply AUBdQ and A-B£<B. 
We shall denote by 38 the clan of the Borel subsets of T which are relatively 

compact. We call (Borel) measure on T with values in X, every countably additive 
set function defined on Si with values in J . 

By the theorem of K A K U T A N I [6] a positive regular Borel measure on T can 
be identified with a positive Radon meástire on T [1]. 

We shall consider sometimes the following conditions on (2: 
(i) For each compact set Kcz T and each open set Gz>K, there exists a set Ad 6 

such that KcAcG: 
(ii) For each set AdQ there exists a set A' €(2 such that AczlatA'. 
The following result is known ([1], chap IV, §4, No: 10, and [5], § 53, §54). 
If (2 is a lattice satisfying the condition (i), and if a positive (finite) set function 

p defined on (2 is increasing, subadditive, additive and regular, then there exists a unique 
positive Radon measure p, on Tsuch that the sets Ad&are p, -integrable andpy(A) = 
= p(A)forA£S. 

. In particular, if (2 is a clan satisfying the condition (i) and if the positive set 
function p is additive and regular, the above conclusion remains valid (because in 
this case p is also increasing and subadditive). 

In this paper, we extend this last result to the case <2 is a clan satisfying the 
conditions (i) and (ii) and m:<2--X is additive, regular and of finite variation 
(theorem 3). 

In case T is a compact metric space this extension was done by C . FOIAS and 
has..been.-exposed in [7] (Chapter 25, § 5). 

In case T is compact and X is the space of the complex numbers, see [4]. We 
remark that in [4] the definition of the regularity is different from that used in the 
present paper. However, these two definitions are equivalent, for instance, if (2 
contains the compact subsets of T. 
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2. Regular set functions 

In the sequel, we shall suppose that S is a clan and that the set function m : S — X 
is additive. 

We . say that a set A €<2 is regular on the left (on- the right) if for every e > 0 
there exists a compact set Ka A (an open set G z> A) such that ifvi ' £ (2 and Ka A' c 
aA(Ac:A'c:G) then \m(A)-m(A')\<e. 

All the compact sets KdQ are regular on. the le f t , and all the open sets G£(2 
are regular on the right; 

If all the sets A are regular on the left (on the right) we say that the set 
junction m is regular on the left, (on the right). 

It is clear that.a regular set A 6(2 is regular on the left and on the right and we 
shall show that the converse is also true. 

We first prove 
P r o p o s i t i o n 1. A set A £(2 is regular if and only if for every e =-0 there exist 

a compact set KaA and an open set Gz^A.such that if 2?£(2 and BaG — K then 
| m ( f l ) | < 8 . 

. A set A £ <2 is regular on the left (on the right) if and only if for every e > 0 there 
exists a compact set KaA(an open set Gz)A) such that if jff€<2 and BczA—K 
(BczG-A) then |m(B) |<e. 

We shall prove only the part concerning thé regularity. Suppose first that A 
is regular and let £=>0. Take a compact set Kçz A and an open set G.z^A such that 

if A'^e and KxzA'aGthen |mG4)-mC4') | < y -

If and Br.G-K then 

B = (A\JB)-(A-E), A-BC.AKJB 
and 

Kc~ A {JBr.G, KaA — BczG, 
therefore 

\m(B)\ = ë 

\m(AUB)-m(A)\ + \m(A)-m(A-B)\<e, / '' 

hence A verifies the condition of the propositon. 
Conversely, suppose that this condition is verified and let £ > 0 . Take a compact 

8 

set KA A and an open set G z> A such that if B€(2 and BŒG — K then |m(5)| < —. 

If A'ÇQ and Kc-A'czG then 

A-A'c.G^K, A'-AŒG-K and : A' = (Àr\A')f](A' - A), A -(A il A') = A-A', 
therefore 

| m ( ^ ) - m ( ^ ) l ' = | m ( 4 - m ( ^ n A')-M(A'-A)\= ' - • 
= \m(A-A')-m(A'-A)\ ^ \m(A-A')\+-\m(A'-A)\^e,, 

hence A is regular. 
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. P r o p o s i t i o n 2. A set AG2 is regular if and only if it is regular on the left 
and on the right. 

We have already noticed that if A is regular then it is regular on the left and 
on the right. . 

Suppose now that A is regular on the left and on the right and let £ >0 . Take 
a compact set K(ZA and an open set G~DA such that if BG2 and BCA — K or 

£ 

BCG — A then | m ( 5 ) | < y (proposition 1). 

If C € ( 2 and CCIG — K, then 

. C = (C-A){J(CR\A), (C-A)F](CNA) = 0-and 
C - A c G - A , C[~\A<^A—K. 

The sets BX = C-A and B2 = CD A are in (2 therefore |m(^i) | < ^ and 
£ 

|m(P 2 ) |< It follows that 

| m ( C ) | = |m(C-^)THn(Cn^) | S | m ( C - ^ ) | + |m(Cn^)|<£, • 
hence, by proposition 1, A is regular. 

R e m a r k , If m is hot additive, it is possible that there exist sets A£(2, regular 
on the left and on the right, without being regular: 

T h e o r e m 1. Suppose that (2 verifies the condition (ii). Then m is regular if 
and only if it is regular on the left. 

By proposition 2, we have only to prove that if m is regular on the left then m 
is regular on the right. 

Suppose that all the sets A £2 are regular, on the left. Let A£<2 and £ > 0 . 
Take a set yi'6(2 such that AalntA'. The set A' — A is in (2 hence it is regular on 
the left: there exists a compact set KcA' --A such that if BG2 and B<z(A' — A) — K 
then |m(jB)| <£. Note U = \ntA'.. The set G = U - K is open, 

. A = U-(U-A)aU-K = G 
and 

G — A = (U — K) — A = {U — A) —Ka(A'-A)—K, 

therefore if P 6 (2 and BaG-A, then 5 c ( A ' - A ) - K hence^|m(5)|<£. It follows 
that A is regular on the right. 

R e m a r k s . 1. If all the sets A {_(£ are relatively compact, then condition (i) 
implies condition (ii). 

Indeed, for every set AG2 we can choose a relatively compact open set Uz^A. 
If K is an arbitrary open set containing U, then by condition (i) there exists a set 
A'£2 such that UcA'czV, hence A czlnt A'. 

The condition (i) is verified, for instance, if the clan (2 contains a base of the 
topology of T. In particular, the condition (i) is verified if 2 contains all the compact 
subsets of T, or all the compact subsets of T which are Gs ([5], § 50, theorem 4). 
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2. Suppose that the sets A £<2 are relatively compact and that (2 vérifiés the 
condition (i). Then m is regular if and only if it is regular on the right. 

For every set Ad2 we take a set A' £<S such that AdAf. From the right regu-
larity of A' —A we deduce that A is regular on the left. 

It follows that if the sets A 6 (2 are relatively compact and if (2 verifies the con-
dition (i), then the three kinds of regularity are equivalent to each other. 

3. Set functions with finite variation 

For every set A D(2 we define the variation FT(A) of m on A by the equality: 

M(A)= SUP^LMOQI • 
• i • • 

where the supremum is taken for all the finite families (A,) of disjoint sets At'€(2 con-
tained in A. 

The variation [i of m is a positive (finite or + and additive set function defined 
on (2, // (<J>) -- 0 and 

.mC/l)! -~n(A) for A C.S. 

We say that m is of finite variation if M(A) < for every/1 €(2. 
P r o p o s i t i o n 3. If m is of finite variation /t, and. if n is countably additive 

then m is countably additive. 
The proof is based on the relations 

m lI A, - 2m(Ai) 

where (At) is a sequence of disjoint sets in (2 with [J A-td2. 
. i=i • 

P r o p o s i t i o n 4. Suppose that m is of finite variation. Then m is regular on-
the left if and only if its variation fi is regular on the left. 

If ^ is regular on the left, we.deduce immediately that m is regular on the left, 
using the inequality |m(B)| ^¡x(B) and proposition 2. 

Conversely, suppose that m is regular on the left. Let A£(2 and e=»0. Let. 
(At)i siis„ be a finite family of disjoint sets A jdS , contained in A, such that 

\ 
.¡=1 l 

Because each set Ai is regular on the left (with respect to m) there exists a compact: 

set KICAI, such that if A< 2 and KiCzAiaA; then I m ^ O - m ^ O I < 
n . 

The set K= (J Kt is compact and KdA. Let now A'd(2 be such thatKc:A'<zA. 
¡ = i 

For each /', the set A,' =A'DAl is in (2 and K-czAl c:A¡; the sets A[ are disjoint, 
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therefore 

¿ ' !m(/i f ' ) ! 
1=1 

Jience • 

/ = 1 ^ i=.i 

l=i L i = I L 

It follows that A is regular on the left with respect to p, hence p is regular on the 
left. ' 

T h e o r e m 2. Suppose that (2 verifies the-condition .(ii) and that m is of finite 
variation. Then m is regular if and only if its variation p is regular. 

• Using the inequality |m(i?)| ^p(B) and the proposition 2, we see that if p is 
regular, then m is regular. . . . " 

Conversely, if m is regular, then m is regular on the left; by proposition 4, 
ji is regular on the left and by theorem l , / i is regular. 

R e m a r k . The conclusion of the theorem 2 remains valid if (2 is a clan of 
relatively compact sets and if (2 verifies the conditions (i). In particular, we have 

C o r o l l a r y . If m is a regular Bor el measure with finite variation, then its variation 
Js a positive regular Borel measure. 

Indeed, the measure m is defined on the clan 88 of the relatively compact Borel 
:sets, which verifies the condition (ii). 

4. Extension of a regular additive set function to a measure 

P r o p o s i t i o n 5. Let p be a positive Radon measure on T and suppose that the 
sets of (2 are p-integrable and that (2 verifies the condition (i). Then for every p-integ-
rable set EczT and every number £ > 0, there exists a set A Ç(2 such that p(EAA) <= E. 

Let EczT be a /¿-integrable set and let £=>0. 
There exist a compact set KczE and" a /¿-integrable open set Gz>E such that 

p(G - K) < ([1], chap IV, § 4, no 6, theorem 4). Because (2 verifies the condition 
2 ' / 

(i), there exists a set A£(B such that KczAcG. Then the sets E — A and A— E 
are /(-integrable and contained in G — K, therefore. 

p(EAA) = p((E-A)U(A-E)) = p(E-A) + p(A-E) ^ 2p(G-K)<e. 

P r o p o s i t i o n . 6. Let p be a positive Radon measure on T and suppose that 
the sets of (2. are p-integrable and that (2 verifies the condition (i). Then the set S.(Q) 

n • 
•of the step functions of the form 2 rpA,ai wi,h A ¡ £ (2, is dense in £'(/*)• 
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We know; that the set 8(38) of the step functions of the form 2 <pEai< where 
; > = 1 

Et are relatively compact Borel sets, is dense in £K/0- Then it is sufficient to prove 
that 8(6) is dense in 8(38) for the topology of £l(p). 

n 
Let f = 2 <pE,ai be a function in 8(30) with a ^ O for every and let e > 0 . 

•= i 
For each i there exists a set A^i2 such that 

n 
The function g = 2-(PAt

cli i n <^02) and 

\/-g\ = 

therefore J \ f - g \ dp 2 A) [a,| < e. 

It follows that 8(6) is dense in 8(38), hence 8(0) is dense in tl(p). 

R e m a r k . The propositions 5 and 6 are valid for an arbitrary class 6 verifying 
the condition (i). We can take (2 to be, for instance: the class of the compact sets; 
the class of the compact sets which are GS ([5], § 50, theorem 4); the class of the 
relatively compact open sets; the class of the relatively compact open sets which 
are F a ([5], § 50, theorem 4). 

If m t : 2ft X is a regular Borel measure with finite variation pt, the p^ -integrable 
real functions are called n^ -integrable and we put £ 1 (m 1 ) = £1(^¿1). For every 
m r integrable f u n c t i o n / € £ ' ( m , ) it is defined the integral f f d m t (see [2], [3] and 
[7]). , . 

For every mj-integrable set ^ ^ ^ ( w i t h <pA£ £x(m2)) we put m1(y4)= f(pAdn^. 

T h e o r e m 3. Suppose that (2 verifies the conditions (i) and (ii) and that m is 
regular with finite variation p. Then there exists a unique regular Borel measure, mj 
with finite variation pt such that the sets A£(2 are mt-integrable and m ^ ) = m(A) 

for A £(2. In this case we have p^A) = p(A) for A £(2. 

The variation p of m is a positive and additive set function defined on the clan 
<2. Because <2 verifies the condition (ii), p is regular (theorem 2). Because 2 verifies 
the condition (i), there exists a positive Radon measure v on T such that tHe sets 
A 6(2 are v-integrable and v(A) = p(A) for A£(2 (see Introduction). Then |m(/4)|S 
^V(A) for' Aé(2. For each step f u n c t i o n / = 2 <PAÍ*Í£&(Q) P u t 

. i 

U ( f ) - 2 
i 

The definition of U(f) is independent of the form in w h i c h / c a n be written as á 
step function. 

2 (<Pe,-.<PA,)."Í = 2\<PE,-<PA,\\<XÍ\ = 2<PE{AA,<*Í, 
i= 1 

A 16 
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The mapping/->- £/( / ) of S(<2) in X is linear; it is also continuous for the topo-
logy of £Hv)J because, taking the sets A¡ disjoint, we have 

II £/(/)lii £ 2 W ^ 2 |a,| - / l / l dv. 
i' i 

Because (2 verifies the condition (i), $(&) is dense in £'(v) (proposition 6), therefore 
U can be uniquely extended to a continuous linear mapping Í7t :£'(v) -+X and we 
have 

W y i m ^ J l f l d v for f e £ ' ( v ) . 

For every relatively compact Borel set A £ put 

. I * M ) = UÁ<PA)-

It is clear that nij is additive on 8& and that 

I m ^ l ^ v ^ ) for A<i@. 

From this inequality we deduce that m^ is countably additive, regular and 
of finite variation ¡.ix, therefore m, is a regular Borel measure with finite variation. 
It follows that /i, is a positive regular Borel measure and that. 

H ^ r s v i A ) for A£38 

i .e. S v . Then £'(v) d f i ' O ^ ) = £'(1«!). Because the sets A£(3 are v-integrable, 
we deduce that these sets a.re m, -integrable. 

For every function / 6 £ ' ( v ) w e have 

' [Jfdm^ ^ / l / l ^ ' i ^ f l ñ d v . 

therefore the linear mapping f — J f d m , of £ '(v) into X is continuous. 
On the other hand, for the step functions / = 2 'PAP-I^^Í^) w e have 

i 

J f d m i = ( /* !)«(= Vtif).. 
i 

Because £(!%) is dense in £ ' ( v ) a n d the continuous linear mappings f—Jfdi11 j 
and U i ( f ) of £ '(v) into X coincide on S ( S S ) , . we deduce that 

. J f d m 1 = Ut ( / ) , for every / £ £ » . 

In particular, for every set A 6 (2 we have 

m i { A ) = J cpA d m l = C / j ( t p A ) •= U(<pA) = m 0 4 ) . 

Because we have MiC^O ^ v(A) for every v-integrable set A a T. In parti-
cular, we have 

M i ( A ) ^ V ( A ) =\I(A) f o r /4 6(2 . 

Conversely, if A £(2 and if 04,) is a finite family of disjoint sets of (2 contained 
in A, we have 

2 )m(Ad\ = 2 l m i ( 4 ) 1 ^ 2 ' HIXA,) = N, ( U A,) á /J, (A) 
i i ¡ 
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hence /¿(Ау^ц^А), therefore 

ц1(А) = ц(А) for А е б . 

From the uniqueness of v we deduce that ptt = v. Let now m2 be a regular Borel 
measure with finite variation ц2 such that the sets of (2 are m2 -integrable and m2(A) = 
=m(A) for Аев. 

We have then m1(/4)=m2(y4) for AG2, therefore 

j f dmx — J f d m 2 for /€<?((2). 

By proposition 6, the set 8 ((2) is dense in the space £ 4 ^ 1 + Ш)- Because £ 4 ^ 1 + P-i) 
is contained in and in £Ч^г)> the linear mappings / — J f d m y and / f f d m 2 

are defined and continuous on t 1 ( jx 1 +/ i 2 ) an<* coincide on the dense set <¡?((2), 
therefore . 

f f d m x = J f d m 2 for f i ^ i H i + H i ) , 
In particular 

ml(A) = m2(A) for 

hence m 1 = m 2 . This proves the uniqueness of m, and completes the proof of the 
theorem. 

C o r o l l a r y 1. If (2 is a clan verifying the conditions (i) and (ii), every additive 
and regular set function m:6^X with finite variation is countably additive. 

In particular, every additive and regular set function m: with finite 
variation is a regular Borel measure with finite variation. 

C o r o l l a r y 2. If (2 is a clan contained in and containing a base of the topology 
of T, then every additive and regular set function m:(2 -*X with finite variation can 
be extended to a regular Borel measure with finite variation. 

In particular, corollaries 1 and 2 are valid in each of the following cases: (2 
is the clan generated by all the compact sets ; (2 is the clan generated by all the compact 
sets which are Gs; (2 is the clan of the Baire .sets wich are relatively compact; 74s 
totally disconnected and (2 is the clan of all compact-open subsets of T. 
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