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~On regular vector measures

. Ey N. DINCULEANU in Bucharest (Roumania)

1. Introduction

Let T be a locally compact space, € a nonvoid class of subsets of T, X a Banach
space and m: C—~X a set function.

A set A €@ is said to be regular (with respect to m) if for every ¢ =0 there exist
. a compact set Kc A and an open set GO A such that if 4/€¢€ and Kc A’ CG,

_then |m(A) —m(A")| <e. The set function m is called regular if every set A€C is
regular.

The class @ is a latrice if A€@ and BE@ imply AUB€C and ANBcC.

The class @ is a clan if A€C and BeC imply AUB€C and 4 —-BcC.

We shall denote by # the clan of the Borel subsets of T which are relatively
compact. We call (Borel) measure on T with values in X, every countably addmve
set function. defined .on # with values in X, -

By the theorem of KAKUTANI [6] a positive regular Borel measure on T can
be identified with a positive Radon measure on T [1].

~ We shall consider sometimies the following conditions -on ©:

(i) For each compact- set K c T and each open set GO K, there exists a set A€C
such that KCc AcCG:

- (ii) For each set A€Q there exists a set A'¢C such that AcInt A'.

The following result is known ([1], chap IV, § 4, No: 10, and [5], §53, § 54).

If @ is a lattice satisfying the condition (i), and if a.positive (finite) set function
n defined on C is increasing, subadditive, additive and regular, then there exists a unique

- positive Radon measure py on T such that the sets A€C are p -mtegrable and p,(4)=

=pu(A) for A€C.

. In partlcular if @ is a clan satlsfyrng the condition (i) and if the positive set
function p is additive and regular, the above conclusion remains valid (because in
this case u is also increasing and subadditive).

In this paper, we extend this last result to the case @ is a clan satisfying the
conditions (i) and (n) and m:C~ X is additive, regular and of finite varlatlon
(theorem 3).

] Incase T is a compact metric space this extension was done by C. FOIAS and

.has_been. exposed in [7] (Chapter 25, §5).

In case T is compact and X is the space of the complex numbers see [4] We
remark that in [4] the definition of the regularity is different from that used in the
present paper. However, these two definitions are equrvalent for instance, if @
contams the compact subsets of T.
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2. Reégular set functions

In the sequel, we shall suppose that @isa clan and that the set functionm: @ — X
. is additive.
We say that a set AE@ is regular on the left (on the right) if for every 6 >0 -
there exists a compact set K4 (an open set G D A) such that 1f A'€Cand KcA'c
c A(Ac A" < G) then m(4) —m(4')| <e.
All the compact sets K€C are regular on- the.left,, and all the open sets G€@
are regular on the right: :
If all the sets 4 €@ are regular on the left (on the right) we say that the set
function m is regular on the left (on the right). _
It is clear that.a regular set A €C is regular on the left and on the rrght and we
shall show that -the converse is also true. 4
. We first prove

Prop051t10n 1. A4 set ACEC is regular zfand only if for every e=0 there exist
a compact set Kc A and an open set GDA such that if BE@ and BCG K then
Im(B)|<e..

A set A€Cis regular on the left (on the right ) if and only if for every ¢=>0 there :
exists a compact set KC A(an open set GDA) such that'if BE@ and BCA-K
(BC G—A) then \m(B)|<e. ,

We shall prove only the part concermng thé regularity. Suppose first that A4
is regular and let ¢ >0. Take - a compact set K CA and an open set G. DA such that

1f A’ €€ and KC A’ G then (m(4) —m(4)| < _—.
If BE@ and BcG— Kthen S

(AUB) (A B), A-—BCAUB
and '
. KCAUBCG KcA BcG
therefore
‘ © |m(B)| = |m(4 UB) m(A B)I =

= lm(A U B) — m(4)] + [m(A-) ~m(A4— B)| =g,

hence 4 verifies the condition of the proposrton :
Conversely, suppose that this condition is verified and let & =0. Take a compact

set KCA and an open set G:)A such that if B€C and BCG K then |m(B)| < —-.'
If A’E@ and KcA'cG then '

; A— A’CG K A’ AcG K

an

- (AﬂA’)ﬂ(A’ A),- A— (AﬂA’)—A A,
therefore
' Im(A) m(4)| = [m(4)—m(dN4)—m(4 —4)| =
|m(lA_ A’): .m(A’ A)| = [m(A A)H—[m(A’ A)| <e,

hence A4 is regular.
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Pr0p051t1on 2. A set A€C is regular if ‘and only 1f it is regular on. the left
and on the right. '

We have already noticed that if. A is regular ‘then it is regular on the left and
on the right.

Suppose now that 4 is' regular on the left and on the right and let & =0. Take
a compact set KC A and an open set G>A such that if BEC and Bc4—K or

Bc G—A then |m(B)|<% (propositiou 1).
_If Ce@ and CcG—K, then o . .

' = (CLAUECNA), (C—HN(CN4) = o
e C—AcG-4, CNACA—K. |
The sets B, = C—A and B, = CﬂA are in € therefore |m(Bl)l<-— ‘and
Im(B,)| < '— It follows that

]m(C)l = |m(C A)+m(CﬂA)| ]m(C A)|+|m(CﬂA)|<e
hence, by proposition 1, 4 is regular.

_ Remark. If.m is not additive, it is possible ‘that there exist sets 4 €©, regular
on the left and on the right, without being regular: -

. TheOrenl 1. Suppose that ©. uerlﬁes the condmon (11) Then m is regular if
’and only if it is regular on the left.

" By proposition 2, we have only to prove that if m is regular on the left then m

. is regular on the’ rlght

o Suppose that all the sets 4¢& are regular on the left. Let 4€C and &>0.
Take a set A’ €@ such that A Intd’. The set A’ — A is in @ hence it is regular on

the left: there exists a compact-set KC 4’ — 4 such that if BE@ and BC(A’ A-K

> then" |m(B)]<£ Note U—]ntA’ The set G = U—K is-open, )

- U—(U- A)CU K=G
and’ )
G—A=U- K) A= (U—-4)— KC(A’ ‘A)' K,

therefoxe if B€@ and BC G — A, then BC(A’ A)— K hence lm(B)l <e. It follows
that A is regular on the right.

: Remarks 1. -1f all the sets AE@ areé relatlvely compact then oondmon @)
implies condition (ii). .

]ndeed for every set 4 E@ we can choose a relatlvely compact open set UD A.

“If Vis an arbltrary open set contammg U, then by condition (1) there exists a set
A’ €@ such that Uc A’ CV, hence AcInt A’ :

The condition (i) is verified, for instance, if the clan @ contains a base of the

: topology of T. In particular, the condition (i) is verified if € contains all the compact

subsets of T, or all the compact subsets of T which are G; ([5], §50 theorem 4)
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2. Suppose that the sets ACC are relatively colhpact and that @ verifiés the .
condition (i). Then wm is regular if and only if it is regular on the right. T

For every set 4¢@ we take a set A" €€ such that A< A4”. From the rrght regu—»
larity of 4" — A we deduce that A4 is regular on the left. )

It follows that if the sets A €€ are relatively compact and if @ verifies the con-
dition (i), then the three kinds of regularity are equivalent to each other.

3. Set functions with finite variation '
For every set 4€C we deﬁne'v.the variation p(A) of m on 4 by the equality: -
u)=sup 3 im(4)|

" where the supremum is taken for all the finite famllres (A l) of d1s10mt sets A;€C con-
tained. in A.
The variation of misa positive (finite or + o).and additive set functlon deﬁned
on &, u(P)= 0 and -
D m(A)| = p(4) for AeC..

We say that m 1s of ﬁmre variation if y(A)< + o for every A€C;

. Proposrtron 3. If m is of finite variation , and if H is countably addmve' ,
then m is countably additive.
The proof is based on the relatlons

IM( U Az)l<ﬂ( Ud) = Z ﬂ(Al)

. i>n

m<[_] A,.) _2 may)| -

where (A) is a sequence of dlS_]Olnt sets in € with U A E@

Proposrtron 4. Suppose that m is of finite uarratton Then m is regular on
the left if and only lf its variation u is regular on the left :

: If . is regular on the left, we.deduce xmmedrately that m is regular on the left
" using the inequality |m(B)|<u(B) and proposition 2.

Conversely, suppose that.m is regular on the left. Let 4¢C and 3>0 Let.

(4)1=i=n be a finite family of disjoint se_ts A;€C, contained in A, such that

ENTOR -_|m(A>1

. Because each set A is regular on the left (with respect to'm) there exists a compact .

set K-CAi, such thatﬁ if A; €€ and K-‘C:A,-' c4; then Im(4;) —m(47)] <—%

- The set K U K; is compact and Kc A. Letnow 4'¢C be such thatK < A CA.
. For each i, the set A =A"NA; isinC and K; c:A CA,, the sets Af are: disjoint,
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‘therefore

) = Sima)

‘hence

0=u()—p() = 3 im(a)l 4§ - 3 im(ad)] =

-

= S+ 5 = 3 ma) - mia+ 5 <e.

1t follows that A is regular on the. left with respect to u, hence u is. regular on the
left. ’

Theorem 2. Suppose that @ vertﬁes the. condmon (u) and that m is of ﬁmte
variation. Then m is regular if and only if its variation p is regular '

. Using the mequallty Im(B)l <u(B) and the proposmon 2, we see that 1f y is
regular, then m is regular.

Conversely, if m is regular, then m is regular on the left; by proposntlon 4,
4 is regular on the left and by theorem 1, u is regular

Remark. The conclusion of the theorem 2 remains valid if @ is a clan of
relatlvely compact sets and if € verlﬁes the conditions (i). In particular, we have

Corollary. Ifmisa regular Borel measure with finite varlatzon then its variation
is. a positive regular Borel measure.

Indeed, the measuré m is defined on the clan # of the relatlvely compact Borel
sets, wh1ch verifies the cond1t1on (ii). . -

4. Extension of a regular additive set. function to a measure'

Proposition 5. Let ji be a positive Radon measure on T and suppose that the
sets of @ are p-integrable and that C verifies the condition (i). Then for every p-integ-
rable sét ECT and every number ¢ >0, there exists a set A€C such that f(EAA) <ze.

¢

Let ECT be a p-integrable set and- let £=0. ' '
There ex1st a compact set K CE and a p-integrable open set G:)E such that
HwG—-—Ky<—= ([l], chap 1V, § 4, no 6 theorem 4). Because @ verlﬁes the condltlon
/
" (i), there exrsts a'set A€€ such that K& AcG. Then the sets E— A and A—FE
are p-integrable and contained in G—K, therefore
n(EAH) = p((E=HUA-E) = p(E—A)+ (4~ E) = (G~ K) <e.

. Proposition 6. Let i be a positive - Radon. measure on T and suppose that
the sets of ©.are u-integrable and that @ verifies the condition (i). Then the set & (©

of the step functrons of the form Z' P with A; (€, is dense in @1(;4)
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We know that the set & (%) of the step functlons of the form Z PEi, where

E; are relatlvely compact Borel sets, is dense in €1(u). Then it is suﬁicrent to prove
that é’(@) is dense in &(%&) for the topology of £'(u). .

Let f= Z' pp2; be a function in (%) with «;#0 for every i, and let =0,
For each i there exists a set A;€@ such that

M(EIA Al) <:‘m .

The function g = 3.¢, is in £(@) and
. =1 .

-.|f”g|:= —Pa)%

= i;; |(Pé;_.‘PAr| lo;| = —21' (pE;AA,a.ia.
therefore . /lf gl du= Zﬂ(E-AA-)‘[Ot~|<B.

Tt follows that é"’(@) is dense in &(4), hence & © is dense in E‘(u)

Remark. The propositions 5 and 6 are valid for an arbitrary class € verifying:
. the condition (i). We can take @ to be, for instance: the class of the compact sets;
the class of the compact sets which are G; ([5], § 50, theorem 4); the class of the
relatively compact open sets; the class of the relatively compact open sets which
are F, ([5], § 50, theorem 4) ,

If my: % —~ X is a regular Borel measure with finite variation i, the 11, -1ntegrable _
_real functions are called m,-integrable and we put £!(m,)=¢!(y,). For every -

: ml-mtegrable functlon fet (ml) it is deﬁned the. 1ntegra1 f fdm, (see [2], [3] and
).
For every ml-mtegrable set ACT (with <pA€£1(m2)) we put ml(A) I[(pAdm1 A

Theorem 3. Suppose that © verifies the conditions (i) and (ii) and that m is’
regular with finite variation p. Then there exists a unique regular Borel measure m,
with finite variation p, such that the sets A€® are m,-integrable and ml(A) =m(4)
Jor A€, In thts case we have u,(A)=pu(A) for ‘A€C.

The varlatron 1 of m is a positive and add1t1ve set function deﬁned on the clan-
C. Because € verifies the condition (ii), u is regular (theorem 2). Because € verifies
. the ‘condition (i), there exists a positive Radon measure v on T such that the sets
A€Q are v-integrable and v(4) = u(4) for 4 €@ (see Introduction). Then Im(A)] =.
» <v(A) for A€@. For each step functlon f= 2 DAt Eé"(@) put

u(f) = Zm(Ai)“'

The definition of U ( f) is 1ndependent of the form in whlch f can be wrltten as a
‘step functlon .
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The mappmgf—» U(f) of é”(@) in X is linear; it is also contmuous for the topo-
’ logy of €(v), because taking the sets 4, dlSjOlnt we have -

uwﬂn ZWMAMM<ZvMNaM;ﬁﬂm

Because @ verifies the condition (i), £(®) is dense in gl (proposmon 6), therefore -
U can be uniquely extended to a continuous- linear mapping U1 L)~ X and we
have

AN ﬂﬂw for £€€1().
For every relat1vely compact Borel set 4¢% put
m,(4)= U (@l

It is clear that ml is additive on # and that
lml(A)lsv(A) for A€

From this 1nequal1ty we deduce that m, is countably additive, regular and
of finite variation e, therefore m, is a regular Borel measure with finite variation.
It follows that p; is a positive regular Borel measure and that.

) yl(A)<v(A) for AcH

ice. py =v. Then L) < €4(u,) = L£'(in,). Because the sets AE@ are v-integrable,
we deduce that these sets are m, -integrable. ,
For every function- f €€1(v) we have

lmelsfqu<fmm

therefore the linear mappmg f— _/ Jfdm, of S‘Z‘(v) into X is contmuous
On the other hand for the step: functions f= 2 Pali Eé”(.@) we have

me—7m%N—%w

Because & (%) is dense in £'(v) and the continuous linear mappmgs f - f fdm,
and Ul( f) of Q1) into X comcnde on é’(.f}?), we deduce that

[ fam,=U,(f), for evéry fe€i().

In particular, for every set 4€@ we have

() = [ padm, = Uy(p.) = Up) = m(a).

, Because u, =v, we have ul(A)Sv(A) for every v-mtegrable set AC T In partl— :
cular we have
wA=v) = ,u(A) for A€C.
Conversely, if A4 E@ and if (4)) is a finite famlly of disjoint sets of € contained
in A, we have

Z Im(4)} = Z' Iml(A,)l = Z lh(A) = ul(UA) = py(4)
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hence ;z(A)S 11(A4), therefore
Hr(A) u(A) for AE@

From the uniqueness of v we deduce that Uy =W Let now m, be a regular Borel
measure with finite variation [.tz such that the sets of @ are m,-integrable and my(4) =
=m(A4) for 4€C.

We have then ml(A) mz(A) for AE@ therefore

f fdm, = f fdm, for fE&(Q).
By proposition 6, the set &(C) is dense in the space €1(uy + p5). Because S‘(ul +p2)

is contained in £'(y;) and in £'(y,), the linear mappings f- f fdm, and f~ f Jfdm,

are defined and contrnuous on £! (/11 +,uz) and coincide on the dense set £(C),
therefore

/. iy = Jrdms . for feLi(us+uy),

.In particular :
- my(4)=my(4) for A¢%A,

hence m; =m;. This proves the uniqueness of m1 and- completes the proof of the
theorem

- Corollary 1. If € is a clan verifying the conditions (i) and (i), every-additive
“and- regular set function m:C—~X with finite variation is countably additive.

In particular eVery additive and regular set function m: & —~X with- finite
variation is a regular Borel measure with finite varratlon

Corollary 2. If@isa clan contained in B and contaznzng a base of the topology
of T, then every additive and regular set function m:C X with ﬁmte variation can
be extended to a regular Borel measure wzth finite variation.

In particular; corollaries 1 and 2 are valrd in-each of the following cases: © -
is the clan generated by all the compact sets; @is the clan generated by all the compact
sets which are G;; C is the clan of the Barre,sets wich are relatively compact; T is
totally disconnected .and € is- the clan of all compact-open subsets of T.
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