An application of the theory of regressive functions

By G. FODOR in Szeged

Let E be an arbitrary set of power \aleph_{α} and suppose that with every element x of E there is associated a non empty set f(x) such that for any $x \in E$ the power of the set f(x) is smaller than a given cardinal number \aleph_{β} which is smaller than \aleph_{α} . We say that the subset Γ of E has the property $T(\mathfrak{q}, \mathfrak{p})$, where \mathfrak{q} and \mathfrak{p} are two cardinal numbers such that $\mathfrak{p} \leq \mathfrak{q} \leq \aleph_{\alpha}$, if $\overline{\Gamma} = \mathfrak{q}$ and

$$\overline{\bigcup_{x,y\in\Gamma}(f(x)\cap f(y))}<\mathfrak{p}.$$

Consider the following

Proposition. Under the above conditions E has a subset Γ with the property $T(\aleph_{\alpha}, \aleph_{\alpha})$.

This proposition was proved in [1] for \aleph_{α} not the sum of \aleph_{β} or fewer cardinal numbers less than \aleph_{α} , for \aleph_{α} of the form $\aleph_{\gamma+\omega}$ and — using the generalized continuum hypothesis — in the remaining case too.

We define the sequence $\{\gamma_n\}_{n<\omega}$ as follows:

$$\gamma_1 = \omega_{\gamma_1}, \quad \gamma_2 = \omega_{\gamma_1}, \quad \dots, \quad \gamma_{n+1} = \omega_{\gamma_n}, \dots$$

We shall prove in this paper the following

Theorem. If

a)
$$\operatorname{cf}(\gamma) > 0$$
, $\alpha = \gamma_{n+1}$ and $\beta < \gamma_n$, or b) $\operatorname{cf}(\alpha) > 0$ and $\omega_{\alpha} = \alpha$,

then the above proposition is true.

We shall use the following notations. For any subset Γ of E let

$$\Pi_{\Gamma} = \bigcup_{\substack{x,y \in \Gamma \\ x \neq y}} (f(x) \cap f(y)).$$

For any cardinal number r we denote by r^+ the cardinal number immediately following r. The symbols \overline{S} and $\overline{\gamma}$ denote the cardinal number of the set S and the ordinal number γ , respectively. For every ordinal number τ , $\aleph_{cf(\tau)}$ denotes the least cardinal number n such that \aleph_{τ} can be expressed as the sum of n cardinal numbers each $< \aleph_{\tau}$.

By the proof of the theorem we shall use the following

Theorem 1. If \aleph_{α} is not the sum of \aleph_{β} or fewer cardinal numbers less than \aleph_{α} , then the above proposition is true. (See [1], theorem 1.)

Theorem 2. Let \aleph_{α} be a singular cardinal number, \mathfrak{r}_0 a cardinal number which is smaller than \aleph_{α} and $\{\aleph_{\mathfrak{r}_\xi}\}_{\xi<\omega_{cf(\alpha)}}$ a sequence of regular cardinal numbers such that $\aleph_{\mathfrak{r}_\sigma}>\aleph_{\mathfrak{r}_\varepsilon}$ $(\sigma>\tau)$, $\max\{\aleph_{cf(\alpha)},\aleph_{\beta},\mathfrak{r}_0\}<\aleph_{\mathfrak{r}_\xi}<\aleph_{\alpha}$ and $\aleph_{\alpha}=\sum_{\xi<\omega_{cf(\alpha)}}\aleph_{\mathfrak{r}_\xi}$. If, for every $\xi<\omega_{cf(\alpha)}$, E_ξ is a subset of power $\ge\aleph_{\mathfrak{r}_\xi}$ of E such that E_ξ has a subset E'_ξ with the property $T(\aleph_{\mathfrak{r}_\xi},\mathfrak{r}_0)$, then E has a subset with the property $T(\aleph_{\alpha},[\aleph_{cf(\alpha)}\cdot\mathfrak{r}_0]^+)$. (See [1], theorem 4.)

Theorem 3. Let ω_{α} be an initial number which is not confinal to ω and M a subset of $W(\omega_{\alpha}) = \{\eta : \eta < \omega_{\alpha}\}$. Suppose that to every element $\alpha \in M$ there corresponds an ordinal number $g(\gamma)$ such that $g(\gamma) < \gamma$ for $\gamma > 0$ (and g(0) = 0 for $0 \in M$). If $W(\omega_{\alpha}) - M$ does not contain a closed subset confinal to $W(\omega_{\alpha})$ (i. e. M is a stationary subset of $W(\omega_{\alpha})$), then there exists an ordinal number $\pi < \omega_{\alpha}$ and a stationary subset N of M such that $g(\gamma) \leq \pi$ for every $\gamma \in N$. (See [2], theorem 2.)

Theorem 4. Let ω_{α} be an initial number $>\omega$ and ϱ a regular ordinal number of the second kind with $\varrho < \omega_{\alpha}$. The set of all ordinal numbers $\lambda < \omega_{\alpha}$ of the second kind which are confinal to ϱ , is a stationary subset of $W(\omega_{\alpha})$. (See [3], theorem 8.)

Proof of the theorem. We are going to prove a). The proof of b) is quite similar and will be omitted. Let

$$x_0, x_1, ..., x_{\omega}, x_{\omega+1}, ..., x_{\xi}, ... \qquad (\xi < \omega_{\alpha})$$

be a well-ordering of the type ω_{α} of the set E. By the hypothesis, $\beta < \gamma_n$. Hence $\beta + 1 < \gamma_n$ i. e. $\omega_{\beta+1} < \omega_{\gamma_n} = \gamma_{n+1} = \alpha$. Let now $M = \{\mu_{\nu}\}_{\nu < \alpha}$ be the set of all ordinal numbers of the second kind of $W(\alpha)$ which are confinal to $\omega_{\beta+1}$. By theorem 4 M is a stationary subset of $W(\alpha)$. Put

$$E_{\nu} = \{x_{\eta} : \eta < \omega_{\mu_{\nu}}\}.$$

Obviously $\overline{E}_{\nu} = \aleph_{\mu_{\nu}}$. Since $\aleph_{\mu_{\nu}}$ is not the sum of \aleph_{β} or fewer cardinal number less than $\aleph_{\mu_{\nu}}$ there exists, by theorem 1. a subset Γ_{ν} of E_{ν} with the property $T(\aleph_{\mu_{\nu}}, \aleph_{\mu_{\nu}})$. Hence, the power of the set $\Pi_{\Gamma_{\nu}}$ is smaller than $\aleph_{\mu_{\nu}}$.

Put $\overline{\Pi}_{\Gamma_{\nu}} = \aleph_{\varrho_{\nu}}$ and $g(\mu_{\nu}) = \varrho_{\nu}$. Thus we have associated with every element μ_{ν} of M an ordinal number $g(\mu_{\nu})$ such that $g(\mu_{\nu}) < \mu_{\nu}$ for every $\mu_{\nu} \in M$. By theorem 3 there exists an ordinal number $\pi < \alpha$ and a stationary subset M' of M such that $g(\mu_{\nu}) \leq \pi$ for every $\mu_{\nu} \in M'$.

Let $\{\mu_{v_{\eta}}\}_{\eta < \omega_{cf(\gamma)}}$ be a subset of the type $\omega_{cf(\gamma)}$ of M' such that $\lim \mu_{v_{\eta}} = \alpha$.

Consider now an increasing sequence $\{\aleph_{\tau_{\nu_{\eta}}}\}_{\eta<\omega_{cf(\gamma)}}$ of regular cardinal numbers $<\aleph_{\alpha}$ such that for every $\eta-\omega_{cf(\gamma)}$,

$$\aleph_{\mu_{\nu_{\eta}}} < \aleph_{\tau_{\nu_{\eta}}} \leq \aleph_{\mu_{\nu_{\eta}+1}}.$$

Let Γ'_{ν_n} be a subset of power $\Re_{\tau_{\nu_n}}$ of $\Gamma_{\nu_{n+1}}$. It is obvious that $\overline{\Pi}_{\Gamma'\nu_n} \leq \overline{\pi} = r_0$. Thus by theorem 2 there exists a subset of E with the property $T(\Re_{\pi}, [\Re_{cf(\pi)}r_0]^+)$. The theorem is proved.

References

- [1] G. Fodor, Some results concerning a problem in set theory, *Acta Sci. Math.*, 16 (1955), 232-240.
- [2] G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math., 18
- (1956), 139-142.
 [3] W. NEUMER, Verallgemeinerung eines Satzes von Alexandroff und Urysohn, Math. Zeitschrift, 54 (1951), 254 – 261.

(Received April 18, 1963)